KR970003330B1 - Ceramics resistor composition & marking method thereof - Google Patents

Ceramics resistor composition & marking method thereof Download PDF

Info

Publication number
KR970003330B1
KR970003330B1 KR1019880017312A KR880017312A KR970003330B1 KR 970003330 B1 KR970003330 B1 KR 970003330B1 KR 1019880017312 A KR1019880017312 A KR 1019880017312A KR 880017312 A KR880017312 A KR 880017312A KR 970003330 B1 KR970003330 B1 KR 970003330B1
Authority
KR
South Korea
Prior art keywords
weight
composition
temperature
air
vanadium
Prior art date
Application number
KR1019880017312A
Other languages
Korean (ko)
Other versions
KR900010814A (en
Inventor
송효일
Original Assignee
삼성코닝 주식회사
한형수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝 주식회사, 한형수 filed Critical 삼성코닝 주식회사
Priority to KR1019880017312A priority Critical patent/KR970003330B1/en
Publication of KR900010814A publication Critical patent/KR900010814A/en
Application granted granted Critical
Publication of KR970003330B1 publication Critical patent/KR970003330B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

Disclosed are the composition for ceramic resistor and method of fabricating the same which can be sintered in the air and lower the temperature of the combination. The composition is made of V2O5, V2O3, Cr2O3 and vanadium metal. The V2O5, V2O3 and vanadium metal are in the ranges of 26% to 31% by weight, 28% to 54% by weight and 40% to 44% by weight, respectively, and the Cr2O3 is contained 1.5% by weight. The composition is obtained by (a) mixing and grinding the above components using a known method, (b) annealing the components for 2 hours at a temperature of 1000deg. C in the air, (c) grinding the material obtained by the step (b) using the method, and then adding a organic binding material to the grinded material and (d) sintering the material obtained by the step (c) in the air. Thereby, it is possible to obtain the composition in the air and lower the temperature thereof.

Description

V2O3계 시라믹 저항체용 조성물 및 그 제조방법V2O3-based ceramic resistor composition and its manufacturing method

제1도는 본 발명의 조성물을 제조하는 개략공정도.1 is a schematic process diagram for producing a composition of the present invention.

제2도는 단결정 VO2의 온도에 따른 전기저항의 변화도.2 is a change in electrical resistance with temperature of single crystal VO 2 .

제3도는 Cr2O3가 첨가된 본 발명의 실시예 3의 온도에 따른 전기저항의 변화도.3 is a change in electrical resistance according to the temperature of Example 3 of the present invention added Cr 2 O 3 .

본 발명은 정저항 온도계수를 갖는 바나디움 금속을 첨가한 V2O3계 세라믹 저항체용 조성물 및 이 저항체를 제조하는 방법에 관한 것이다.The present invention relates to a composition for a V 2 O 3 -based ceramic resistor to which a vanadium metal having a constant resistance temperature coefficient is added, and a method for producing the resistor.

종래 정저항 계수를 갖는 서미스터 재료로는 티탄산 바륨이 주성분이었으나, 이 재료로는 상온의 저항값이 10Ω·cm 이하로 제조가 불가능하여 더욱더 낮은 전기적 저항을 갖는 한편 한계전류 밀도도 상대적으로 높이기 위해 V2O3계 서미스터의 재료가 개발되었다.Conventional thermistor material with a constant resistance coefficient was barium titanate as a main component, but this material cannot be manufactured with a resistance value of 10Ω · cm or less at room temperature, so that it has a lower electrical resistance and a relatively high limit current density. A material of 2 O 3 thermistors has been developed.

순수한 바나디움 산화물은 바나디움 이온의 원자가 상태와 결정상에 따라 다양한 전기적 특성을 갖고 있는데, 바나디움 산화물의 결정구조 전이온도인 66℃에서 전기전도도는 온도에 따라 불연속 특성을 갖는다. 즉, 전기저항이 전이온도에서 급격히 감소하여 반도체적인 저항변화가 금속과 같은 특성을 갖는데 이를 도시하면 제2도와 같다.Pure vanadium oxide has various electrical properties according to the valence state and crystal phase of vanadium ions. The electrical conductivity has discontinuity with temperature at 66 ℃, the crystal structure transition temperature of vanadium ions. That is, the electrical resistance decreases rapidly at the transition temperature, so that the semiconductor resistance change has a metal-like characteristic, which is shown in FIG. 2.

