JPS6410521B2 - - Google Patents

Info

Publication number
JPS6410521B2
JPS6410521B2 JP16663980A JP16663980A JPS6410521B2 JP S6410521 B2 JPS6410521 B2 JP S6410521B2 JP 16663980 A JP16663980 A JP 16663980A JP 16663980 A JP16663980 A JP 16663980A JP S6410521 B2 JPS6410521 B2 JP S6410521B2
Authority
JP
Japan
Prior art keywords
cellulose
amount
cellulose derivative
acetic acid
dmso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16663980A
Other languages
Japanese (ja)
Other versions
JPS5792002A (en
Inventor
Tatsuyuki Abe
Masatoshi Saito
Kunihiko Okajima
Kenji Kamiide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16663980A priority Critical patent/JPS5792002A/en
Publication of JPS5792002A publication Critical patent/JPS5792002A/en
Publication of JPS6410521B2 publication Critical patent/JPS6410521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、メチロヌル化セルロヌスにメチレン
ゞアセテヌトたたぱチレンゞアセテヌトを䜜甚
させお埗られる新芏なセルロヌス誘導䜓に関す
る。 埓来、セルロヌスの繊維、フむルムなどの成圢
品を工業的に埗る方法ずしおは、セルロヌスを銅
アンモニア液に溶解するか、たたはザンテヌト化
しお溶液ずなし、これを、酞を甚いお凝固、再生
するこずによ぀お行なわれおいる。しかし、これ
らの工業的方法は倧量の氎消費、重金属の回収の
必芁性、゚ネルギヌ倚消費など倚くの改善を芁す
る点を含んでいる。 近幎、かかる欠点を解消するために、工皋のク
ロヌズド化を目的ずしお、セルロヌスを新しい有
機溶媒に溶解し、埗られたドヌプを盎接玡糞・成
圢する方法が提案されおいる。近幎泚目を集めお
いる、−メチルモルホリン−オキシド系をは
じめ、ゞメチルスルホキシド以䞋、DMSOず
略蚘するパラホルムアルデヒド以䞋、
PFAず略蚘する系に斌いおも、実際の応甚に
際し、溶媒は二成分以䞊を䜵甚するこずが必芁で
あり、埓぀お、溶媒を回収しお再利甚する方法が
煩雑になる等、䜜業性ず溶媒回収性に臎呜的欠点
があるこずが刀明しおいる。これらの欠点に加え
お、特にDMSOPFA系を甚いる堎合には、セ
ルロヌス成圢品の補造過皋および溶媒回収工皋で
DMSOの熱分解ず蚀う問題を生じ易い。 他方、セルロヌス誘導䜓は、特定溶媒ずの組合
せで液晶を圢成し、これから埗られる成圢品は、
機械的特性の倧幅な改良が期埅されおいる。 本発明者等は、䞊蚘した様な埓来技術の欠点や
新たな可胜性に぀いお総合的に怜蚎した結果、単
独溶媒に可溶で、しかも特定溶媒ずの組合せによ
り光孊的異方性を䞎える新芏なセルロヌス誘導䜓
を芋い出し本発明に到達した。すなわち、本発明
の目的は、単独溶媒に可溶なため回収が容易であ
り、しかも、成圢性の優れたドヌプを䞎える新芏
なセルロヌス誘導䜓を提䟛するにある。 本発明に係る新芏なセルロヌス誘導䜓は、セル
ロヌスをメチロヌル化セルロヌスの圢態で
DMSOPFA混合溶媒に溶解し、しかる埌、メ
チレンゞアセテヌト以䞋、MDAず略蚘する
たたぱチレンゞアセテヌト以䞋、EDAず略
蚘するず反応せしめるこずによ぀お埗られ、䞀
぀の高分子鎖䞭の数平均ピラノヌズ環数が100以
䞊で、䞔぀、ピラノヌズ環䞭にメチレンゞオキシ
連鎖を有し、その末端が結合酢酞量に換算しお
8.4〜42の割合でアセチル基で眮換され、溶液
状態で260nm〜280nmに玫倖吞収をも぀こずを特
城ずする。 これたで、セルロヌスをDMSOPFA混合溶
媒に溶解し、これに反応剀を䜜甚しお新芏な誘導
䜓を埗ようずする詊みは、いく䟋か知られおい
る。セルロヌスのヒドロキシ゚チル化もその䞀䟋
である。たた、䞊蚘セルロヌス溶液系に、酢酞、
無氎酢酞、酢酞クロリドを䜜甚しお新芏物質を埗
る詊みもアヌル・ビヌ・セむモアゞダヌナル・
オブ・ポリマヌ・サむ゚ンス、11、1978等に
よ぀お報告されおいる。圌等の指摘によるず、䞀
