JPS6411688B2 - - Google Patents

Info

Publication number
JPS6411688B2
JPS6411688B2 JP3082081A JP3082081A JPS6411688B2 JP S6411688 B2 JPS6411688 B2 JP S6411688B2 JP 3082081 A JP3082081 A JP 3082081A JP 3082081 A JP3082081 A JP 3082081A JP S6411688 B2 JPS6411688 B2 JP S6411688B2
Authority
JP
Japan
Prior art keywords
air ratio
zone
band
equation
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3082081A
Other languages
Japanese (ja)
Other versions
JPS57144884A (en
Inventor
Shunichi Sugyama
Masahiro Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3082081A priority Critical patent/JPS57144884A/en
Publication of JPS57144884A publication Critical patent/JPS57144884A/en
Publication of JPS6411688B2 publication Critical patent/JPS6411688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、連続加熱炉における空気比制御方法
の改良に関する。 従来連続加熱炉における空気比制御方法は、い
わゆる低O2燃焼方式と呼ばれ、あくまでも空気
比を1.0以上とし、できるだけ1.0に近づける方法
である。しかしこの方法は、加熱効率の面から
は、最適な方法であるとはいえない。この理由
は、最高火炎温度が得られる空気比は必ずしも
1.0ではなく、これよりも低い値であり、従来の
ような空気比1.0以上の制御法では、余分の空気
を加熱することとなるためである。このことは本
発明者が特願昭55−52578号で先に提示した。 また従来方法は、各帯の条件が異なるにもかか
わらず連続加熱炉の空気比を一律に1.0以上の一
定値にするもので、このことからも加熱効率が悪
い。 従来方法の特殊例として、NOx低減のために
炉内多段燃焼を行う方法がある。この方法は1段
目の空気比を下げる方法であるが、その空気比は
NOxの生成量を下げるためにかなり低くする必
要があり、この状態では最適の加熱効果は得られ
ない。また全体でみれば空気比が1.0以上であり、
加熱効率は低いものである。 このことから本発明者は、先に連続加熱炉の各
帯ごとに空気比を設定し、その範囲を1.0未満の
所定範囲とすることにより加熱効率を高める方法
を提案した(特願昭55−52577号)。しかしこの方
法では、前の帯から流れ込む燃焼ガスの影響を考
慮していないため、各帯を所望の設定空気比とす
ることが困難であつた。 本発明は、上記事情に鑑みてなされたもので、
その目的とするところは、他の帯から流入する燃
焼ガスを考慮して、各帯の空気比を制御すること
により、各帯の加熱効率を最大とすることができ
る連続加熱炉の空気比制御方法を得んとするもの
である。 すなわち本発明は、連続加熱炉の各帯の設定空
気比miを下記(1)式にもとづいて制御して、各帯
の空気比Miを下記(2)式の範囲とすることを特徴
とする連続加熱炉の空気比制御方法である。 mi=1/Fi{Miil=1 Fli-1l=1 ml・Fl(i=1〜k) ……(1) ただし mi:i番目の帯の設定空気比 Fi:i番目の帯での燃料投入量(Nm3/H) Mi:(2)式で規定される実際のi番目の帯の空気
比 2φ(Ti)−1≦Mi<1.0 ……(2) ただし φ(Ti):i番目の帯(温度Ti)における加熱効率
が最大となる空気 また本発明の実施態様は、(2)式において、i番
目の帯の空気比Mi {3φ(Ti)−1}/2≦Mi≦{φ(Ti)+1}/2 の範囲としたものである。 以下本発明を図面を参照して説明する。 第1図は連続加熱炉の一例を示す説明図であ
る。この連続加熱炉は、予熱帯1、第1加熱帯
2、第2加熱帯3、第3加熱帯4及び均熱帯5を
設けており、鋼材6は、予熱帯1から均熱帯5方
向へ、燃焼ガスは、均熱帯側から予熱帯側に向つ
て流れ最終的に煙道7へと流れ込む。従つて均熱
帯5を除けば、各帯では前段の帯から燃焼ガスが
流れ込む。例えば第3加熱帯4では、自らの帯で
投入した燃料に相当する燃焼ガスと、均熱帯5か
ら流れ込む燃焼ガスとが存在する。従つて各帯の
空気比を加熱効率が最大となるように設定するに
は、他の帯から流れ込む燃焼ガスの影響を考慮す
る必要がある。 本発明は、この影響を考慮して空気比を設定す
るものである。以下N個の帯を有する連続加熱炉
を例にとつて説明する。ただし上部帯と下部帯と
は合わせて1つの帯と考え、長手方向の分割数を
N個とする。また便宜上、燃焼ガスの流通順に沿
つて均熱帯を1番とし、順次予熱帯へと番号付け
をする。 本発明方法では、各帯の実際の空気比が下記(3)
式好ましくは下記(4)式の範囲内に入るようにす
る。 2φ(Ti)−1≦Mi<1.0 ……(3) 3φ(Ti)−1/2≦Mi≦φ(Ti)+1/2 ……(4) ただし Mi;i番目の帯での実際の空気比 Ti;i番目の帯に存在する燃焼ガスの平均温度
(℃) φ(Ti);燃焼ガス温度がTiのときの加熱効率が最
大となる最適空気比 ここで、φ(Ti)は、使用燃料について、あら
かじめ燃焼ガス温度Tとφ(T)との関係を平衡
計算により求めておいて決定する。例えばコーク
ス炉ガス、高炉ガス等を混合したMガス(真発熱
量=2640kcal/Nm3)では、第2図の曲線Mの如
くになる。なお直線Aは理論空気比を示す。 空気比Miを上記(3)式の範囲とするのは、最大
の加熱効率を得ることができる最適空気比を基準
としたためで、Miがφ(Ti)に近ければ近い方が
よい。 上記空気比Miを得るために各帯の設定空気比
を下記(5)式にもとづいて決定する。 mi=1/Fi{Miil=1 Fli-1l=1 ml・Fl(i=1〜k) ……(5) ただし、 mi;i番目の帯での設定空気比 Fi;i番目の帯での燃料投入量(Nm3/H) この(5)式は、以下の如くにして求められる。 すなわちN帯あるうち、k番目(k≦N)の帯
までが燃焼を行つている帯であるとすると、i=
1からkまでの帯のMiは(6)式で示される。 従つて(4)式からi番目の帯の設定空気比miは、
(5)式で示される。(5)式のMiに(3)あるいは(4)式を
満足する値を入れて、各帯の設定空気比を、i=
1から順に決定する。 因にi=1(均熱帯)では M1=mi・F2/F2=m1 となる。これはi=1では他の帯からのガスの流
れ込みがないためである。 なお均熱帯に限つていえば、被加熱鋼材の表面
性状すなわちスケールの剥離性を問題にする場合
には加熱能力の低下を無視してm1>1.0としても
よい。この場合他の帯については本発明に係る制
御方法を行う。 また、k番目以降の帯、又はN番目の帯(k=
N)、又は煙道のガス温度が未燃分の自然発火温
度以上(約600℃以上)の領域に所定の空気量Q
を供給して最終的に排出される燃焼ガス中に未燃
分を残さないようにしてもよい。 ただし A0;空気投入量(Nm3/H) 次に本発明の実施例につき説明する。 第1図に示す連続加熱炉を用い、第1表に示す
条件で空気比を制御した。またこれと比較するた
めに従来の空気比制御方法を第1表に併記する。
なお、この実施例では、均熱帯の設定空気比m1
を1.1として、スケールの剥離性を考慮した。ま
た最終の燃焼ガスの空気比を従来法と同じ1.1と
し、比較を明確に行なえるようにした。 このような制御条件による試験結果及び従来法
との差を第2表に示す。