이 현상을 이용하여 바나디움 산화물은 서미스터, 스위치소자, 열원, 박막의 디바이스에 응용되고 있다. 한편 바나디움 산화물인 V2O3에 소량의 Cr, Al, Sc등의 원소를 첨가하면, 상기의 경우와 정반대로 전기적 저항이 급격히 증가하는 현상이 발견되어 정저항 온도계수를 갖는 재료로써 이런 특성을 응용할려는 노력이 경주되고 있다.By using this phenomenon, vanadium oxide is applied to thermistors, switch elements, heat sources, and thin film devices. On the other hand, when a small amount of Cr, Al, Sc, etc. is added to the vanadium oxide V 2 O 3 , a phenomenon in which the electrical resistance increases rapidly is found to be contrary to the above case. Efforts to apply are racing.

그러나, 바나디움 산화물의 합성은 약 1000℃에서 장시간 열처리 함으로써 이루어지는데 이경우 V2O3의 산화를 방지하기 위해 강력한 환원분위기인 수소분위기 하에서 이루어져야 한다. 또한, 재료의 특성 발현을 위해 1500℃ 이상의 고온에서 환원분위기로 소결되어야 한다.However, the synthesis of vanadium oxide is achieved by heat treatment at about 1000 ° C. for a long time. In this case, the vanadium oxide should be formed under a hydrogen atmosphere, which is a powerful reducing atmosphere to prevent oxidation of V 2 O 3 . In addition, the material must be sintered in a reducing atmosphere at a high temperature of 1500 ° C. or higher to develop properties of the material.

따라서, 제조공정의 복잡성 및 항상 폭발, 화재 위험을 내포하고 있고, 또한 V2O3의 높은 소결온도로 인해 제조원가가 높아 실용화에 벽을 쌓고 있다.Therefore, the complexity of the manufacturing process and the risk of explosion and fire are always included, and due to the high sintering temperature of V 2 O 3 , the manufacturing cost is high, thus laying a wall for practical use.

따라서, 본 발명은 상기와 같은 요망과 문제점을 해결하기 위하여 바나디움 산화물에 바나디움 금속을 첨가함으로써, 공기중에서 소결할 수 있고, 소결온도도 낮출 수 있는 V2O3계 세라믹 저항체용 조성물을 제공하는데 그 목적이 있다.Accordingly, the present invention provides a composition for a V 2 O 3 -based ceramic resistor that can be sintered in the air and lower the sintering temperature by adding a vanadium metal to the vanadium oxide in order to solve the above demands and problems. There is a purpose.

또한, 본 발명의 또 다른 목적으로 상기 조성물을 이용하여 세라믹 저항체를 제조하는 방법에 관한 것이다.In addition, the present invention relates to a method for producing a ceramic resistor using the composition.

상기 목적을 달성하고자 본 발명은 V2O526∼31중량%, V2O328∼54중량%, Cr2O31.5중량% 및 바나디움금속 40∼44중량%로 구성된 V2O3계 세라믹 저항체용 조성물에 관한 것이다.The present invention to attain the object is a V 2 O 5 26~31 wt%, V 2 O 3 28~54% by weight, Cr 2 O 3 1.5 wt% of V 2 O 3 system consisting of vanadium metal 40-44% by weight A composition for ceramic resistors.

이는 다양한 원자가 상태를 갖는 바나디움 이온의 원자가를 +3가로 유지시키면서 정저항 온도계수를 갖는 소자를 제조하기 위해 바나디움의 산화를 억제시키는 방법으로 위험성이 있는 수소분위기 하에서 열처리하는것 대신에 종래 출발원료인 V2O5또는 V2O3의 일부를 바나디움 금속으로 치환함으로서 공기중에서 소결하더라도 바나디움 금속과 공기중 산소를 반응시켜 환원분위기에서의 열처리 효과과 같게 하여 정저항 계수의 특성을 갖도록 한 것이다. 이 때 예상되는 화학 반응식은 다음과 같다.