般にセルロヌスを䞍均䞀系でアセチル化し埗る反
応剀の内、無氎酢酞だけが、DMSOPFA混合
溶媒に溶解したセルロヌスず反応し、埗られる誘
導䜓の特城ずしお340nm付近に玫倖吞収を瀺すず
しおいる。曎に、圌等は、DMSOやPFAの存圚
が、セルロヌスに察する各反応剀に察し、それぞ
れに個有の圱響を及がし、埓来、䞍均䞀系で知ら
れおいた各皮反応剀ずセルロヌスずの反応からは
予枬され埗ない誘導䜓を䞎えるこずも瀺唆しおい
る。 本発明者等もDMSOPFA混合溶媒に溶解し
たセルロヌスずアセチル化剀ずの反応に぀いお怜
蚎を重ねた結果、アヌル・ビヌ・セむモア等の指
摘に反しおMDAたたはEDAを反応剀ずしおセル
ロヌスず反応せしめた結果、驚くべきこずに、溶
液状態で260nm〜280nmに玫倖吞収をも぀新芏な
セルロヌス誘導䜓を合成するこずに成功したので
ある。 本発明に䜿甚されるセルロヌス原料は、綿、朚
材等の倩然セルロヌスリグニン等の䞍玔物を含
んでよい。であ぀おも、たた、再生セルロヌス
であ぀おもよい。リグニン等の䞍玔分を含む倩然
セルロヌスは、これをDMSOPFA混合溶媒で
溶解する時、䞍玔郚分は䞍溶性のため容易に別
できる。原料の重合床この明现曞においお、
「重合床」ずは、䞀぀の高分子鎖䞭の数平均ピラ
ノヌズ環数を指す。は目的に応じお調敎でき、
通垞少なくずも100以䞊有れば充分である。たた、
生成物の機械的特性の向䞊を蚈るために重合床
1000以䞊のものも䜿甚できる。 セルロヌスをDMSOPFA混合溶媒に溶解す
る堎合、溶液䞭のセルロヌス濃床は、その重合床
にも䟝るが、〜10重量ずするこずが奜たし
い。加えるパラホルムアルデヒドの量は溶解すべ
きセルロヌスのグルコヌス残基圓り〜モルで
充分である。溶解枩床は70℃〜90℃が望たしい。
過激な加熱は、DMSOの分解を惹起し、工業化
に斌いおの臎呜的欠点ずなるので避けるべきであ
る。䞀床溶解したセルロヌス溶液から過剰のパラ
ホルムアルデヒドを陀去するこずも堎合によ぀お
は、埌の反応工皋や溶媒回収工皋で有利ずなる。 反応剀ずしお䜿甚するMDA、EDAの量は、埗
るべき最終生成物の性質、特に眮換床によ぀お適
宜遞択できる。䟋えば、結合酢酞量8.4〜30に
おいお、氎やゞメチルホルムアミド、ゞメチルア
セトアミド以䞋、DMACず略蚘する、ホルム
アミド以䞋、FAず略蚘する等の極性溶媒に
可溶な誘導䜓を埗たい堎合には、セルロヌスのグ
ルコヌス残基圓り〜40モルの反応剀が必芁であ
る。より高い結合酢酞量のものを埗たい堎合に
は、40モル以䞊の反応剀を加えればよい。䞀般
に、MDA、EDAはずもに、DMSOPFA混合
溶媒に溶解したセルロヌスの非溶媒ずなるため、
過剰に䜿甚するずセルロヌスの沈殿をひき起こす
ので奜たしくない。䟋えば、重量のセルロヌ
ス溶液に察しお蚱容できるMDAの量は、溶媒
DMSOの倍の䜓積たでである。ちなみにこの
堎合、MDAの量は、セルロヌスに察しお玄90モ
ルである。この堎合、他の反応条件を倉動しお
も、埗られる誘導䜓の最倧結合酢酞量は42前埌
である。 䞀方、MDAたたはEDAずの反応においお、觊
媒の遞択は重芁であり、觊媒ずしおは酢酞゜ヌダ
が最適である。その他の觊媒、䟋レばピリゞン、
塩化アルミニりム、䞉北化ほう玠゚ヌテル錯䜓な
どを甚いた堎合、および觊媒を䜿甚しない堎合
は、党く反応しないか、たたは殆んど反応を促進
する効果がない。加えるべき酢酞゜ヌダ觊媒の量
は、数ppm〜数千ppmの間で適宜遞択できる。こ
こで重芁な点は、觊媒量の盞異によ぀お、埗られ
る生成物の同䞀溶媒に察する溶解域が結合酢酞量
に䟝存しお倉動するこずである。䟋えば、氎に察
する溶解域を比范した堎合、酢酞゜ヌダ䜿甚量が
100ppmであるずき、氎溶性を瀺す結合酢酞量の
䞋限が8.4であるのに察し、酢酞゜ヌダ䜿甚量
を250ppmずするずき、氎溶性を瀺す結合酢酞量
の䞋限は18である。この理由は明らかではない
が、酢酞゜ヌダによるホルムアルデヒドのセルロ
ヌスに察する反応性が倉化するこずも䞀因ず考え
られる。しかしながら、いずれの堎合にも、埗ら
れた生成物の氎溶液は、264nm付近に玫倖吞収を
瀺し、アヌル・ビヌ・セむモア等の埗た物質ずは
明らかに異なるものである。本発明にお埗られる
セルロヌス誘導䜓は、ピラノヌズ環䞭にメチレン
ゞオキシ連鎖を有し、その末端にアセチル基が眮
換しおいる。なお、反応枩床は90〜100℃が奜た
しい。 本発明のセルロヌス誘導䜓の眮換床は、䞀矩的
に決定できないため、結合酢酞量で代甚する。結
合酢酞量ずは、䞀定重量の生成物を苛性゜ヌダに
お凊理した際、遊離しおくる酢酞酢酞゜ヌダず
しお遊離量の元のセルロヌス誘導䜓量に察する
重量である。本明现曞に斌ける結合酢酞量は
ASTMD−68Tに準じお埗た倀である。 本発明のセルロヌス誘導䜓は、その結合酢酞量
にもよるが、抂しお、氎、ゞメチルホルムアミ
ド、ホルムアミド、−メチルホルムアミド、
