JPH0436876B2 - - Google Patents

Info

Publication number
JPH0436876B2
JPH0436876B2 JP54164627A JP16462779A JPH0436876B2 JP H0436876 B2 JPH0436876 B2 JP H0436876B2 JP 54164627 A JP54164627 A JP 54164627A JP 16462779 A JP16462779 A JP 16462779A JP H0436876 B2 JPH0436876 B2 JP H0436876B2
Authority
JP
Japan
Prior art keywords
light
layer
recording medium
optical recording
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54164627A
Other languages
Japanese (ja)
Other versions
JPS5686795A (en
Inventor
Buruumu Aren
Josefu Baaku Uiriamu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB7941271A priority Critical patent/GB2066489B/en
Priority claimed from GB7941271A external-priority patent/GB2066489B/en
Application filed by RCA Corp filed Critical RCA Corp
Priority to JP16462779A priority patent/JPS5686795A/en
Publication of JPS5686795A publication Critical patent/JPS5686795A/en
Priority to JP4040263A priority patent/JPH0662010B2/en
Publication of JPH0436876B2 publication Critical patent/JPH0436876B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は新規な光学記録媒体、特に固体注入
型レーザに用いられる光学記録媒体に関する。 米国特許第4097895号明細書にはフルオレセイ
ン等の吸光層で被覆したアルミニウム、金等の光
反射性材料を含む融除型記録媒体が記載されてい
る。アルゴンまたはヘリウム・カドミウムレーザ
からのような集束強度変調レーザービームは、記
録媒体に当るとその吸光材料を蒸発させまたは融
除して開孔を残し、光反射層を露出させる。この
吸光層の厚さは構体の反射率が最低になるように
選ばれているから、記録後吸光層の最低反射率と
光反射層の反射率との間に最大のコントラストが
生じる。その上光反射層自体が不導体基板上の薄
層であれば、薄い吸光層から反射によつて失われ
るエネルギは殆んどなく、また反射層を介する透
過による損失も殆んどないから、光ビームから吸
収されたエネルギは極めて薄い皮膜内に集中し、
記録感度は驚異的に高い。 この方式の動作は良好であるが、アルゴンレー
ザやヘリウム・カドミウムレーザが動作に比較的
大入力電力を要する大型装置であるという欠点を
持つ上、外部に光変調器が必要である。アルミニ
ウム・ガリウム砒素レーザを含む固体注入型レー
ザにおけるようにさらに低い入力電力レベルで動
作させることが望ましい。これらのレーザは波長
約750〜850nmで動作するから、上記記録方式に
有用な記録媒体にはこの波長で吸収する材料が必
要である。 材料は吸光層として有用であるためには光学的
品質と所定の厚さを持つ薄い平滑層の形成に適用
し得る必要があり、使用する光源の周波数で吸光
性を持たねばならず、また解除または熔融されて
信号対雑音比が少なくとも40dBの信号パタンを
与える滑らかな開孔を形成する必要がある。 光反射層と、下のような式を持つ染料を含む約
750〜850nmで吸収を示す吸光層とを含む融除型
記録媒体が発見された。 ただしXは水素または塩素、Mは鉛、アルミニ
ウム、バナジル及び錫(+4)から成る群から選
ばれたものである。 この発見の記録媒体に特に適する染料は鉛フタ
ロシアニン、クロロアルミニウムフタロシアニ
ン、バナジルフタロシアニン、錫フタロシアニン
またはクロロアルミニウム、クロロフタロシアニ
ンを含むものである。 上記化合物はすべて固体注入型レーザの波長で
吸収を行い、光反射層上に蒸着されて信号対雑音
比の高い記録情報を形成する滑らかな光学的品質
の吸光層を与えることができる。 バナジルフタロシアニンは屈折率2.4、800nm
の吸収係数Kが1.0である。 クロロアルミニウムフタロシアニンは屈折率
3.2、800nmの吸収係数0.5である。 鉛フタロシアニンは屈折率2.4、800nmの吸収
係数0.4である。 クロロアルミニウム・クロロフタロシアニンは
屈折率3.1、800nmの吸収係数0.3である。 光反射層自体が基板上の層のときは基板の性質
は重要でないが、この基板は被着される光反射層
が接着するような光学的平滑面を持つ必要があ
る。ガラス板、ガラス円板またはプラスチツク円
板が適している。光反射材料が光学的平滑の自立
層として形成できれば、基板は不要になる。 光反射材料は記録用の光を反射しなければなら
ない。適当な光反射材料としてはアルミニウム、
ロジウム、金等がある。この光反射材料は記録光
を反射する厚さを有する。 この発明のフタロシアニン染料は普通の真空蒸
着によつて被着することができる。この染料を適
当な容器に入れて真空室内におき、その容器を電
流源に接続する。基板をこの染料の上におき、真
空室を約10-6mmHgまで排気して容器に電流を流
し、染料の温度をその蒸発温度まで上昇する。光
反射層上に所要厚さの染料層が被着されるまで蒸
着を続け、その厚さに達すると電流を遮断して真
空室に空気を入れる。 次にこの発明を添付図面を参照しつつ詳細に説
明する。 第1図は記録光に露出する前のこの発明を実施
した記録媒体で、ガラス基板110と、厚さ約
600Åの金層から成る光反射層112と、上記フ
タロシアニン染料の1つから成る吸光層114と
を具備する。 第2図は記録光に露出した後のこの発明を実施
した記録媒体で、染料層114が融除されて開孔
116を残し、光反射層112を露出している。
第2図には1個しか示されていないが、記録後の
記録媒体には複数個の開孔すなわちピツト116
があることが判る。 この発明の記録媒体の用法は第3図を参照して
さらに詳細に説明することができる。記録の場合
はアルミニウム・ガリウム砒素注入型レーザ10
により発射された光が入力電気信号14に応じて
直接変調され、この変調光が記録用光学系16に
より拡大されて強度変調レーザービームの直径を
増し、レーザ10の平面に平行並びに垂直な平面
内の対物レンズ18の所要の開口を充たすように
する。この拡大された変調レーザービームは偏光
ビーム分割器20により全反射してビーム回転用
1/4波長板22を通り、対物レンズ18に入る。
さらに変調記録ビームは第1図に示す記録媒体2
4に衝突してその吸光層の一部を融除または蒸発
させ、光反射層の一部を露出する。記録媒体24
はターンテーブル26により約1800回転/分で回
転される。対物レンズ18と記録媒体24の表面
との距離は集束サーボ機構28により一定に保た
れる。 再生の場合は未変調の弱いレーザすなわち記録
媒体に融除を起こさないものを記録ビームと同じ
径路で記録媒体24に導くと、その反射非反射の
記録パタンにより反射光が変調され、対物レンズ
18および1/4波長板22を通つて戻つて来る。
このとき光は1/4波長板22を2回通つて90°回転
しているが、さらに偏光ビーム分割器20を通つ
て再生用光学系により光検知器32に導入され
る。この光検知器32は反射光ビームを信号源1
4からの入力信号に対応する電気出力信号に変換
して端子34に生成する。追跡サーボ機構36は
再生用光学系30を通る光を監視して記録媒体2
4のトラツクが再生中記録に用いたものと確実に
同じになるようにしている。 次にこの発明を例を挙げて説明するが、これは
この発明がこの説明の細部に限定されることを意
味するものではない。 例 1 基板上に蒸着により厚さ約600Åの金層を被着
し、被覆基板を真空室内に入れて鉛フタロシアニ
ンを入れた蒸着ボート上におき、このボートに電
