JPS6355536B2 - - Google Patents

Info

Publication number
JPS6355536B2
JPS6355536B2 JP21462982A JP21462982A JPS6355536B2 JP S6355536 B2 JPS6355536 B2 JP S6355536B2 JP 21462982 A JP21462982 A JP 21462982A JP 21462982 A JP21462982 A JP 21462982A JP S6355536 B2 JPS6355536 B2 JP S6355536B2
Authority
JP
Japan
Prior art keywords
ppod
conductivity
film
temperature
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21462982A
Other languages
Japanese (ja)
Other versions
JPS59105029A (en
Inventor
Susumu Yoshimura
Mutsuaki Murakami
Yoshitsugu Isamoto
Shigeaki Mizogami
Hiroyuki Yasujima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Nippon Synthetic Chemical Industry Co Ltd
Shingijutsu Kaihatsu Jigyodan
Toppan Inc
Panasonic Holdings Corp
Original Assignee
Idemitsu Kosan Co Ltd
Nippon Synthetic Chemical Industry Co Ltd
Toppan Printing Co Ltd
Shingijutsu Kaihatsu Jigyodan
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Nippon Synthetic Chemical Industry Co Ltd, Toppan Printing Co Ltd, Shingijutsu Kaihatsu Jigyodan, Matsushita Electric Industrial Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP21462982A priority Critical patent/JPS59105029A/en
Publication of JPS59105029A publication Critical patent/JPS59105029A/en
Publication of JPS6355536B2 publication Critical patent/JPS6355536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明は新規な電導体の製造法に関する。特に
本発明は電子回路素子用電導体、各種センサー材
料などに利用される熱的および化学的安定性の高
い高電導性電導体に関する。 b 従来例の構成とその問題点 従来絶縁体として知られている高分子材料に電
気伝導性を付与し、新規な機能を発現させようと
いう動きが最近活発に行なわれているが、その手
法としては大きく分けて2つの方法がある。その
第一はポリアセチレン、ポリパラフエニレンなど
に代表される線状の共役高分子に不純物を多量に
添加するいわゆる化学的ドーピングによる方法で
ある。この方法ではポリアセチレンで最高
4000S/cmの電導度が実現されており、一見最良
の方法であるように思われる。しかしながら、高
電導度を達成するには、添加物として5フツ化ヒ
素のような超強酸あるいはヨウ素のようなハロゲ
ン分子を用いることが必須で、このようにして得
られた電導体は空気中での安定性に劣り、エレク
トロニクス部品等の高度の信頼性を要求される分
野で使用することはほとんど不可能である。高電
導性高分子を実現する第2の方法として、高分子
の熱分解がある。この方法は高分子を真空中ある
いは不活性気体中で熱処理し、分解および重縮合
反応を経て、炭素質物を形成させる方法である
が、どのような高分子を出発材料として用いても
高電導性生成物が得られるのではない。たとえば
従来知られている高分子で比較的高い電導度を与
えるものは、ポリアクリロニトリル(以下PAN
と記載する)とポリイミド(以下PIと記載する)
のみである。PANでは900℃の熱分解で20S/cm
の電導度が(N.GrassieおよびJ.C.McHeil氏、
Journal of Polymer Science誌27巻707頁(1958
年))またPIでは800℃48時間の熱分解で100S/
cmの電導度が(H.B.Brom氏等、Solid State
Communications誌35巻135頁(1980年))得られ
ている。このような熱分解高分子は耐熱性および
化学的安定性に優れ、また、出発高分子の性質に
従い、皮膜、粉末、繊維など任意の形状で得られ
るという利点があるため、工業的な利用を考える
場合は、化学ドーピングによつて得られる電導性
高分子より遥かに重要な材料であると言える。従
つて、PANあるいはPI以外で更に高い電導度を
示す高分子材料が望まれる訳である。熱分解によ
り高導電体となる高分子が従来PANとPIに限ら
れていたことは、一方ではそのような高分子を設
計および合成することの難しさを意味し、他方で
は高分子構造が電導性と密接に関係しており、更
に高い電導度の実現が不可能ではないことを示唆
している。熱分解高分子に関する一つの問題点は
熱分解後の化学構造が詳細に決定することが難し
く、従来の多くの発明においては、出発物質と熱
分解条件のみを規定し、生成物を規定している。 c 発明の目的 本発明は、以上のような電導度高分子に関する
いくつかの問題点を解決するためになされたもの
で、熱安定性が高く、高電導性を示す新規な熱分
解電導体を提供することを目的とする。 d 発明の構成 この目的を達成するために本発明者らは、オキ
サジアゾール環を含む高分子が高い結晶性を有
し、比較的単純な熱分解過程を示すことに着目
し、ポリ(p−フエニレン−1,3,4−オキサ
ジアゾール)(以下PPODと略す)を特定の温度
以上で熱分解して得られる、窒素を含む縮合多環
構造を有する化合物は高電導性を有することを知
見した。 PPODは古くから知られている耐熱性高分子で
一般にはテレフタル酸とヒドラジンの重縮合反応
によつて得られるポリヒドラジドを脱水環化させ
て得られるが、ジメチルテレフタレイトと硫酸ヒ
ドラジドの反応、あるいは塩化テレフタル酸とヒ
ドラジンの反応等によつても得ることが可能であ
る。PPODは濃硫酸に可溶で、濃硫酸溶液からキ
ヤストして得られた皮膜は高い結晶性を有してい
る これは極性の高い1,3,4−オキサジアゾ
ール環が双極子相互作用により互いに秩序正しく
配向することによると思われる。PPODの熱分解
はキヤストして得られた約25〜50ミクロンの皮膜
をアルミナセラミツクス等で支持して、真空中あ
るいは不活性気体中で400〜1400℃の温度の範囲
で行なわれた。PPODはこのような処理により黒
色の金属光沢を有する皮膜になつた。得られた皮