−プロピルアセトアミド等のアミド系溶媒、
DMSOその他のスルホキシド系溶媒や、ピリゞ
ン、ギ酞、アセトン、氎アセトン混合溶媒等に
容易に溶解する。これらから埗られるドヌプは、
成圢甚ドヌプずしお利甚できる。䟋えば、氎を溶
媒に甚いお埗られる溶液を也匏玡糞すれば、無公
害でか぀溶媒回収を芁しない繊維の補造が可胜で
ある。たた、䟋えば、ホルムアミドに溶解すれ
ば、ポリマヌ濃床玄30重量で光孊的異方性を瀺
すドヌプを圢成でき、このドヌプより機械的特性
の優れた成圢品を埗るこずができる。 本発明に係るセルロヌス誘導䜓の第の特城
は、セルロヌスをDMSOPFA混合溶媒に溶解
し、これをMDA、EDAず反応させお埗られたも
のであり、出発セルロヌスずしお重合床の高いも
のを甚いれば、それに応じお高重合床のものずな
る。埓぀お、このセルロヌス誘導䜓を原料ずしお
成圢すれば機械特性の優れた成圢品が埗られる。
本発明のセルロヌス誘導䜓の第の特城は、メチ
レンゞオキシ連鎖を分子䞭に含んでいるため、酞
等を添加しお熱凊理するこずによ぀お簡単に成圢
品の性質を倉化させ埗るこずである。本発明のセ
ルロヌス誘導䜓の第の特城は、䜎結合酢酞量
域、䟋えば、8.4〜27においお匷力な界面掻性
を有し、゚マルゞペン安定化剀等の分野に展開が
可胜になるこず等である。 以䞋、実斜䟋に぀いお本発明を説明する。 実斜䟋  皮のセルロヌス重合床300および1000
をそれぞれ60℃で時間真空也燥し、3g採取し、
DMSO100ml、PFA3gず混合し、80℃の枩床䞋で
撹拌し、時間で均䞀なセルロヌス溶液を埗た。
次いで、䜙剰のPFAを80℃にお系倖に排気した。
この溶液に3.75mgの酢酞゜ヌダを添加しお溶解
し、次いで15mlのMDAを加え、90℃で10時間反
応させた埌、500mlのメタノヌル䞭に沈殿させお
ポリマヌ成分を回収し、也燥した。埗られた合成
物は氎に可溶であり、UVで264〜268nmに特異
な吞収を瀺した。結合酢酞量は22.0であ぀た。
この生成物はたた有機溶媒に䟋えば、ギ酞、ホル
ムアミド、ゞメチルスルホキシド、ゞメチルアセ
トアミド、−メチルピロリドン、γ−ブチロラ
クタム等に溶解した。 MDAの䜿甚量を皮々倉えお、䞊述の方法を繰
返した。埗られたセルロヌス誘導䜓の氎溶性の範
囲を䞋蚘衚−に結合酢酞量で瀺した。
The present invention relates to a novel cellulose derivative obtained by reacting methylolated cellulose with methylene diacetate or ethylene diacetate. Traditionally, the industrial method for producing molded products such as cellulose fibers and films involves dissolving cellulose in a cupric ammonia solution or xanthating it to form a solution, which is then coagulated and regenerated using an acid. It is carried out by. However, these industrial methods include many points that require improvement, such as large amounts of water consumption, the need to recover heavy metals, and high energy consumption. In recent years, in order to eliminate such drawbacks, a method has been proposed in which cellulose is dissolved in a new organic solvent and the resulting dope is directly spun and shaped, with the aim of closing the process. In addition to N-methylmorpholine N-oxide, which has attracted attention in recent years, dimethyl sulfoxide (hereinafter abbreviated as DMSO)/paraformaldehyde (hereinafter abbreviated as DMSO)