The present invention relates to improvements in air ratio control methods in continuous heating furnaces. The air ratio control method in conventional continuous heating furnaces is called the so-called low O 2 combustion method, and is a method of keeping the air ratio at least 1.0 and as close to 1.0 as possible. However, this method cannot be said to be the optimal method in terms of heating efficiency. The reason for this is that the air ratio that yields the maximum flame temperature is not necessarily
This is not 1.0, but a value lower than this, and the conventional control method with an air ratio of 1.0 or more would involve heating excess air. This fact was previously proposed by the present inventor in Japanese Patent Application No. 52578/1983. In addition, in the conventional method, the air ratio in the continuous heating furnace is uniformly set to a constant value of 1.0 or more even though the conditions of each zone are different, which also leads to poor heating efficiency. A special example of the conventional method is a method of performing multi-stage combustion in a furnace to reduce NO x . This method lowers the air ratio in the first stage, but the air ratio is
In order to reduce the amount of NO x produced, it is necessary to lower the temperature considerably, and in this state the optimum heating effect cannot be obtained. Also, overall, the air ratio is 1.0 or more,
Heating efficiency is low. Based on this, the present inventor proposed a method of increasing heating efficiency by first setting the air ratio for each zone of the continuous heating furnace and setting the range to a predetermined range of less than 1.0 (Japanese Patent Application No. 1987- No. 52577). However, this method does not take into account the influence of combustion gas flowing in from the previous zone, so it is difficult to set each zone to a desired set air ratio. The present invention was made in view of the above circumstances, and
The purpose of this is to control the air ratio of a continuous heating furnace to maximize the heating efficiency of each zone by controlling the air ratio of each zone while taking into account the combustion gas flowing in from other zones. I am trying to find a method. That is, the present invention is characterized in that the set air ratio m i of each zone of the continuous heating furnace is controlled based on the following formula (1), and the air ratio M i of each zone is set within the range of the following formula (2). This is an air ratio control method for a continuous heating furnace. m i =1/F i {M iil=1 F li-1l=1 m l・F l } (i=1~k) ...(1) where m i : i-th Set air ratio for the band F i : Fuel input amount for the i-th band (Nm 3 /H) M i : Actual air ratio for the i-th band defined by equation (2) 2φ(T i )− 1≦M i <1.0 ... (2) where φ (T i ): air that maximizes the heating efficiency in the i-th zone (temperature T i ) In the embodiment of the present invention, in equation (2), i The air ratio M i {3φ(T i )−1}/2≦M i ≦{φ(T i )+1}/2 in the second band is set in the range. The present invention will be explained below with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of a continuous heating furnace. This continuous heating furnace is provided with a preheating zone 1, a first heating zone 2, a second heating zone 3, a third heating zone 4, and a soaking zone 5, and the steel material 6 is moved from the preheating zone 1 to the soaking zone 5 direction. The combustion gas flows from the soaking zone side to the preheating zone side and finally flows into the flue 7. Therefore, except for the soaking zone 5, combustion gas flows into each zone from the previous zone. For example, in the third heating zone 4, combustion gas corresponding to the fuel input in the zone itself and combustion gas flowing from the soaking zone 5 are present. Therefore, in order to set the air ratio of each zone so that the heating efficiency is maximized, it is necessary to consider