膜の電気伝導度、その温度依存性、赤外分光、X
線回折、X線光電子分光(XPS)、元素分析など
の測定を行なつた結果、520℃以上で窒素を含む
ヘテロ環構造が生成し、従来のPI以上の電導度
を示す化合物に転換されることが明らかになつ
た。 e 実施例 以下に本発明を実施例により説明する。 実施例 1 PPODの25ミクロンの皮膜をアルミナ基板でサ
ンドイツチし、アルゴン気流中で、毎分10℃の速
度で昇温し、所望の温度Tpで1時間処理し、毎
分20℃/Mの速度で降温させた。得られた黒色の
皮膜に銀ペーストを用いて4端子電極を付与し、
定電流電源およびデイジタルボルトメータを用い
て電気抵抗を測定した。第1表に常温における電
導度の熱分解温度依存性を示す。ここでは市販の
PI皮膜(デユポン社カプトンHフイルム)を同
じ条件で熱分解した場合のデータを比較のため記
載した。
a. Industrial Application Field The present invention relates to a novel method for producing an electrical conductor. In particular, the present invention relates to a highly conductive conductor with high thermal and chemical stability that is used as a conductor for electronic circuit elements, various sensor materials, and the like. b Structure of conventional examples and their problems Recently, there has been an active movement to impart electrical conductivity to polymer materials conventionally known as insulators and to develop new functions. There are two main methods. The first method is so-called chemical doping, in which a large amount of impurities is added to linear conjugated polymers such as polyacetylene and polyparaphenylene. This method works best with polyacetylene.
A conductivity of 4000 S/cm has been achieved, and at first glance this seems to be the best method. However, in order to achieve high conductivity, it is essential to use superacids such as arsenic pentafluoride or halogen molecules such as iodine as additives, and the conductors obtained in this way can be used in air. Because of its poor stability, it is almost impossible to use it in fields that require a high degree of reliability, such as electronic parts. A second method for realizing highly conductive polymers is thermal decomposition of polymers. In this method, a polymer is heat-treated in vacuum or in an inert gas, and a carbonaceous material is formed through decomposition and polycondensation reactions. The product is not obtained. For example, a conventionally known polymer that provides relatively high conductivity is polyacrylonitrile (hereinafter referred to as PAN).
) and polyimide (hereinafter referred to as PI)
Only. In PAN, 20S/cm with thermal decomposition at 900℃
The conductivity of (N. Grassie and JC McHeil,
Journal of Polymer Science, Vol. 27, p. 707 (1958)
2)) Also, in PI, pyrolysis at 800℃ for 48 hours yields 100S
cm conductivity (HBrom et al., Solid State
Communications, Vol. 35, p. 135 (1980)). Such pyrolytic polymers have excellent heat resistance and chemical stability, and have the advantage that they can be obtained in any form such as film, powder, or fiber depending on the properties of the starting polymer, so they are not suitable for industrial use. If you think about it, it can be said that it is a much more important material than conductive polymers obtained by chemical doping. Therefore, a polymer material other than PAN or PI that exhibits even higher conductivity is desired. The fact that polymers that become highly conductive through thermal decomposition have traditionally been limited to PAN and PI means, on the one hand, the difficulty in designing and synthesizing such polymers, and on the other hand, the fact that the polymer structure becomes electrically conductive. This