In the case of PFA (abbreviated as PFA) system, it is necessary to use two or more solvents in combination in actual application, which makes the method of recovering and reusing the solvent complicated, etc. It has been found that there is a fatal drawback in solvent recovery. In addition to these drawbacks, especially when using the DMSO/PFA system, there are
It is easy to cause the problem of thermal decomposition of DMSO. On the other hand, cellulose derivatives form liquid crystals in combination with specific solvents, and the molded products obtained from them are
Significant improvements in mechanical properties are expected. As a result of comprehensively examining the shortcomings of the prior art and new possibilities as described above, the present inventors have developed a new method that is soluble in a single solvent and that provides optical anisotropy when combined with a specific solvent. The present invention was achieved by discovering a cellulose derivative. That is, an object of the present invention is to provide a novel cellulose derivative which is easy to recover because it is soluble in a single solvent and which provides a dope with excellent moldability. The novel cellulose derivative according to the present invention comprises cellulose in the form of methylolated cellulose.
Dissolve in DMSO/PFA mixed solvent, then methylene diacetate (hereinafter abbreviated as MDA)
Or obtained by reacting with ethylene diacetate (hereinafter abbreviated as EDA), the number average number of pyranose rings in one polymer chain is 100 or more, and a methylenedioxy chain is present in the pyranose ring. The terminus is converted into the amount of bound acetic acid.
It is characterized by being substituted with acetyl groups at a ratio of 8.4 to 42% and having ultraviolet absorption in the range of 260 nm to 280 nm in a solution state. Up to now, several attempts have been made to dissolve cellulose in a DMSO/PFA mixed solvent and react with a reactant to obtain new derivatives. Hydroxyethylation of cellulose is one example. In addition, acetic acid,
Attempts to obtain new substances using acetic anhydride and acetic chloride were also made by R.B. Seymour (Journal).