Figure kpo00001
It is a method of inhibiting oxidation of vanadium to produce a device having a constant resistance temperature coefficient while maintaining the valence of vanadium ions having various valence states at +3, and instead of heat-treating under a dangerous hydrogen atmosphere, V, a conventional starting material. By substituting part of 2 O 5 or V 2 O 3 with vanadium metal, even if sintered in air, the vanadium metal reacts with oxygen in the air to have the properties of the constant resistance coefficient in the same manner as the heat treatment effect in the reducing atmosphere. The chemical reaction expected at this time is as follows.
Figure kpo00001

또한, V2O3의 용융온도인 1970℃보다 270℃가 낮은 용융온도를 갖는 바나디움 금속을 첨가함으로서 소결온도도 낮출 수 있을 뿐만 아니라 정저항 계수의 특성 발현 첨가제인 Cr, Al, Sc등 원소의 물질이동에 대한 확산속도를 증가시켜 첨가제의 분포를 균일하게 한다.In addition, by adding a vanadium metal having a melting temperature of 270 ° C. lower than that of the melting temperature of V 2 O 3 , it is possible to lower the sintering temperature as well as the Cr, Al, Sc, etc. Increasing the diffusion rate for mass transfer makes the distribution of additives uniform.

또한, 본 발명은 V2O526∼31중량%, V2O328∼54중량%, Cr2O31.5중량% 및 바나디움 금속 40∼44중량%로 구성된 V2O3계 셀하믹 저항체용 조성물을 제1도에서, 도시한 바와 같이, (a) 공지의 방법을 사용하여 상기 조성비율로 혼합, 분쇄하고, (b) 공기중에서 1000℃에서 2시간 열처리하고, (c) 공지의 방법으로 재분쇄, 유기결합제를 첨가, 성형시키고, (d) 1350℃ 내지 1450℃에서 2∼10시간 공기중에서 소결시키는 공정으로 구성됨을 특징으로 한다.The present invention is V 2 O 5 26~31% by weight, V 2 O 3 28~54% by weight, Cr 2 O 3 and 1.5% by weight vanadium metal V 2 O 40~44% by weight, consisting of three series resistors cell hamik As shown in FIG. 1, the composition for (a) is mixed and pulverized in the above composition ratio using a known method, (b) heat treated at 1000 ° C. for 2 hours in air, and (c) a known method. It is characterized in that it is composed of a step of pulverizing, adding and molding the organic binder, and (d) sintering in air at 1350 ℃ to 1450 ℃ for 2 to 10 hours.

상기에서 1300℃, 10시간의 경우는 세라믹으로서 소결이 충분히 이루어지지 않아 기계적 강도가 약할 뿐만 아니라 정저항의 특성도 나타나지 않으며, 또한 1500℃ 2시간의 경우는 높은 온도로 인한 용융때문에 액사의 양이 많아져 형상유지가 곤란하다. 실시결과 최적의 소결조건은 소결온도가 1350℃에서 1450℃이며, 유지시간은 4시간이 적당하였다.In the case of 1300 ° C and 10 hours, the ceramic is not sufficiently sintered, so that the mechanical strength is not only weak, and the properties of the positive resistance are not shown. Also, in the case of 1500 ° C and 2 hours, the amount of liquid sand is increased due to melting due to high temperature. It is difficult to maintain the shape. As a result, the optimum sintering conditions were sintering temperature of 1350 ℃ to 1450 ℃, holding time of 4 hours was appropriate.

이상 상술한 바와 같이 본 발명은 종래의 환원분위기(수소분위기)대신에 공기중에서 열처리할 수 있어 재조설비의 간이화가 가능하여 제조경비를 낮출 수 있으며, 수소사용에 다른 폭발 및 화재의 위험으로부터 벗어날 수 있으며, 금속의 용융을 응용함에 따라 기존의 열처리 온도보다 100℃ 이상 낮출 수 있어 제조원가의 절감에 크게 기여한다.As described above, the present invention can heat-treat in the air instead of the conventional reducing atmosphere (hydrogen atmosphere), thus simplifying the manufacturing equipment, thereby lowering manufacturing costs, and releasing the risk of other explosions and fires in the use of hydrogen. In addition, by applying the melting of the metal it can be lowered by more than 100 ℃ than the existing heat treatment temperature significantly contributes to the reduction of manufacturing cost.

이하, 실시예를 통해 본 발명의 제조방법 및 그 작용 효과에 대해서 상술하기로 한다. 그러나 다음의 실시예가 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the production method of the present invention and its effects through the examples will be described in detail. However, the following examples do not limit the scope of the invention.