suggests that it is not impossible to achieve even higher conductivity. One problem with pyrolyzed polymers is that it is difficult to determine the chemical structure after pyrolysis in detail, and in many conventional inventions, only the starting materials and pyrolysis conditions are specified, and the products are not specified. There is. c. Purpose of the Invention The present invention was made in order to solve some of the problems related to conductive polymers as described above, and to develop a novel pyrolytic conductor that exhibits high thermal stability and high conductivity. The purpose is to provide. d Structure of the Invention In order to achieve this object, the present inventors focused on the fact that polymers containing oxadiazole rings have high crystallinity and exhibit a relatively simple thermal decomposition process. -Phenylene-1,3,4-oxadiazole) (hereinafter abbreviated as PPOD) is thermally decomposed at a specific temperature or higher, and the compound has a nitrogen-containing fused polycyclic structure and has high electrical conductivity. I found out. PPOD is a heat-resistant polymer that has been known for a long time, and is generally obtained by dehydrating and cyclizing polyhydrazide, which is obtained by the polycondensation reaction of terephthalic acid and hydrazine. Alternatively, it can also be obtained by a reaction between chloroterephthalic acid and hydrazine. PPOD is soluble in concentrated sulfuric acid, and the film obtained by casting from concentrated sulfuric acid solution has high crystallinity.This is due to the dipolar interaction of the highly polar 1,3,4-oxadiazole ring. This seems to be due to the orderly orientation of each other. Thermal decomposition of PPOD was carried out at a temperature range of 400 to 1400°C in vacuum or in an inert gas using a cast film of approximately 25 to 50 microns supported by alumina ceramics or the like. Through this treatment, PPOD became a film with a black metallic luster. Electrical conductivity of the obtained film, its temperature dependence, infrared spectroscopy,
As a result of measurements such as ray diffraction, X-ray photoelectron spectroscopy (XPS), and elemental analysis, it was found that a nitrogen-containing heterocyclic structure is formed at temperatures above 520°C, and is converted into a compound that exhibits electrical conductivity higher than that of conventional PI. It became clear. e Examples The present invention will be explained below using examples. Example 1 A 25 micron film of PPOD was sandwiched on an alumina substrate, heated at a rate of 10°C per minute in an argon stream, treated at the desired temperature T p for 1 hour, and heated at a rate of 20°C/M per minute. The temperature was lowered at a rapid rate. A four-terminal electrode was applied to the obtained black film using silver paste,
Electrical resistance was measured using a constant current power supply and a digital voltmeter. Table 1 shows the dependence of electrical conductivity on thermal decomposition temperature at room temperature. Here, commercially available
Data obtained when a PI film (DuPont Kapton H film) was thermally decomposed under the same conditions are listed for comparison.