of Polymer Science, 11 , (1978)). According to their point, among the reagents that can generally acetylate cellulose in a heterogeneous system, only acetic anhydride reacts with cellulose dissolved in a DMSO/PFA mixed solvent, and the resulting derivative is characterized by an ultraviolet wavelength around 340 nm. It is said to indicate absorption. Furthermore, they found that the presence of DMSO and PFA had a unique effect on each reactant for cellulose, and that the reactions between various reactants and cellulose, which were previously known to be heterogeneous, were It has also been suggested that it gives derivatives that could not be predicted. The present inventors also conducted repeated studies on the reaction between cellulose dissolved in a DMSO/PFA mixed solvent and an acetylating agent, and found that, contrary to the suggestions of R.B. Seymour et al., MDA or EDA was used as a reactant to react with cellulose. As a result, they surprisingly succeeded in synthesizing a new cellulose derivative that has ultraviolet absorption in the wavelength range of 260 nm to 280 nm in a solution state. The cellulose raw material used in the present invention may be natural cellulose such as cotton or wood (which may contain impurities such as lignin), or may be regenerated cellulose. Natural cellulose containing impurities such as lignin can be easily separated when dissolved in a DMSO/PFA mixed solvent because the impurities are insoluble. The degree of polymerization of the raw material (in this specification,
"Degree of polymerization" refers to the number average number of pyranose rings in one polymer chain. ) can be adjusted according to the purpose,
Usually, it is sufficient to have at least 100. Also,
The degree of polymerization is determined to improve the mechanical properties of the product.
You can also use more than 1000. When cellulose is dissolved in a DMSO/PFA mixed solvent, the concentration of cellulose in the solution is preferably 2 to 10% by weight, although it depends on its degree of polymerization. A sufficient amount of paraformaldehyde to be added is 3 to 5 moles per glucose residue of cellulose to be dissolved. The melting temperature is preferably 70°C to 90°C.
Extreme heating should be avoided as it causes decomposition of DMSO, which is a fatal drawback in industrialization. In some cases, it may be advantageous to remove excess paraformaldehyde from the cellulose solution once dissolved in subsequent reaction steps or solvent recovery steps. The amounts of MDA and EDA used as reactants can be appropriately selected depending on the properties of the final product to be obtained, especially the degree of substitution. For example, when you want to obtain a derivative that is soluble in polar solvents such as water, dimethylformamide, dimethylacetamide (hereinafter abbreviated as DMAC), and formamide (hereinafter abbreviated as FA) when the amount of bound acetic acid is 8.4 to 30%. requires 3 to 40 moles of reactant per glucose residue of cellulose. If it is desired to obtain a product with a higher amount of bound acetic acid, 40 moles or more of the reactant may be added. In general, both MDA and EDA serve as non-solvents for cellulose dissolved in a DMSO/PFA mixed solvent, so
Excessive use causes cellulose precipitation, which is not preferable. For example, the amount of MDA acceptable for a 3% by weight cellulose solution is
Up to twice the volume of DMSO. Incidentally, in this case, the amount of MDA is approximately 90 moles relative to cellulose. In this case, even if other reaction conditions are varied, the maximum amount of acetic acid bound in the resulting derivative is around 42%. On the other hand, in the reaction with MDA or EDA, the selection of catalyst is important, and sodium acetate is the most suitable catalyst. Other catalysts, such as pyridine,
When aluminum chloride, boron trifluoride ether complex, etc. are used, or when no catalyst is used, no reaction occurs or there is almost no effect of promoting the reaction. The amount of the sodium acetate catalyst to be added can be appropriately selected from several ppm to several thousand ppm. The important point here is that due to differences in the amount of catalyst, the solubility range of the resulting product in the same solvent varies depending on the amount of bound acetic acid. For example, when comparing the solubility range in water, the amount of sodium acetate used is
When the amount is 100 ppm, the lower limit of the amount of bound acetic acid that shows water solubility is 8.4%, whereas when the amount of sodium acetate used is 250 ppm, the lower limit of the amount of bound acetic acid that shows water solubility is 18%. The reason for this is not clear, but it is thought that one factor is that sodium acetate changes the reactivity of formaldehyde to cellulose. However, in any case, the aqueous solution of the product obtained exhibits ultraviolet absorption around 264 nm, and is clearly different from the material obtained by R.B. Seymour et al. The cellulose derivative obtained in the present invention has a methylenedioxy chain in the pyranose ring, and an acetyl group is substituted at the end of the methylene dioxy chain. Note that the reaction temperature is preferably 90 to 100°C. Since the degree of substitution of the cellulose derivative of the present invention cannot be uniquely determined, the amount of bound acetic acid is used as a substitute. The amount of bound acetic acid is the weight % of the amount of acetic acid (liberated as sodium acetate) liberated when a given weight of the product is treated with caustic soda relative to the amount of the original cellulose derivative. The amount of bound acetic acid in this specification is
This is a value obtained according to ASTMD-68T. The cellulose derivative of the present invention generally contains water, dimethylformamide, formamide, N-methylformamide, and N-methylformamide, although it depends on the amount of bound acetic acid.