[실시예 1]Example 1

시판되고 있는 시약급의 고순도 원료인 V2O5, V2O3, V 및 Cr2O3를 각각 15.25g, 14g, 20g, 0.75g을 청량하여 습식볼밑에서 20시간 혼합 및 분쇄한다. 이때 분쇄후 얻어진 분체의 평균입자 크기는 0.5㎛이며, 공기중 1000℃에서 2시간 열처리하여 V2O3를 생성시키고 바나디움 금속의 일부를 산화시켜 V2O3의 생성을 유도함과 동시에 Cr이온이 바나디움 금속 위치에 치환시킴으로서 정저한 온도계수를 갖도록 하였다. 얻어진 시료를 습식 볼밑에서 20시간 재분쇄하여 건조후 여기에 유기결합제인 5%의 폴리비닐알콜(P.V.A)를 시료 전체에 대해 중량비로 5% 첨가하여 혼합한다. 이 혼합된 분말을 500kg/㎤로 가압성형후 1400℃에서 공기중에서 4시간 소결하였다.15.25 g, 14 g, 20 g and 0.75 g of commercially available reagent grade V 2 O 5 , V 2 O 3 , V and Cr 2 O 3 are chilled and mixed and ground under a wet ball for 20 hours. At this time, the average particle size of the powder obtained after pulverization is 0.5㎛, heat treatment at 1000 ℃ in air for 2 hours to produce V 2 O 3 and oxidize part of the vanadium metal to induce the formation of V 2 O 3 and at the same time Cr ions Substitution at the vanadium metal position provided a constant temperature coefficient. The sample obtained is regrind under a wet ball for 20 hours, dried, and 5% polyvinyl alcohol (PVA), which is an organic binder, is added to the sample in a weight ratio of 5% and mixed. The mixed powder was pressed at 500 kg / cm 3 and then sintered in air at 1400 ° C. for 4 hours.

소결된 시편의 표면을 연마한 후 니켈 무전해 도금으로 전극을 입힌 다음 제반특성을 통상의 방법을 이용하여 측정하였으며, 그 결과를 표 1에 기재하였다.After polishing the surface of the sintered specimens, the electrode was coated with nickel electroless plating, and various properties were measured using a conventional method, and the results are shown in Table 1 below.

[실시예 2, 3][Examples 2 and 3]

하기 표 1의 조성이 되도록 하고, 상기 실시예 1과 같은 방법으로 제조하여 그 특성을 하기 표 1에 기재하였다. 아울러, 제3도에 Cr2O3가 첨가된 실시예 3의 온도에 따른 저닉 저항의 변화를도시하였다.To the composition of Table 1, and prepared in the same manner as in Example 1, the characteristics thereof are shown in Table 1 below. In addition, FIG. 3 shows the change in the resistance of the jerk according to the temperature of Example 3 in which Cr 2 O 3 was added.

[실시예 4, 5][Examples 4 and 5]

출발원료중 V2O5를 사용하지 않고, V2O3, V 및 Cr2O3만을 사용하고 표 1의 실시예 4, 5와 같은 비율료서 실시예 1과 같은 제조공정으로 제조하였다.Instead of using V 2 O 5 as a starting material, only V 2 O 3 , V, and Cr 2 O 3 were used, and the same ratio as in Examples 4 and 5 of Table 1 was prepared in the same manufacturing process as in Example 1.

그 결과는 표 1에 나타냈으며, 그 특성을 하기 표 1에 기재하였다. 표 1에서 보는 바와 같이 실시예 2와 3에서 바나디움 금속의 양이 42중량% 및 44중량%로 실시예 1보다 많아짐에 따라 상온저항값은 0.027에서 0.0015(ohm·cm)로 감소하였으며, 저항증가 효과는 80에서 91로 증가하였다. 그러나 바나디움 금속의 양이 46중량% 이상일 경우 바나디움 금속의 용융된 양이 많아짐에 따라 형상유지가 곤란하여 전기적 제특성의 측정이 곤란하였다. 실시예 4와 5에서는 실시예 1, 2보다는 상온저항값이 낮은 반면 저항증가 효과는 작았다. 또한, 실시예 4, 5 조성보다 바나디움 금속이 많아지면 바나디움 금속의 용융으로 인해 성형된 시편의 형상 유지가 곤란하다.The results are shown in Table 1, and the characteristics thereof are shown in Table 1 below. As shown in Table 1, the room temperature resistance value decreased from 0.027 to 0.0015 (ohmcm) as the amount of vanadium metal was 42% by weight and 44% by weight in Examples 2 and 3, respectively. The effect increased from 80 to 91. However, when the amount of vanadium metal is 46% by weight or more, it is difficult to maintain the shape as the amount of molten vanadium metal increases, making it difficult to measure electrical properties. In Examples 4 and 5, the room temperature resistance value was lower than that of Examples 1 and 2, but the resistance increase effect was small. In addition, when the vanadium metal is more than the composition of Examples 4 and 5, it is difficult to maintain the shape of the molded specimen due to the melting of the vanadium metal.