【表】 この結果によれば、PPODはPIの約2倍の電導
度を示すことが明らかである。電導度の温度依存
性を測定したところ、熱分解温度が1000℃以上の
ものは−100℃以下で全く温度変化を示さない金
属性電導を示した。 上記の実施例によれば電導度は熱分解温度と共
にほぼ連続的に変化しているため、出発物質と生
成物の間の境界を求めることができず、従つて生
成物の特徴を定義することができない。 そこで実施例1の方法で得られた熱分解PPOD
の赤外分光およびXDS分析を行つた結果を示す。
第1図は種々の温度で熱分解されたPPOD皮膜の
赤外分光スペクトルである。図では熱分解が開始
する450℃付近から2225cm-1にニトリル(−CN)
基による吸収が現われはじめ、550℃以上で1200
〜1000cm-1の微細構造が消失していることが特徴
として見られる。また、第2図は同様の皮膜から
得られる窒素Is電子(NIs)に関するXDSスペク
トルの変化である。図より520℃で2つのNIsピ
ークが出現していることが分る。この2つのピー
クの内低エネルギー側に現われるピークは共鳴構
造を取る窒素に特有なもので、520℃以上で熱分
解されたPPODは などのヘテロ原子を持つ複素環を有することが言
える。第1図の赤外スペクトルでは550℃で大き
な変化(1200〜1600cm-1)が見られるが、520℃
の曲線にもそのような変化の存在を読みとること
ができる。従つて、PPODは520℃を境にして全
く別の含窒素ヘテロ環構造に転換されると結論さ
れる。すなわち、520℃以上で熱処理された
PPODは熱分解物というよりも、新しく生成した
縮合多環化合物であると言える。 比較例 PPODの50ミクロンの皮膜を真空中に熱分解し
た結果、電導度は実施例1とほとんど変化がなか
つた。ところが、酸素気流中で加熱すると、深い
黒色を持つもろい皮膜が得られ、生成収率も真空
中の43%(1000℃)に対し20%前後であつた。ま
た、電導度はその他の場合の約10分の1でPI以
下の値となつた。 以上の結果から熱分解は酸素の存在下で行うこ
とは許されないことが明らかである。不活性気体
としてはアルゴン以外に、ヘリウム、窒素、水素
などが利用できる。又真空中でも行うことができ
る。 f 発明の効果 以上のように、本発明はPPODを520℃以上の
温度で真空中あるいは不活性気体中で熱処理する
ことにより窒素を含む縮合多環化合物に転換させ
従来のポリイミドやポリアクリロニトリル以上の
電導度を有する電導体を得ることができた。本発
明の電導体を用いれば、温度センサー、風流セン
サーなどの各種センサーが製造される一方、高導
電度を利用して、太陽熱吸収体あるいは微小回路
用抵抗体、更には電磁シールド材料などが容易に
製造される。
[Table] According to the results, it is clear that PPOD exhibits approximately twice the conductivity of PI. When we measured the temperature dependence of conductivity, we found that those with thermal decomposition temperatures of 1000°C or higher showed metallic conductivity with no temperature change at -100°C or lower. Since, according to the above example, the conductivity changes almost continuously with the pyrolysis temperature, it is not possible to determine the boundary between the starting material and the product and therefore to define the characteristics of the product. I can't. Therefore, pyrolyzed PPOD obtained by the method of Example 1
The results of infrared spectroscopy and XDS analysis are shown.
Figure 1 shows infrared spectra of PPOD films pyrolyzed at various temperatures. In the figure, nitrile (-CN) reaches 2225 cm -1 from around 450℃, where thermal decomposition begins.
Absorption by groups begins to appear, and at temperatures above 550°C, 1200
The characteristic feature is that the fine structure of ~1000 cm -1 has disappeared. Moreover, FIG. 2 shows changes in the XDS spectrum regarding nitrogen Is electrons (NIs) obtained from a similar film. The figure shows that two NIs peaks appear at 520°C. The peak that appears on the lower energy side of these two peaks is unique to nitrogen, which has a resonance structure, and PPOD thermally decomposed at temperatures above 520℃ is It can be said that it has a heterocyclic ring having a heteroatom such as. In the infrared spectrum shown in Figure 1, a large change (1200 to 1600 cm -1 ) can be seen at 550°C, but at 520°C
The existence of such changes can also be seen in the curve. Therefore, it is concluded that PPOD is converted to a completely different nitrogen-containing heterocyclic structure at 520°C. That is, heat treated at 520℃ or higher
PPOD can be said to be a newly generated condensed polycyclic compound rather than a thermal decomposition product. Comparative Example As a result of thermally decomposing a 50 micron film of PPOD in vacuum, the electrical conductivity was almost the same as in Example 1. However, when heated in an oxygen stream, a deep black, brittle film was obtained, and the production yield was around 20%, compared to 43% (at 1000°C) in a vacuum. Furthermore, the electrical conductivity was approximately one-tenth that of other cases, and was below the PI. From the above results, it is clear that thermal decomposition cannot be carried out in the presence of oxygen. In addition to argon, helium, nitrogen, hydrogen, etc. can be used as the inert gas. It can also be carried out in a vacuum. f. Effects of the Invention As described above, the present invention converts PPOD into a nitrogen-containing condensed polycyclic compound by heat-treating it at a temperature of 520°C or higher in vacuum or in an inert gas, which is superior to conventional polyimide and polyacrylonitrile. It was possible to obtain a conductor with high electrical conductivity. Using the conductor of the present invention, various sensors such as temperature sensors and wind current sensors can be manufactured, and its high conductivity can be used to easily manufacture solar heat absorbers, resistors for microcircuits, and even electromagnetic shielding materials. Manufactured in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種々の温度で熱処理されたPPOD皮膜
の赤外吸収スペクトル、第2図はX線光電子分光
スペクトルである。
Figure 1 shows infrared absorption spectra of PPOD films heat-treated at various temperatures, and Figure 2 shows X-ray photoelectron spectroscopy spectra.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリ(p−フエニレン1,3,4−オキサジ
アゾール)を真空中あるいは不活性気体中で520
〜1400℃に熱処理して窒素を含む多環化合物とす
ることを特徴とする電導体の製造法。
1 Poly(p-phenylene 1,3,4-oxadiazole) in vacuum or inert gas at 520
A method for producing an electrical conductor, which comprises heat-treating it at ~1400°C to produce a nitrogen-containing polycyclic compound.
JP21462982A 1982-12-09 1982-12-09 Polymeric conductor Granted JPS59105029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21462982A JPS59105029A (en) 1982-12-09 1982-12-09 Polymeric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21462982A JPS59105029A (en) 1982-12-09 1982-12-09 Polymeric conductor