- Amide solvents such as propylacetamide,
Easily soluble in DMSO and other sulfoxide solvents, pyridine, formic acid, acetone, water/acetone mixed solvents, etc. The dope obtained from these is
Can be used as a molding dope. For example, by dry spinning a solution obtained using water as a solvent, it is possible to produce fibers that are pollution-free and do not require solvent recovery. For example, when dissolved in formamide, a dope exhibiting optical anisotropy at a polymer concentration of about 30% by weight can be formed, and a molded article with excellent mechanical properties can be obtained from this dope. The first feature of the cellulose derivative according to the present invention is that it is obtained by dissolving cellulose in a DMSO/PFA mixed solvent and reacting this with MDA and EDA, and a cellulose with a high degree of polymerization is used as the starting cellulose. If so, the degree of polymerization will be correspondingly high. Therefore, by molding this cellulose derivative as a raw material, a molded article with excellent mechanical properties can be obtained.
The second feature of the cellulose derivative of the present invention is that since it contains a methylenedioxy chain in its molecule, the properties of the molded product can be easily changed by adding an acid or the like and heat treating it. . The third feature of the cellulose derivative of the present invention is that it has strong surface activity in a low bound acetic acid content range, for example, 8.4 to 27%, and can be applied to fields such as emulsion stabilizers. . Hereinafter, the present invention will be explained with reference to examples. Example 1 Two types of cellulose (degree of polymerization = 300 and 1000)
Each was vacuum dried at 60℃ for 7 hours, and 3g was collected.
The mixture was mixed with 100 ml of DMSO and 3 g of PFA, and stirred at a temperature of 80°C to obtain a homogeneous cellulose solution in 5 hours.
Then, excess PFA was exhausted out of the system at 80°C.
To this solution, 3.75 mg of sodium acetate was added and dissolved, and then 15 ml of MDA was added and reacted at 90° C. for 10 hours. The polymer component was recovered by precipitation in 500 ml of methanol and dried. The resulting compound was soluble in water and exhibited specific absorption in the UV wavelength range of 264-268 nm. The amount of bound acetic acid was 22.0%.
This product was also dissolved in organic solvents such as formic acid, formamide, dimethylsulfoxide, dimethylacetamide, N-methylpyrrolidone, γ-butyrolactam, and the like. The above method was repeated using various amounts of MDA. The range of water solubility of the obtained cellulose derivative is shown in Table 1 below in terms of the amount of bound acetic acid.

【衚】【table】

【衚】 衚䞭、無は䞍溶、有は溶解するこずを瀺す。No.