[표 1] 조성 및 제특성[Table 1] Composition and Properties

Figure kpo00002
Figure kpo00002

* 저항증가효과=최대저항÷상온(25℃)에서의 저항* Increased resistance = Maximum resistance ÷ Resistance at room temperature (25 ℃)

Claims (2)

V2O526∼31중량%, V2O328∼54중량%, Cr2O31.5중량% 및 바나디움 금속 40∼44중량%로 구성되는 것을 특징으로 하는 V2O3계 세라믹 저항체용 조성물.V 2 O 5 26~31% by weight, V 2 O 3 28~54% by weight, Cr 2 O 3 1.5 for V 2 O 3 based ceramic resistor, characterized in that consisting of% by weight vanadium metal and 40-44 percent by weight Composition. V2O526∼31중량%, V2O328∼54중량%, Cr2O31.5중량% 및 바나디움 금속 40∼44중량%로 구성된 V2O3세라믹 저항체용 조성물을 (a) 공지의 방법을 사용하여 상기 조성비율로 혼합, 분쇄하고, (b) 공기 중에서 1000℃에서 2시간 열처리하고, (c) 공지의 방법으로 재분쇄, 유기결합제를 첨가 및 성형시키고, (d) 1350∼1450℃에 2∼10시간 공기중에서 소결시키는 것을 특지응로 하는 V2O3계 세라믹 저항체의 제조방법.A composition for a V 2 O 3 ceramic resistor composed of 26 to 31 weight% of V 2 O 5, 28 to 54 weight% of V 2 O 3 , 1.5 weight% of Cr 2 O 3 , and 40 to 44 weight% of vanadium metal is known (a). The mixture was mixed and pulverized at the above composition ratio using the method of (b) and heat-treated at 1000 ° C. for 2 hours in the air, (c) regrind and the organic binder was added and molded by a known method, and (d) 1350-1. A method for producing a V 2 O 3 based ceramic resistor characterized by sintering at 1450 ° C. for 2 to 10 hours in air.
KR1019880017312A 1988-12-23 1988-12-23 Ceramics resistor composition & marking method thereof KR970003330B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880017312A KR970003330B1 (en) 1988-12-23 1988-12-23 Ceramics resistor composition & marking method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880017312A KR970003330B1 (en) 1988-12-23 1988-12-23 Ceramics resistor composition & marking method thereof

Publications (2)

Publication Number Publication Date
KR900010814A KR900010814A (en) 1990-07-09
KR970003330B1 true KR970003330B1 (en) 1997-03-17

Family

ID=19280563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880017312A KR970003330B1 (en) 1988-12-23 1988-12-23 Ceramics resistor composition & marking method thereof

Country Status (1)

Country Link
KR (1) KR970003330B1 (en)

Also Published As

Publication number Publication date
KR900010814A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
US4766097A (en) Aluminum nitride-based sintered body of high thermal conductivity
KR101757069B1 (en) Alumina composite ceramic composition and method of manufacturing the same
KR101344633B1 (en) ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
CA1100749A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
Saha et al. Preparation of bixbyite phase (MnxFe1− x) 2O3 for NTC thermistor applications
KR970003330B1 (en) Ceramics resistor composition & marking method thereof
US4017426A (en) Highly porous conductive ceramics and a method for the preparation of same
EP0166852A1 (en) PTC ceramic composition
JPWO2003082769A1 (en) Silicon monoxide sintered body and sputtering target comprising the same
US3640906A (en) Electroconductive sintered glass
US2891914A (en) Fired electrical resistor comprising molybdenum disilicide and borosilicate glass frit
US2729880A (en) Aluminum oxide semi-conductors
US3116262A (en) Ceramic composition
JP2020161759A (en) Thermistor material
JPH01212268A (en) Superconducting sintered body
JPS60180964A (en) Manufacture of aluminum nitride sintered body
JPH0522670B2 (en)
JP3138444B2 (en) Electrical insulating material composition
JPH0235700B2 (en)
SU1038320A1 (en) Electrically conducting ceramic material
Parkash et al. Effect of dispersion of metallic tin and silicon carbide on the ionic conductivity of B2O3 Li2O LiCl glasses
Akomolafe et al. Electrical properties of Fe-clay composite resistors
JPH02160621A (en) Electrically conductive oxide
JPH02160622A (en) Electrically conductive oxide
CN116813325A (en) Production process of thermosensitive ceramic

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040702

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee