JPS6412305B2 - - Google Patents

Info

Publication number
JPS6412305B2
JPS6412305B2 JP11895882A JP11895882A JPS6412305B2 JP S6412305 B2 JPS6412305 B2 JP S6412305B2 JP 11895882 A JP11895882 A JP 11895882A JP 11895882 A JP11895882 A JP 11895882A JP S6412305 B2 JPS6412305 B2 JP S6412305B2
Authority
JP
Japan
Prior art keywords
polymer
graphite
conductive
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11895882A
Other languages
Japanese (ja)
Other versions
JPS599805A (en
Inventor
Susumu Yoshimura
Mutsuaki Murakami
Shozo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11895882A priority Critical patent/JPS599805A/en
Publication of JPS599805A publication Critical patent/JPS599805A/en
Publication of JPS6412305B2 publication Critical patent/JPS6412305B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は導電性皮膜、熱吸収体、電極材料等に
用いられる電導性組成物の製造方法に関する。 従来例の構成とその問題点 元来絶縁体として知られてきた有機材料に電導
性を付与し、無機の金属、半導体あるいは酸化物
では実現しなかつたユニークな性質を出現させよ
うという試みが最近活発に行なわれている。その
ような試みの流れとしてはいくつかあるが、特に
電荷移動型錯化合物は代表例である。この考え方
で低抵抗の有機材料が作られた例としては、テト
ラシアノキノジメタン、ポリアセチレン、ポリパ
ラフエニレン、ポリピロールなどがある。また、
黒鉛および黒鉛繊維なども同様の考え方で低抵抗
化することが可能である。ところが、これらの電
荷移動型錯化合物に共通して言える欠点は、電荷
移動相互作用が本来非常に弱い性質のため、安定
性の高い化合物を得ることが難しいことである。 これに代る第2の重要な方法として、熱分解高
分子の形成が挙げられる。これは、ある特殊な材
料から出発して熱分解により重縮合した、高度に
共役の広がつた化合物を得ようとするものであ
り、生成物は主に炭素質であるが、出発原料によ
りその電導度が制御されるところに特徴がある、
熱分解高分子の歴史は古く、1960年代前半に注目
を集めた材料である。例えばロシア学派によるポ
リアクリロニトリルの熱分解では2Scm-1の電導度
が得られている(A.V.Airapetjanc氏等、DoKl
Akad.Nauk SSSR、148巻、605頁、1963年)ま
た、IBM社のS.D.Bruck氏は1964年ポリイミド
(デユポン社のカプトンHフイルム)を800℃で熱
分解することによつて20Scm-1の電導体が得られ
ることを発見している。このような熱分解により
高電導体となり得る高分子材料の種類は限られて
いるが、本発明者らの研究の結果、最近の縮合系
高分子化学の進歩により得られた耐熱性高分子の
いくつかがその可能性を有するものとして提唱さ
れている。その高分子化合物の例は、芳香族ポリ
アミド、ポリアミドイミド、ポリオキサチアゾー
ル、ポリチアジアゾール、ポリベンズイミダゾー
ル、ポリベンズオキサゾール、ポリベンズチアゾ
ールなどである。これらの材料は真空中あるいは
不活性気流中で400〜1100℃の温度で熱分解され、
100Scm-1以上、最高500Scm-1の電導度を与える。
本発明者らは、これらの発見に基づき、新規電導
材料の製造方法、化学的あるいは物理的方法によ
る薄膜の製造方法、更には金、ニツケル、銅、銀
などの金属と混合して、バインダー中に分散させ
た電導性組成物に関する提案をしている。このよ
うにして得られた熱分解高分子の特徴は、高電導
性と化学的、熱安定性にあり、また、これから得
られる粉末は多くの高分子バインダーおよび有機
溶剤によく相容する。これらの特徴は熱分解高分
子が、粉末として高分子バインダー中に分散させ
られた電導性組成物に於いて顕著に発揮され、従
来のカーボンブラツクあるいは黒鉛では得られな
い電導性皮膜の出現を可能にする。 しかしながら、今日迄に開発された熱分解高分
子を単独であるいは銀などの金属粉末と混合して
電導性組成物を製造する場合、いくつか不満足な
点が挙げられている。それらは、(1)、熱分解高分
子の電導度が500Scm-1以下であること。特に、比
較的低コストのポリアミドイミド、ポリエステル
イミドでは100Scm-1以上の電導度が得られ難いこ
と、(2)、空気中での熱安定性に限界があり、850
℃以上の使用は難しいこと、(3)、熱分解高分子は
炭素質材料であるため、これを多く含む電導性組
成物はハンダ性に乏しいこと、(4)、熱分解高分子
の原料として挙げられる縮合系高分子は現在の使
用量では高コストのものが多いこと、などであ
る。 発明の目的 本発明の目的とする所はこれらの欠点特に電導
度およびコストを改良した、新規な熱分解高分子
を提案することにあり、更に詳しくは、熱分解高
分子中に黒鉛を添加した電導性組成物を提案する
ことにある。すなわち、本発明では、熱分解高分
子の原料で、ポリアミド酸などの溶液として得ら
れるものを選択し、その溶液中に黒鉛を分散さ
せ、硬化処理を行つた後に熱分解して上記欠点の
改良された電導性熱分解組成物を製造しようとす
るものである。 発明の構成 次に具体的に本発明の構成要素となる高分子材
料と添加物について説明する。高分子材料として
は、窒素、酸素もしくはイオウのいずれかを含む
ヘテロ環を有する縮合系高分子、または芳香族ポ
リアミドのようなヘテロ環を有さない縮合系高分
子が単独にまたは共重合体の形で使用される。本
発明の組成物を製造する第一ステツプは、縮合系
高分子の溶液に添加物を均一に分散することから
始まる。したがつて、高分子材料としては溶液と
して得られるものが使用され、上記のような縮合
系高分子の中間体溶液の形で使用するとよい。た
とえば、ポリイミド樹脂はジカルボン酸無水物と
ジアミンの反応で得られるが、中間体とし、たと
えば、 などの式で表わされるポリアミツク酸が得られ、
アミド系溶媒に溶解した溶液として比較的安定に
取扱うことができる。 また、ポリアミドイミドは例えば塩化イソフタ
ロイルとm―フエニレンジアミンにピロメリフト
酸無水物を反応させて得られるが、ポリイミドの
場合と同様に のような構造のポリアミツク酸中間体が得られ、
アセトアミド、キシレン、クレゾールなどの溶液