the influence of combustion gas flowing from other zones. The present invention sets the air ratio in consideration of this influence. A continuous heating furnace having N bands will be described below as an example. However, the upper band and the lower band are considered to be one band, and the number of divisions in the longitudinal direction is N. For convenience, the soaking zone is numbered first and the preheating zones are numbered in order of flow of combustion gas. In the method of the present invention, the actual air ratio in each zone is as follows (3)
The formula preferably falls within the range of formula (4) below. 2φ(T i )−1≦M i <1.0 …(3) 3φ(T i )−1/2≦M i ≦φ(T i )+1/2 …(4) However, M i ; Actual air ratio in the zone T i ; Average temperature of the combustion gas present in the i-th zone (℃) φ (T i ); Optimal air ratio that maximizes heating efficiency when the combustion gas temperature is T i Here φ(T i ) is determined by calculating in advance the relationship between the combustion gas temperature T and φ(T) for the fuel used by equilibrium calculation. For example, in the case of M gas (net calorific value=2640 kcal/Nm 3 ) which is a mixture of coke oven gas, blast furnace gas, etc., the curve M is shown in FIG. Note that straight line A indicates the theoretical air ratio. The air ratio M i is set within the range of equation (3) above because it is based on the optimum air ratio that can obtain the maximum heating efficiency, and the closer M i is to φ(T i ), the better. . In order to obtain the above air ratio M i , the set air ratio for each zone is determined based on the following equation (5). m i =1/F i {M iil=1 F li-1l=1 m l・F l } (i=1〜k) ……(5) However, m i ;i Set air ratio F i in the ith band; fuel input amount in the ith band (Nm 3 /H) This equation (5) is obtained as follows. In other words, if we assume that among the N bands, up to the kth band (k≦N) are the bands in which combustion is occurring, then i=
M i of bands from 1 to k is expressed by equation (6). Therefore, from equation (4), the set air ratio m i of the i-th band is
It is shown by equation (5). Insert a value that satisfies equation (3) or (4) into M i in equation (5), and set the air ratio for each zone as i=
Decide in order starting from 1. Incidentally, when i=1 (soak zone), M 1 =m i ·F 2 /F 2 =m 1 . This is because when i=1, no gas flows in from other zones. As for the soaking zone, if the surface properties of the steel to be heated, that is, the peelability of scale, is a problem, m 1 >1.0 may be set, ignoring the reduction in heating capacity. In this case, the control method according to the present invention is performed for the other bands. Also, the k-th and subsequent bands, or the N-th band (k=
N), or a predetermined amount of air Q in the area where the gas temperature in the flue is above the spontaneous ignition temperature of unburned gas (approximately 600°C or higher).
may be supplied so that no unburned matter remains in the combustion gas that is finally exhausted. However, A 0 ; Air input amount (Nm 3 /H) Next, examples of the present invention will be described. Using the continuous heating furnace shown in FIG. 1, the air ratio was controlled under the conditions shown in Table 1. For comparison, the conventional air ratio control method is also listed in Table 1.
In addition, in this example, the set air ratio m 1 of the soaking zone
The removability of the scale was taken into account by setting the value to 1.1. In addition, the air ratio of the final combustion gas was set to 1.1, the same as in the conventional method, so that comparisons could be made clearly. Table 2 shows the test results under such control conditions and the differences from the conventional method.