Publications (2)

Publication Number Publication Date
JPS59105029A JPS59105029A (en) 1984-06-18
JPS6355536B2 true JPS6355536B2 (en) 1988-11-02

Family

ID=16658897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21462982A Granted JPS59105029A (en) 1982-12-09 1982-12-09 Polymeric conductor

Country Status (1)

Country Link
JP (1) JPS59105029A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3680824D1 (en) * 1985-05-30 1991-09-19 Matsushita Electric Ind Co Ltd METHOD FOR PRODUCING GRAPHITE.
JPS6287407A (en) * 1985-10-12 1987-04-21 Res Dev Corp Of Japan Filmy graphite interlaminar compound and production thereof
CA1332972C (en) * 1987-12-28 1994-11-08 Yasuyuki Aihara Cooling control system for internal combustion engines equipped with superchargers

Also Published As

Publication number Publication date
JPS59105029A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
EP0203581B1 (en) Process for producing graphite
JPH0157044B2 (en)
Keller Phthalonitrile‐based conductive polymer
Ueno et al. Electrical conductivity and thermoelectric power of highly graphitizable poly (p-phenylene vinylene) films
KR840000049A (en) Low dielectric constant silicon carbide electrical insulation and its manufacturing method
JPS61275117A (en) Production of graphite film
Debnath et al. Camphor sulfonic acid incorporation in SnO 2/polyaniline nanocomposites for improved thermoelectric energy conversion
JPS6355536B2 (en)
Thiyagarajan et al. Tailorable dielectric performance of niobium‐modified poly (hydridomethylsiloxane) precursor‐derived ceramic nanocomposites
JPS6366860B2 (en)
JPH0359089B2 (en)
JPH03279207A (en) Production of graphite
Ko et al. Improvement in the properties of PAN‐based carbon films by modification with cobaltous chloride
Yoshino et al. Enhancement of electrical conductivity of poly (p‐phenylene) and polynaphthylene films by heat treatment
JPS6245269B2 (en)
JPH0393106A (en) Electric conductor and its manufacture
JPS61275114A (en) Production of graphite
JPS61275115A (en) Production of graphite
JPS6411666B2 (en)
JPH0122289B2 (en)
JPH0717724B2 (en) Method for producing polymer conductor
Davidov et al. High intrinsic conductivity in ladder type polymers: Pyrolyzed BBB
JPH046222B2 (en)
JPS6291414A (en) Production of graphite film
JPH04332403A (en) Heat-resisting insulating wire and manufacture thereof and manufacture of heat-resisting insulating material