として得られる。同様にポリエステルイミドの場
合ポリアミツク酸中間体溶液として取扱うことが
可能である。 また、
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a conductive composition used for conductive films, heat absorbers, electrode materials, etc. Structures of conventional examples and their problems Recently, attempts have been made to impart conductivity to organic materials, which were originally known as insulators, and to create unique properties that could not be achieved with inorganic metals, semiconductors, or oxides. It is actively carried out. There are a number of such attempts, and charge transfer type complex compounds are a particularly representative example. Examples of low-resistance organic materials created using this idea include tetracyanoquinodimethane, polyacetylene, polyparaphenylene, and polypyrrole. Also,
Graphite and graphite fibers can also be made to have lower resistance using the same concept. However, a common drawback of these charge transfer type complex compounds is that the charge transfer interaction is inherently very weak, making it difficult to obtain highly stable compounds. A second important alternative method involves the formation of pyrolytic polymers. This is an attempt to obtain a highly conjugated compound that is polycondensed by thermal decomposition starting from a certain special material.The product is mainly carbonaceous, but the starting material The feature is that the conductivity is controlled.
Pyrolytic polymers have a long history and are a material that attracted attention in the early 1960s. For example, in the thermal decomposition of polyacrylonitrile by the Russian school, an electrical conductivity of 2 Scm -1 was obtained (AVAirapetjanc et al., DoKl
(Akad.Nauk SSSR, Vol. 148, p. 605, 1963) Furthermore, in 1964, Mr. SDBruck of IBM created a conductor of 20 Scm -1 by thermally decomposing polyimide (Kapton H film of DuPont) at 800°C. It has been discovered that it is possible to obtain The types of polymer materials that can become highly conductive through such thermal decomposition are limited, but as a result of our research, we have developed heat-resistant polymers that have been obtained through recent advances in condensation polymer chemistry. Several have been proposed as having this possibility. Examples of the polymer compound include aromatic polyamide, polyamideimide, polyoxathiazole, polythiadiazole, polybenzimidazole, polybenzoxazole, polybenzthiazole, and the like. These materials are pyrolyzed at temperatures between 400 and 1100°C in vacuum or in an inert gas stream.
Gives conductivity of 100Scm -1 or more, maximum 500Scm -1 .
Based on these discoveries, the present inventors have developed a new method for producing conductive materials, a method for producing thin films by chemical or physical methods, and a method for producing new conductive materials in binders by mixing them with metals such as gold, nickel, copper, and silver. proposed a conductive composition dispersed in The pyrolytic polymer thus obtained is characterized by high electrical conductivity and chemical and thermal stability, and the powder obtained from it is well compatible with many polymeric binders and organic solvents. These characteristics are clearly exhibited in conductive compositions in which pyrolytic polymers are dispersed as powders in polymeric binders, making it possible to form conductive films that cannot be obtained with conventional carbon black or graphite. Make it. However, when producing conductive compositions using the pyrolytic polymers developed to date either alone or by mixing them with metal powders such as silver, there are several unsatisfactory points. These are: (1) The electrical conductivity of the pyrolytic polymer is 500 Scm -1 or less. In particular, it is difficult to obtain an electrical conductivity of 100 Scm -1 or higher with relatively low-cost polyamideimide and polyesterimide; (2) there is a limit to their thermal stability in air;
(3) Since pyrolytic polymers are carbonaceous materials, conductive compositions containing a large amount of them have poor solderability. (4) As raw materials for pyrolytic polymers. The condensation polymers mentioned are often high-cost in the amounts currently used. OBJECTIVE OF THE INVENTION The purpose of the present invention is to propose a new pyrolytic polymer that improves these drawbacks, especially its electrical conductivity and cost. The purpose of this invention is to propose a conductive composition. That is, in the present invention, a raw material for a pyrolytic polymer that can be obtained as a solution of polyamic acid, etc. is selected, graphite is dispersed in the solution, and after a curing treatment, it is pyrolyzed to improve the above-mentioned drawbacks. The present invention aims to produce an electrically conductive pyrolytic composition. Structure of the Invention Next, the polymer materials and additives which are the constituent elements of the present invention will be specifically explained. As polymer materials, condensed polymers having a heterocycle containing any of nitrogen, oxygen, or sulfur, or condensed polymers without heterocycles such as aromatic polyamides may be used alone or in copolymers. used in the form The first step in preparing the composition of the present invention begins with uniformly dispersing the additives in the solution of the condensation polymer. Therefore, as the polymer material, one obtained in the form of a solution is used, and it is preferable to use it in the form of an intermediate solution of the condensed polymer as described above. For example, polyimide resin is obtained by the reaction of dicarboxylic acid anhydride and diamine, but it is used as an intermediate, for example, A polyamic acid represented by the formula is obtained,
It can be handled relatively stably as a solution dissolved in an amide solvent. Furthermore, polyamideimide can be obtained by, for example, reacting isophthaloyl chloride and m-phenylenediamine with pyromellift acid anhydride, but in the same way as in the case of polyimide. A polyamic acid intermediate with the structure is obtained,
Obtained as a solution in acetamide, xylene, cresol, etc. Similarly, in the case of polyesterimide, it is possible to handle it as a polyamic acid intermediate solution. Also,