【表】 * 最終的に排出される熱焼ガスの空気

[Table] * Air ratio of the sintered gas finally discharged

【表】 第2表から本実施例によれば従来法と比べ、加
熱効率が約3.3%向上し、燃料原単位が
13000kcal/ton低減することが確認された。 以上の如く本発明によれば、他の帯から流入す
る燃焼ガスを考慮して各帯の実際の空気比を設定
するので加熱効率を確実に高め、使用燃料を低減
できる効果を奏する。
[Table] From Table 2, according to this example, compared to the conventional method, the heating efficiency was improved by about 3.3%, and the fuel consumption rate was reduced.
A reduction of 13000kcal/ton was confirmed. As described above, according to the present invention, since the actual air ratio of each zone is set in consideration of the combustion gas flowing in from other zones, it is possible to reliably increase the heating efficiency and reduce the amount of fuel used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続加熱炉の一例を示す説明図、第2
図はMガスにおけるφ(T)とTとの関係を示す
図である。 1…予熱帯、2…第1加熱帯、3…第2加熱
帯、4…第3加熱帯、5…均熱帯、6…鋼材、7
…煙道。
Figure 1 is an explanatory diagram showing an example of a continuous heating furnace;
The figure is a diagram showing the relationship between φ(T) and T in M gas. 1... Preheating zone, 2... First heating zone, 3... Second heating zone, 4... Third heating zone, 5... Soaking zone, 6... Steel material, 7
...flue.