流源を接続して真空室を約10-6mmHgに排気し
た。ボートを約300〜400°に加熱してシヤツタを
開き、約4Å/秒の速度で染料を蒸着し、これを
金層上に厚さ約600Åの層が被着されるまで続け
た。 これによつて平滑無定形無色の連続被膜が形成
された。 このようにして得られた記録媒体を第3図に示
す装置によりアルミニウム・ガリウム砒素連続波
注入型レーザからの波長約800nmの50n秒光パル
ス列に露光して、染料薄膜に規則正しい形の滑ら
かな開孔を融除により形成するのに要するレーザ
の入射記録閾値は約31mWであつた。 例 2 例1の手順に準じて例1におけるような金被覆
基板を厚さ約510Åのクロロアルミニウム・フタ
ロシアニンの層で被覆する。染料薄膜に規則正し
い形の滑らかな開孔を融除により形成するのに要
するレーザの入射記録閾値は約42mWであつた。 例 3 例1の手順に準じて金被覆基板に厚さ約650Å
のバナジルフタロシアニンを被着したところ、反
射率は8000Åで約9%であつた。この反射率は約
6週間放置しても不変であつた。 レーザにより滑らかな規則正しい形の開孔を融
除により形成するのに要する記録面のレーザ入射
記録閾値は約3〜3.5mWであつた。 例 4 例1の手順に準じて金被覆基板に厚さ約400Å
のクロロアルミニウム・クロロフタロシアニンを
被着したところ、800nmの反射率は約13%であつ
た。 滑らかで規則正しい形の開孔を融除により形成
するのに要する記録面のレーザ入射記録閾値は約
3〜3.5mWであつた。 比較例 例1の手順に準じて金被覆基板に他のフタロシ
アニン染料を被着したが、この用途に適すること
は立証できなかつた。このデータをまとめて次の
表に示す。
The present invention relates to a novel optical recording medium, particularly an optical recording medium used in a solid-state injection laser. US Pat. No. 4,097,895 describes an ablative recording medium comprising a light reflective material such as aluminum or gold coated with a light absorbing layer such as fluorescein. A focused, intensity-modulated laser beam, such as from an argon or helium-cadmium laser, evaporates or ablates the light-absorbing material on the recording medium, leaving an aperture and exposing the light-reflecting layer. The thickness of this light-absorbing layer is chosen to give the lowest reflectance of the structure, so that after recording there is a maximum contrast between the minimum reflectance of the light-absorbing layer and the reflectance of the light-reflecting layer. Moreover, if the light-reflecting layer itself is a thin layer on a non-conducting substrate, almost no energy is lost due to reflection from the thin light-absorbing layer, and almost no energy is lost due to transmission through the reflective layer. The energy absorbed from the light beam is concentrated within an extremely thin film,
Recording sensitivity is surprisingly high. Although this method works well, it has the drawback that argon lasers and helium-cadmium lasers are large devices that require relatively large input power to operate, and they also require an external optical modulator. It is desirable to operate at even lower input power levels, such as in solid state injection lasers, including aluminum gallium arsenide lasers. Since these lasers operate at wavelengths of approximately 750-850 nm, recording media useful in the above recording systems require materials that absorb at this wavelength. To be useful as a light-absorbing layer, a material must have optical quality and be compatible with the formation of a thin smooth layer of a given thickness, must be absorbing at the frequency of the light source used, and must be absorbent at the frequency of the light source used. or must be fused to form a smooth aperture that provides a signal pattern with a signal-to-noise ratio of at least 40 dB. Containing a light-reflecting layer and a dye with the formula below:
An ablative recording medium has been discovered that includes a light absorbing layer exhibiting absorption between 750 and 850 nm. However, X is hydrogen or chlorine, and M is selected from the group consisting of lead, aluminum, vanadyl, and tin (+4). Dyes particularly suitable for the recording medium of this discovery are those containing lead phthalocyanine, chloroaluminum phthalocyanine, vanadyl phthalocyanine, tin phthalocyanine or chloroaluminum, chlorophthalocyanine. All of the above compounds absorb at the wavelength of solid-state injection lasers and can be deposited on the light-reflecting layer to provide a smooth optical quality light-absorbing layer that forms recorded information with a high signal-to-noise ratio. Vanadyl phthalocyanine has a refractive index of 2.4 and a wavelength of 800 nm.