【式】はポリ オキサジアゾールの中間体であり、
[Formula] is an intermediate of polyoxadiazole,

【式】なる単位を持つ化 合物はポリベンゾオキサゾールの中間体であり、
A compound having a unit of [formula] is an intermediate of polybenzoxazole,

【式】はポリ ベンズチアゾールの中間体であり、
[Formula] is an intermediate of polybenzthiazole,

【式】はポリベンズイミダゾールの 中間体である。また、ポリチアジアゾールも中間
体を有し、それらはすべてN―メチルピロリドン
および/またはアセトアミドに可溶である。これ
らの中間体溶液から所望の耐熱性高分子を得るに
は、溶液を基板上に塗布して溶剤を乾燥させ、更
に80℃〜320℃の温度で反応させる。この最終段
階の反応は例えば、 のような加熱により脱水を伴なう環化反応であ
り、このような加熱により閉環脱水反応を起すも
のはすべて使用出来る。 次に、上記高分子溶液に添加される添加剤とし
ては、黒鉛が使用される。黒鉛は熱分解高分子の
電導度を改良し、更に得られた組成物の価格の低
減に著しく寄与する。更に、黒鉛の高分子溶液へ
の分散性を向上させるために、オレイン酸ナトリ
ウムなどの界面活性剤を分散剤として添加するこ
とは有効である。また、分散剤としては無機シリ
カ系粉体、酸化アルミ、酸化亜鉛、硫化亜鉛など
も有効に働きうる。 次に、本発明の電導性組成物の一般的な製造方
法について述べる。先ず、高分子含量が30〜45重
量パーセントの高分子溶液に、上述の添加物を混
入し、羽根撹拌あるいは三本ローラにより十分に
混練する。次に、この溶液をガラス板などの上に
広げ、80〜320℃の温度で熱処理する。この工程
において溶剤は飛散し、同時に硬化反応が進行
し、固体状の皮膜が得られる。次に、この皮膜を
ガラス板からはがし、石英管の中に充填し、管中
に窒素等の不活性気体を流しながらゆるやかに昇
温し、700〜1100℃の温度で30分以上熱処理する。 熱分解温度が700℃より低いと、N.H成分の残
留が多く電導度は向上しない。従つて700℃以上
が好ましい。一方、1100℃を越えると、Cの割合
が98%を越えるため、金属粉末の分散性が悪くな
つて金属粉末添加の効果が見られない。したがつ
て1100℃以下にすることが好ましく、700℃〜
1100℃の熱分解温度が適当である。処理が終つた
高分子はすべて金属光沢を有する黒鉛皮膜とな
る。この皮膜を導電性ペースト等の複合材料とし
て使用する場合は、熱処理した皮膜をボールミル
を用いて約3日間粉砕し、400〜600メツシユのふ
るいを通し粉末とする必要がある。 このように、本発明は、縮合系高分子溶液に無
機物の添加物を添加した後に熱分解して、従来の
熱分解高分子の欠点を容易に改良しようとするも
のであるが、特に本発明は黒鉛粉末を分散添加す
ることにより、前述の欠点の内電導性と価格の問
題を大幅に改良しようというものである。本発明
の電導性組成物の構成を別の観点からみると、こ
れは黒鉛の新規な表面改質方法と言つてもよい。
黒鉛は粉砕して高分子バインダー中に分散し、複
合導電膜として利用されているが、特にカーボン
ブラツクより電導度が高い特徴を活かして、カー
ボンブラツク系導電性ペーストおよび銀ペースト
への添加剤として用いられている。この場合、黒
鉛は表面に活性な基を有しないため、高分子への
分散性が悪く、これを改良するために、種々の複
雑な表面処理法が提案され、実施されている。と
ころが、前述したように、本発明の基本となつて
いる熱分解高分子の粉末は多くの高分子バインダ
および有機溶剤に非常によく分散するので、この
熱分解高分子中に分散させられた黒鉛は、分散性
が良好になるように表面が改質されたものとみな
すことができる。 以下に実施例を挙げ、本発明の具体例および効
果を示す。 実施例の説明 実施例 1 日立化成(株)製のポリアミドイミド樹脂(商品名
HI―400;アセトアミドおよびキシレンを溶媒と
する30%の溶液状物質)に天燃黒鉛の625メツシ
ユ粉末を添加した。混練は羽根撹拌で、約2時間
行ない、完全な分散溶液が得られた後にガラス基
板上に溶液を広げ、オーブン中で180℃2時間の
熱処理を行なつた。得られた皮膜は黒〜緑色の光
沢を有するものであつた。この皮膜を石英管に充
填して、10-3Torrの真空中で熱分解を行なつた。
熱分解温度は600〜1100℃で行ない、保持時間は
1時間としたが、生成物の電導度は温度に強く依
存し、保持時間にはわずかにしか依存しなかつ
た。電導度は熱分解後銀ペーストおよび金線を用
いて4端子電極を施して、室温、空気中で測定し
た。第1表に電導度のデータを示す。
[Formula] is an intermediate for polybenzimidazole. Polythiadiazole also has intermediates, all of which are soluble in N-methylpyrrolidone and/or acetamide. To obtain a desired heat-resistant polymer from these intermediate solutions, the solution is applied onto a substrate, the solvent is dried, and the reaction is further carried out at a temperature of 80°C to 320°C. This final stage reaction is, for example, This is a cyclization reaction that accompanies dehydration by heating, and any reaction that causes a ring-closing dehydration reaction by such heating can be used. Next, graphite is used as an additive added to the polymer solution. Graphite improves the electrical conductivity of the pyrolytic polymer and also significantly contributes to reducing the cost of the resulting composition. Furthermore, in order to improve the dispersibility of graphite in a polymer solution, it is effective to add a surfactant such as sodium oleate as a dispersant. Inorganic silica powder, aluminum oxide, zinc oxide, zinc sulfide, etc. can also work effectively as dispersants. Next, a general method for manufacturing the conductive composition of the present invention will be described. First, the above-mentioned additives are mixed into a polymer solution having a polymer content of 30 to 45 weight percent, and thoroughly kneaded using blade stirring or three rollers. Next, this solution is spread on a glass plate or the like and heat-treated at a temperature of 80 to 320°C. In this step, the solvent is scattered, and at the same time a curing reaction proceeds, resulting in a solid film. Next, this film is peeled off from the glass plate, filled into a quartz tube, heated slowly while flowing an inert gas such as nitrogen into the tube, and heat-treated at a temperature of 700 to 1100°C for 30 minutes or more. If the thermal decomposition temperature is lower than 700°C, a large amount of NH component remains and the conductivity does not improve. Therefore, the temperature is preferably 700°C or higher. On the other hand, when the temperature exceeds 1100°C, the C ratio exceeds 98%, so the dispersibility of the metal powder becomes poor and the effect of adding the metal powder is not seen. Therefore, it is preferable to keep the temperature below 1100℃, and from 700℃
A pyrolysis temperature of 1100°C is suitable. All polymers that have been treated become graphite films with metallic luster. When this film is used as a composite material such as a conductive paste, the heat-treated film must be ground for about 3 days using a ball mill and passed through a 400-600 mesh sieve to form a powder. As described above, the present invention aims to easily improve the drawbacks of conventional thermally decomposed polymers by adding an inorganic additive to a condensed polymer solution and then thermally decomposing it. This is an attempt to significantly improve the above-mentioned drawbacks of internal conductivity and cost by dispersing and adding graphite powder. Looking at the structure of the conductive composition of the present invention from another perspective, this can be said to be a novel method for surface modification of graphite.
Graphite is crushed and dispersed in a polymer binder and used as a composite conductive film. Taking advantage of its higher conductivity than carbon black, it can be used as an additive to carbon black-based conductive pastes and silver pastes. It is used. In this case, since graphite does not have active groups on its surface, it has poor dispersibility in polymers, and in order to improve this, various complex surface treatment methods have been proposed and implemented. However, as mentioned above, the pyrolytic polymer powder that is the basis of the present invention is highly dispersed in many polymer binders and organic solvents, so the graphite dispersed in this pyrolytic polymer is can be considered to be surface-modified to improve dispersibility. Examples are given below to show specific examples and effects of the present invention. Description of Examples Example 1 Polyamide-imide resin manufactured by Hitachi Chemical Co., Ltd. (trade name
Natural graphite 625 mesh powder was added to HI-400 (a 30% solution containing acetamide and xylene as solvents). Kneading was carried out using blade stirring for about 2 hours, and after a completely dispersed solution was obtained, the solution was spread on a glass substrate and heat-treated at 180° C. for 2 hours in an oven. The resulting film had a black to green luster. This film was filled into a quartz tube and thermally decomposed in a vacuum of 10 -3 Torr.
Although the pyrolysis temperature was 600-1100°C and the holding time was 1 hour, the conductivity of the product was strongly dependent on temperature and only weakly dependent on holding time. The conductivity was measured at room temperature in air using a 4-terminal electrode using silver paste and gold wire after thermal decomposition. Table 1 shows the conductivity data.