Claims (1)

【特許請求の範囲】 1 連続加熱炉の各帯の設定空気比miを下記(1)
式にもとづいて制御して、各帯の空気比Miを下
記(2)式の範囲とすることを特徴とする連続加熱炉
の空気比制御方法。 mi=1/Fi{Miil=1 Fli-1l=1 mlFl(i=1〜k) ……(1) ただし mi:i番目の帯の設定空気比 Fi:i番目の帯での燃料投入量(Nm3/H) Mi:(2)式で規定される実際のi番目の帯の空気
比 2φ(Ti)−1≦Mi<1.0 ……(2) ただし φ(Ti):i番目の帯(温度Ti)における加熱効率
が最大となる空気比 2 (2)式において、i番目の帯の空気比Miを、 {3φ(Ti)−1}/2≦Mi≦{φ(Ti)+1}/2 の範囲としてなる特許請求の範囲第1項記載の連
続加熱炉の空気比制御方法。
[Claims] 1. The set air ratio m i of each zone of the continuous heating furnace is as follows (1)
An air ratio control method for a continuous heating furnace, characterized in that the air ratio M i of each zone is controlled based on the following equation (2). m i =1/F i {M iil=1 F li-1l=1 m l F l } (i=1~k) ...(1) where m i : i-th Setting air ratio of the band F i : Fuel input amount in the i-th band (Nm 3 /H) M i : Actual air ratio of the i-th band specified by equation (2) 2φ(T i )−1 ≦M i <1.0 ...(2) where φ(T i ): Air ratio 2 at which the heating efficiency in the i-th zone (temperature T i ) is maximum In equation (2), the air ratio M in the i-th zone The air ratio control method for a continuous heating furnace according to claim 1, wherein i is set in the range of {3φ(T i )−1}/2≦M i ≦{φ(T i )+1}/2.
JP3082081A 1981-03-04 1981-03-04 Air ratio control of continuous heating furnace Granted JPS57144884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082081A JPS57144884A (en) 1981-03-04 1981-03-04 Air ratio control of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082081A JPS57144884A (en) 1981-03-04 1981-03-04 Air ratio control of continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS57144884A JPS57144884A (en) 1982-09-07
JPS6411688B2 true JPS6411688B2 (en) 1989-02-27

Family

ID=12314336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082081A Granted JPS57144884A (en) 1981-03-04 1981-03-04 Air ratio control of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS57144884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102883U (en) * 1990-02-07 1991-10-25
US11519539B2 (en) 2018-10-29 2022-12-06 Repligen Corporation Devices, systems, and methods for a reducer with an integrated seal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262417A (en) * 1987-04-21 1988-10-28 Sumitomo Metal Ind Ltd Method for heating in direct firing type continuous heating furnace under non-oxidation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102883U (en) * 1990-02-07 1991-10-25
US11519539B2 (en) 2018-10-29 2022-12-06 Repligen Corporation Devices, systems, and methods for a reducer with an integrated seal

Also Published As

Publication number Publication date
JPS57144884A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
CA2240442A1 (en) Method for reducing nox emission from a kiln plant
JPS6411688B2 (en)
JPS62120413A (en) Operating method for blast furnace
JP2598345B2 (en) Heating method of steel strip heating furnace
JP2889088B2 (en) Blast furnace operation method
CN109252004A (en) A kind of energy-efficient hot blast stove burning method
JP2755089B2 (en) Combustion method for continuous heating furnace with regenerative burner
JPS6014246B2 (en) Combustion control method for thermal equipment
JPH08260062A (en) Production of sintered ore
SU1488310A1 (en) Method of controlling heat situation of blast furnace
JPH08100222A (en) Production of sintered ore
JPH06322434A (en) Operation of heating furnace and heating furnace equipment
RU2213918C1 (en) Method of burning lumpy limestone in shaft furnace
SU584038A2 (en) Method of melting steel in double-bath hearth furnace
SU737486A1 (en) Method of thermal treatment of charge materials
SU773106A1 (en) Method igniting agglomeration charge
SU1203122A1 (en) Method of heating reverberatory furnace for melting copper concentrate
SU1518396A1 (en) Method of sintering a charge
SU883180A1 (en) Method of control of blast furnace thermal conditions
SU779418A1 (en) Method of heating in methodical furnaces
US3341324A (en) Method for the recovery of a combustible gas during refining pig iron
JPH0211814B2 (en)
SU1581759A1 (en) Method of igniting sintering slurry
SU1032021A1 (en) Method for reducing iron ores in stepped-fluidized bed furnaces
SU653296A2 (en) Method of steel smelting in two-tank hearth furnace