The absorption coefficient K of is 1.0. Chloroaluminum phthalocyanine has a refractive index
3.2, the absorption coefficient at 800nm is 0.5. Lead phthalocyanine has a refractive index of 2.4 and an absorption coefficient of 0.4 at 800 nm. Chloroaluminum chlorophthalocyanine has a refractive index of 3.1 and an absorption coefficient of 0.3 at 800 nm. When the light-reflecting layer itself is a layer on a substrate, the nature of the substrate is not important, but the substrate must have an optically smooth surface to which the light-reflecting layer to be applied adheres. Glass plates, glass discs or plastic discs are suitable. If the light-reflecting material can be formed as an optically smooth free-standing layer, a substrate is not required. The light-reflecting material must reflect the recording light. Suitable light-reflecting materials include aluminum;
Rhodium, gold, etc. This light-reflecting material has a thickness that reflects recording light. The phthalocyanine dyes of this invention can be deposited by conventional vacuum deposition. The dye is placed in a suitable container in a vacuum chamber, and the container is connected to a current source. A substrate is placed on top of the dye, the vacuum chamber is evacuated to about 10 -6 mmH g , and an electric current is passed through the container to raise the temperature of the dye to its vaporization temperature. The deposition continues until a desired thickness of dye layer is deposited on the light-reflecting layer, at which point the current is cut off and air is admitted into the vacuum chamber. Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a recording medium embodying the present invention before being exposed to recording light, with a glass substrate 110 and a thickness of approximately
It comprises a light-reflecting layer 112 made of a 600 Å gold layer and a light-absorbing layer 114 made of one of the above-mentioned phthalocyanine dyes. FIG. 2 shows a recording medium embodying the invention after exposure to recording light, with dye layer 114 ablated leaving apertures 116 and exposing light reflective layer 112.
Although only one hole is shown in FIG. 2, there are a plurality of holes, or pits 116, in the recording medium after recording.
It turns out that there is. The use of the recording medium of this invention can be explained in more detail with reference to FIG. For recording, aluminum gallium arsenide injection laser 10
The light emitted by the laser beam is directly modulated in accordance with the input electrical signal 14, and this modulated light is expanded by the recording optics 16 to increase the diameter of the intensity-modulated laser beam in a plane parallel to and perpendicular to the plane of the laser 10. The required aperture of the objective lens 18 is filled. This expanded modulated laser beam is totally reflected by the polarizing beam splitter 20, passes through the quarter-wave plate 22 for beam rotation, and enters the objective lens 18.
Furthermore, the modulated recording beam is transmitted to the recording medium 2 shown in FIG.
4 to ablate or evaporate a portion of the light-absorbing layer and expose a portion of the light-reflecting layer. Recording medium 24
is rotated by the turntable 26 at approximately 1800 revolutions/minute. The distance between the objective lens 18 and the surface of the recording medium 24 is kept constant by a focusing servo mechanism 28. In the case of reproduction, when an unmodulated weak laser that does not cause ablation on the recording medium is guided to the recording medium 24 along the same path as the recording beam, the reflected light is modulated by the reflective/non-reflective recording pattern, and the reflected light is reflected by the objective lens 18. and returns through the quarter-wave plate 22.