【表】 黒鉛粉末を添加しない場合、熱分解ポリアミド
イミドの電導度は、600、700、800、900、1000、
および1100℃に対してそれぞれ7×10-4、0.1、
5、90、150、および、220Scm-1であるので、黒
鉛の添加は著しい電導度の向上をもたらしている
ことが分る。 実施例 2 高分子として、ポリイミド中間体であるポリア
ミド酸のN―メチルピロリドンを用い、実施例1
と同様の実験を行なつた。ただし、本例では熱分
解を窒素雰囲気中で行つた。添加量、および熱分
解温度の電導度に及ぼす効果の傾向は実施例1の
場合と同様であつたが、この高分子を用いた場合
は全体に更に高い電導度が得られることが特徴で
あつた。第2表にその例を示す。
[Table] When graphite powder is not added, the electrical conductivity of pyrolyzed polyamideimide is 600, 700, 800, 900, 1000,
and 7×10 -4 and 0.1 for 1100℃, respectively.
5, 90, 150, and 220 Scm -1 , it can be seen that the addition of graphite brings about a significant improvement in electrical conductivity. Example 2 Using N-methylpyrrolidone of polyamic acid, which is a polyimide intermediate, as the polymer, Example 1
conducted a similar experiment. However, in this example, thermal decomposition was performed in a nitrogen atmosphere. The effects of the amount added and the thermal decomposition temperature on the conductivity were similar to those in Example 1, but the use of this polymer was characterized by the fact that even higher conductivity was obtained overall. Ta. Examples are shown in Table 2.

【表】 実施例 3 黒鉛を60重量%含むポリエステル―イミドを
800℃にて2時間熱分解し、電導度が約500Scm-1
の黒色皮膜が得られた。これをボールミルで5日
間粉砕し、625メツシユのふるいを通し、粉体を
得た。次に、この粉末xgを銀8g、ポリビニル
ブチラール3g、イソホロン6mlのペースト中に
添加し、十分混練し、200メツシユのスクリーン
を用いアルミナセラミツク基板上に印刷した。先
ずxの量に関する結果であるが、グラフアイトで
は約1.5g、黒鉛のみでは約2gしか添加できな
かつたものが、本発明の電導性組成物の粉末の場
合、上記組成でxが10gまで容易に添加でき、黒
鉛を中心にして見ると表面が著しく改善されたと
言つてよい。次にxと印刷皮膜の抵抗との関係を
まとめると第3表の如くなる。
[Table] Example 3 Polyester-imide containing 60% by weight of graphite
Pyrolyzed at 800℃ for 2 hours, conductivity is approximately 500Scm -1
A black film was obtained. This was ground in a ball mill for 5 days and passed through a 625 mesh sieve to obtain a powder. Next, x g of this powder was added to a paste containing 8 g of silver, 3 g of polyvinyl butyral, and 6 ml of isophorone, thoroughly kneaded, and printed on an alumina ceramic substrate using a 200 mesh screen. First, regarding the results regarding the amount of x, it was possible to add only about 1.5 g for graphite and about 2 g for graphite alone, but in the case of the powder of the conductive composition of the present invention, x can easily be added up to 10 g with the above composition. It can be said that the surface has been significantly improved when looking at graphite. Next, Table 3 summarizes the relationship between x and the resistance of the printed film.