At this time, the light passes through the 1/4 wavelength plate 22 twice and is rotated by 90 degrees, and further passes through the polarization beam splitter 20 and is introduced into the photodetector 32 by the reproducing optical system. This photodetector 32 converts the reflected light beam into a signal source 1.
The input signal from 4 is converted into a corresponding electrical output signal and generated at the terminal 34. The tracking servo mechanism 36 monitors the light passing through the reproducing optical system 30 and tracks the recording medium 2.
This ensures that the track number 4 is the same as the one used for recording during playback. The invention will now be described by way of example, but this does not mean that the invention is limited to the details of this description. Example 1 A gold layer with a thickness of approximately 600 Å is deposited on a substrate by vapor deposition, the coated substrate is placed in a vacuum chamber, placed on a vapor deposition boat containing lead phthalocyanine, and a current source is connected to this boat to open the vacuum chamber. It was evacuated to approximately 10 -6 mmH g . The boat was heated to about 300-400°, the shutter was opened, and the dye was deposited at a rate of about 4 Å/sec until a layer about 600 Å thick was deposited on the gold layer. This resulted in the formation of a smooth, amorphous, colorless, continuous coating. The recording medium thus obtained was exposed to a 50 nanosecond light pulse train with a wavelength of about 800 nm from an aluminum gallium arsenide continuous wave injection laser using the apparatus shown in FIG. The laser incident recording threshold required to ablate the hole was approximately 31 mW. Example 2 Following the procedure of Example 1, a gold-coated substrate as in Example 1 is coated with a layer of chloroaluminum phthalocyanine approximately 510 Å thick. The incident recording threshold of the laser required to form regularly shaped smooth holes in the dye thin film by ablation was about 42 mW. Example 3 Follow the procedure in Example 1 to create a gold-coated substrate with a thickness of approximately 650 Å.
When coated with vanadyl phthalocyanine, the reflectance was approximately 9% at 8000 Å. This reflectance remained unchanged even after being left for about 6 weeks. The laser incidence recording threshold of the recording surface required to form smooth, regularly shaped holes by laser ablation was about 3 to 3.5 mW. Example 4 Follow the procedure in Example 1 to coat a gold-coated substrate with a thickness of approximately 400 Å.
When coated with chloroaluminum/chlorophthalocyanine, the reflectance at 800 nm was approximately 13%. The laser incidence recording threshold of the recording surface required to form smooth and regularly shaped apertures by ablation was about 3 to 3.5 mW. Comparative Examples Other phthalocyanine dyes were deposited on gold-coated substrates following the procedure of Example 1, but their suitability for this application could not be demonstrated. This data is summarized in the following table.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施する記録媒体の記録前
の断面図、第2図はこの発明を実施する記録媒体
の記録後の断面図、第3図はこの発明の記録媒体
を使用し得る記録再生方式の略図である。 110……ガラス基板、112……光反射層、
114……吸光層、116……融除開孔。
FIG. 1 is a cross-sectional view of a recording medium embodying this invention before recording, FIG. 2 is a cross-sectional view of a recording medium embodying this invention after recording, and FIG. 3 is a recording medium that can use the recording medium of this invention. 1 is a schematic diagram of a reproduction method. 110...Glass substrate, 112...Light reflective layer,
114... Light absorbing layer, 116... Ablation opening.