【表】【table】

【表】 銀粉のみを含む最適組成皮膜では0.009Ω/□
の面積抵抗が得られており、本発明の電導性組成
物を更に添加した場合は銀ペーストよりは高い
が、通常のカーボンペーストより遥かに低い抵抗
値が得られたことになる。また、例の如く10gも
混入することができるということは銀ペーストの
コスト低減に結びつき、抵抗およびコストの両面
から銀ペーストとカーボンペーストのギヤツプを
埋める複合導電膜の製造を可能にしている。 発明の効果 以上のように、本発明は黒鉛粉末を溶剤に可溶
な縮合系高分子中間体に分散し、先ず80〜320℃
の温度で空気中またはガス雰囲気中で高分子の硬
化処理を行なわせ、しかる後に700〜1100℃の温
度で真空中あるいは不活性気流中で熱分解するこ
とにより新規な電導性組成物を提供するものであ
り、従来の単純な熱分解高分子の欠点である電導
度およびコストを著しく改善するものである。こ
の組成物は、可撓性を有する皮膜、化学蒸着ある
いは物理蒸着によつて得られる皮膜、あるいは粉
末化して高分子バインダーあるいはガラスクリス
トに分散した複合皮膜など種々な形状で得られ、
導電性皮膜、太陽熱コレクタ用熱吸収膜、電極材
料、磁気記録媒体、センサ材料など広く用いられ
るものである。 なお本発明で用いられる縮合系耐熱性高分子は
実施例で述べたポリアミツク酸中間体で得られる
ものに限定されるものではなく、ポリベンズイミ
ダゾール、ポリオキサジアゾール、ポリベンズチ
アゾール、ポリチアジアゾールなど加熱により閉
環脱水反応を起すもの全てを用いることが可能で
ある。
[Table] 0.009Ω/□ for the optimal composition film containing only silver powder
This means that when the conductive composition of the present invention was further added, a resistance value higher than that of silver paste but far lower than that of ordinary carbon paste was obtained. Furthermore, the ability to mix as much as 10 g as in the example leads to a reduction in the cost of silver paste, making it possible to manufacture a composite conductive film that fills the gap between silver paste and carbon paste in terms of both resistance and cost. Effects of the Invention As described above, the present invention involves dispersing graphite powder into a condensation polymer intermediate that is soluble in a solvent, and then
A novel conductive composition is provided by curing the polymer in air or a gas atmosphere at a temperature of 700 to 1100 °C, and then thermally decomposing it in a vacuum or in an inert gas stream at a temperature of 700 to 1100 °C. This significantly improves the electrical conductivity and cost, which are disadvantages of conventional simple pyrolytic polymers. This composition can be obtained in various forms, such as a flexible film, a film obtained by chemical vapor deposition or physical vapor deposition, or a composite film formed into a powder and dispersed in a polymeric binder or glass crystal.
It is widely used in conductive films, heat absorption films for solar collectors, electrode materials, magnetic recording media, sensor materials, etc. The heat-resistant condensation polymers used in the present invention are not limited to those obtained from the polyamic acid intermediate described in the examples, but include polybenzimidazole, polyoxadiazole, polybenzthiazole, polythiadiazole, etc. It is possible to use anything that causes a ring-closing dehydration reaction when heated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電導性組成物を用いて構成し
た電導体の概念図、第2図a,bは本発明の電導
性組成物の粉末を高分子バインダーに分散させた
複合皮膜素子の構成を示す平面図および断面側面
図である。 11…電導性組成物皮膜、12…電極、21…
複合導電皮膜、22…銀電極、23…絶縁性基
板。
Figure 1 is a conceptual diagram of a conductor constructed using the conductive composition of the present invention, and Figures 2a and b are diagrams of a composite film element in which the powder of the conductive composition of the present invention is dispersed in a polymer binder. FIG. 2 is a plan view and a cross-sectional side view showing the configuration. 11... Conductive composition film, 12... Electrode, 21...
Composite conductive film, 22... Silver electrode, 23... Insulating substrate.