Claims (1)

【特許請求の範囲】 1 Xを水素または塩素、Mを鉛、アルミニウ
ム、バナジル及び錫(+4)から成る群から選ば
れたものとするとき、下記の式を有する吸光性染
料の層で被覆された、ロジウム及び金を含む群か
ら選ばれた光反射性材料の層を備えた融除型光学
記録媒体。 2 光源から放射される約750〜850nm波長の光
に対する反射率が最小になるように吸光性染料層
の厚さが選ばれている、請求項第1項記載の融除
型光学記録媒体。 3 光反射性材料層の部分が露出されると、情報
に対応する光反射−吸光パターンが形成される、
請求項第2項記載の融除型光学記録媒体。 4 Xを水素、Mを鉛とするとき、下記の式を有
する吸光性染料の層で被覆された光反射性材料層
を備えた融除型光学記録媒体。 5 光源から放射される約750〜850nm波長の光
に対する反射率が最小になるように吸光性染料層
の厚さが選ばれている、請求項第4項記載の融除
型光学記録媒体。 6 光反射性材料層の部分が露出されると、情報
に対応する光反射−吸光パターンが形成される、
請求項第5項記載の融除型光学記録媒体。 7 Xを塩素、Mを鉛、バナジル及び錫(+4)
から成る群から選ばれたものとするとき、下記の
式を有する吸光性染料の層で被覆された光反射性
材料層を備えた融除型光学記録媒体。 8 光源から放射される約750〜850nm波長の光
に対する反射率が最小になるように吸光性染料層
の厚さが選ばれている、請求項第7項記載の融除
型光学記録媒体。 9 光反射性材料層の部分が露出されると、情報
に対応する光反射−吸光パターンが形成される、
請求項第8項記載の融除型光学記録媒体。
[Scope of Claims] 1 Coated with a layer of light-absorbing dye having the following formula, where X is hydrogen or chlorine and M is selected from the group consisting of lead, aluminum, vanadyl and tin (+4): and an ablative optical recording medium comprising a layer of a light-reflecting material selected from the group comprising rhodium and gold. 2. The ablative optical recording medium according to claim 1, wherein the thickness of the light-absorbing dye layer is selected so as to minimize the reflectance to light having a wavelength of about 750 to 850 nm emitted from the light source. 3. When a portion of the light reflective material layer is exposed, a light reflection-absorption pattern corresponding to information is formed;
The ablative optical recording medium according to claim 2. 4. An ablative optical recording medium comprising a layer of light-reflecting material coated with a layer of light-absorbing dye having the following formula, where X is hydrogen and M is lead. 5. The ablative optical recording medium according to claim 4, wherein the thickness of the light-absorbing dye layer is selected so as to minimize the reflectance to light having a wavelength of about 750 to 850 nm emitted from the light source. 6. When a portion of the light reflective material layer is exposed, a light reflection-absorption pattern corresponding to information is formed;
The ablative optical recording medium according to claim 5. 7 X is chlorine, M is lead, vanadyl and tin (+4)
an ablative optical recording medium comprising a layer of light-reflective material coated with a layer of light-absorbing dye having the formula: 8. The ablative optical recording medium according to claim 7, wherein the thickness of the light-absorbing dye layer is selected to minimize the reflectance to light with a wavelength of about 750 to 850 nm emitted from the light source. 9. When a portion of the light reflective material layer is exposed, a light reflection-absorption pattern corresponding to information is formed;
The ablative optical recording medium according to claim 8.
JP16462779A 1979-11-29 1979-12-17 Melting removing type optical recording medium Granted JPS5686795A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB7941271A GB2066489B (en) 1979-11-29 1979-11-29 Ablative optical recording medium
JP16462779A JPS5686795A (en) 1979-11-29 1979-12-17 Melting removing type optical recording medium
JP4040263A JPH0662010B2 (en) 1979-11-29 1992-01-29 Ablation type optical recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB7941271A GB2066489B (en) 1979-11-29 1979-11-29 Ablative optical recording medium
JP16462779A JPS5686795A (en) 1979-11-29 1979-12-17 Melting removing type optical recording medium
JP4040263A JPH0662010B2 (en) 1979-11-29 1992-01-29 Ablation type optical recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4040263A Division JPH0662010B2 (en) 1979-11-29 1992-01-29 Ablation type optical recording medium