Claims (1)

【特許請求の範囲】 1 芳香族ポリアミド、又は少くとも窒素、酸
素、もしくはイオウのいずれかを含むヘテロ環を
有する縮合系高分子またはそれらの共重合体の中
間体溶液に黒鉛粉体を分散添加し、空気中または
ガス雰囲気中で80〜320℃で熱処理を行ない、更
に真空中あるいは不活性気体中で700〜1100℃の
温度で熱処理することを特徴とする電導性組成物
の製造方法。 2 縮合系高分子が、ポリイミド、ポリアミドイ
ミド、ポリエステルイミド、ポリベンズイミダゾ
ール、ポリオキサジアゾール、ポリベンズチアゾ
ール、ポリチアジアゾールのいずれかである特許
請求の範囲第1項記載の電導性組成物の製造方
法。
[Claims] 1. Graphite powder is dispersed and added to an intermediate solution of an aromatic polyamide, a condensed polymer having a heterocycle containing at least one of nitrogen, oxygen, or sulfur, or a copolymer thereof. A method for producing an electrically conductive composition, which is characterized by carrying out a heat treatment at a temperature of 80 to 320°C in air or a gas atmosphere, and further heat treating at a temperature of 700 to 1100°C in a vacuum or an inert gas. 2. Production of the conductive composition according to claim 1, wherein the condensation polymer is any one of polyimide, polyamideimide, polyesterimide, polybenzimidazole, polyoxadiazole, polybenzthiazole, and polythiadiazole. Method.
JP11895882A 1982-07-07 1982-07-07 Method of producing conductive composition Granted JPS599805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11895882A JPS599805A (en) 1982-07-07 1982-07-07 Method of producing conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11895882A JPS599805A (en) 1982-07-07 1982-07-07 Method of producing conductive composition

Publications (2)

Publication Number Publication Date
JPS599805A JPS599805A (en) 1984-01-19
JPS6412305B2 true JPS6412305B2 (en) 1989-02-28

Family

ID=14749482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11895882A Granted JPS599805A (en) 1982-07-07 1982-07-07 Method of producing conductive composition

Country Status (1)

Country Link
JP (1) JPS599805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561902U (en) * 1992-01-23 1993-08-13 市光工業株式会社 Lens for vehicle lighting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277004A (en) * 1985-05-31 1986-12-08 Tokyo Optical Co Ltd Apparatus for measuring dimension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561902U (en) * 1992-01-23 1993-08-13 市光工業株式会社 Lens for vehicle lighting

Also Published As

Publication number Publication date
JPS599805A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US4876077A (en) Process for producing graphite
JP4088346B2 (en) Method for producing an electrode on a substrate
JP2003046145A (en) Thermoelectric material, method of manufacturing the same and thermoelectric element
Ohnishi et al. Preparation of graphite film by pyrolysis of polymers
US4401590A (en) Conductive pyrolytic product and composition using same
KR840000049A (en) Low dielectric constant silicon carbide electrical insulation and its manufacturing method
Hu et al. Pyrolyzed, conducting kapton polyimide: An electrically conducting material
JPS6412305B2 (en)
US4497728A (en) Conductive pyrolytic product and composition using same
JPH0122289B2 (en)
JPS599802A (en) Method of producing conductive composition
TW200940475A (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JPS599803A (en) Method of producing conductive composition
JPS599804A (en) Method of producing conductive composition
JPS6411666B2 (en)
JP2502682B2 (en) Method for producing superconducting ceramic-metal composite coating
JPS6355536B2 (en)
EP0308907B1 (en) Transition-metal-carbon composites and methods for making
JPS6142949B2 (en)
JPH05178603A (en) Production of carbonaceous powder
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JPS6142950B2 (en)
KR970003330B1 (en) Ceramics resistor composition & marking method thereof
JPH0371370B2 (en)
CN114975762A (en) Flexible thermoelectric composite film, preparation method and application thereof