Publications (2)

Publication Number Publication Date
JPS5686795A JPS5686795A (en) 1981-07-14
JPH0436876B2 true JPH0436876B2 (en) 1992-06-17

Family

ID=27260815

Family Applications (2)

Application Number Title Priority Date Filing Date
JP16462779A Granted JPS5686795A (en) 1979-11-29 1979-12-17 Melting removing type optical recording medium
JP4040263A Expired - Lifetime JPH0662010B2 (en) 1979-11-29 1992-01-29 Ablation type optical recording medium

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4040263A Expired - Lifetime JPH0662010B2 (en) 1979-11-29 1992-01-29 Ablation type optical recording medium

Country Status (1)

Country Link
JP (2) JPS5686795A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686795A (en) * 1979-11-29 1981-07-14 Rca Corp Melting removing type optical recording medium
JPS5782093A (en) * 1980-11-12 1982-05-22 Ricoh Co Ltd Optical information recording medium
JPS5856892A (en) * 1981-10-01 1983-04-04 Ricoh Co Ltd Optical information recording medium
JPH0749231B2 (en) * 1985-08-13 1995-05-31 三菱化学株式会社 Optical recording body
JPH02132656A (en) * 1988-07-30 1990-05-22 Taiyo Yuden Co Ltd Optical information recording medium and optical information recording method using it
TW421791B (en) * 1997-03-31 2001-02-11 Matsushita Electric Ind Co Ltd Optical recording medium and production process for the same
JPH11123871A (en) 1997-10-22 1999-05-11 Konica Corp Image forming material, manufacture of the same, and image forming device
US6551682B1 (en) 1999-03-16 2003-04-22 Matsushita Electric Industrial Co., Ltd. Metal-containing azo compound and optical recording media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597033A (en) * 1979-01-15 1980-07-23 Philips Nv Optical recording element and method of recording optical information

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686795A (en) * 1979-11-29 1981-07-14 Rca Corp Melting removing type optical recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597033A (en) * 1979-01-15 1980-07-23 Philips Nv Optical recording element and method of recording optical information

Also Published As

Publication number Publication date
JPH0662010B2 (en) 1994-08-17
JPS5686795A (en) 1981-07-14
JPH0640163A (en) 1994-02-15

Similar Documents

Publication Publication Date Title
US4241355A (en) Ablative optical recording medium
US4023185A (en) Ablative optical recording medium
US4219826A (en) Optical recording medium
US4345261A (en) Dielectric recording medium
EP0092113B1 (en) Optical recording medium for use in an optical storage system and method for making such recording medium
JPH0335113B2 (en)
GB2079031A (en) Optical information record and a method of reversibly recording and erasing information thereon
EP0731454B1 (en) Optical recording method, optical recording apparatus and optical recording medium
US4322839A (en) Method and apparatus for recording and reproducing information on and from an optical disk
US4218689A (en) Ablatable medium for optical recording
US4242689A (en) Ablative optical recording medium
US5438561A (en) Method for recording and reproducing information using an optical memory
JPH0436876B2 (en)
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
GB1576279A (en) Optical recording medium
GB2066489A (en) Ablative optical recording medium
CA1235901A (en) High contrast thin film optical recording medium
GB1603761A (en) Protective overcoat layer for optical video disc
JPH0474196B2 (en)
GB2066490A (en) Optical recording medium
CA1131774A (en) Optical recording medium
US4788562A (en) Optical recording medium
JPS643678B2 (en)
JP2003248934A (en) Method for initializing optical recording medium
CA1128659A (en) Ablative optical recording medium