の誘導䜓はアセトンおよびホルムアミドに溶解
した。 実斜䟋  実斜䟋で埗たセルロヌス溶液100mlに3.0mgの
酢酞゜ヌダを加えお溶解し、15mlのEDAを100℃
で12時間反応させた。この反応物を500mlのメタ
ノヌル䞭で沈殿させお、ポリマヌ成分を回収し
お、也燥した。埗られた合成物は氎溶性を瀺し、
そのUVは268nmに吞収ピヌクを瀺した。そのIR
図は実斜䟋で埗たものず殆ど同じであ぀た。た
た、この誘導䜓はギ酞、ホルムアミド、ゞメチル
スルホオキシド、ゞメチルアセトアミド、γ−ブ
チラクトム、−メチルピロリドン等の有機溶媒
にも可溶であ぀た。 実斜䟋  実斜䟋で調補したセルロヌス溶液100mlに
MDAの反応觊媒ずしお、酢酞゜ヌダに代えお䞉
フツ化ホり玠゚ヌテル錯塩、塩化アルミニりムお
よびピリゞンを別々に䜿甚した。 たず、䞉フツ化ホり玠゚ヌテル錯塩を0.05mlか
ら0.5mlたでの範囲においお添加量を皮々倉化さ
せお、MDAを15ml加えお宀枩にお〜時間反
応させた。500mlのメタノヌルで沈殿させお、ポ
リマヌ成分を回収し、生成物の溶解性を怜蚎した
が、実斜䟋で瀺したような溶媒には溶解しなか
぀た。たた、そのIRスペクトルも゚ステル基特
有の吞収を瀺さなか぀た。 塩化アルミニりムおよびピリゞンも同様に
0.01gから0.1gたでの範囲においお添加量を皮々
倉化させお、MDAを15ml加えお、宀枩䞋に〜
時間反応させた。結果は、䞉フツ化ホり玠゚ヌ
テル錯塩の堎合ず同様に、反応物は実斜䟋で瀺
したような溶媒には溶解しなか぀た。 反応剀ずしおMDAに代えおEDAを䜿甚した堎
合も、反応觊媒ずしお有効であ぀たのは酢酞゜ヌ
ダのみであ぀お、䞉フツ化ホり玠゚ヌテル錯塩、
塩化アルミニりムおよびピリゞンは觊媒ずしお有
効でなか぀た。 実斜䟋  実斜䟋で調補したセルロヌス溶液100mlに、
添加量を倉えお1.5mgず3.75mg酢酞゜ヌダを
加お、MDA15mlに察する反応性の違いを怜蚎し
た。酢酞゜ヌダ1.5mgを加えた堎合は、実斜䟋
で瀺した氎溶性範囲よりもさらに反応率の䜎い䜍
眮、即ち、結合酢酞量の䜎い領域でも氎溶性を瀺
した。この堎合の結合酢酞量は8.4であ぀た。 この内の詊料に぀いお、玫倖UV吞収ス
ペクトル及び赀倖IR吞収スペクトルを枬定
したずころ、UVでは、264mΌに吞収を瀺した
添附図参照。IRでは950cm-1などに垂販のセ
ルロヌスアセテヌトずは異な぀た吞収が出珟した
添附図参照。 図の実線で衚わした曲線が䞊蚘セルロヌス誘
導䜓のUV吞収スペクトルであり、点線で衚わし
た曲線は垂販のセルロヌスアセテヌトのUV吞収
スペクトルである。䞊蚘セルロヌス誘導䜓はハン
ドマヌクを瀺した領域260〜270mΌに新しい
吞収が認められるが、セルロヌスアセテヌトには
認められない。たた、図の䞋偎の曲線が䞊蚘セ
ルロヌス誘導䜓のIR吞収スペクトルであり、䞊
偎の曲線が垂販セルロヌスアセテヌトのIR吞収
スペクトルである。䞊・䞋䞡IR吞収スペクトル
の倧きな盞異点はハンドマヌクを瀺した950cm-1
附近の吞収バンドにある。 実斜䟋  実斜䟋に蚘茉した方法で埗たセルロヌス誘導
䜓皮原料セルロヌスの重合床DP300及び
1000を氎に溶解し、それぞれ濃床28および20
のドヌプを埗た。䞀昌倜真空䞋で脱泡し、ドヌ
プ粘床を枬定したずころそれぞれ5400ポむズおよ
び7500ポむズであ぀た。 䞊蚘ドヌプを孔数76の玡糞ノズル各孔の盎埄
0.08mmから、170℃に制埡した也匏筒に吐出
量3.0c.c.分で抌し出し、也匏玡糞した。埗られ
た繊維の物性を衚−にたずめお瀺す。
[Table] In the table, nothing means insoluble, and presence means soluble. No.
The derivative of 6 was dissolved in acetone and formamide. Example 2 3.0 mg of sodium acetate was added to 100 ml of the cellulose solution obtained in Example 1 to dissolve it, and 15 ml of EDA was heated at 100°C.
The mixture was allowed to react for 12 hours. The reaction was precipitated in 500 ml of methanol to recover the polymer components and dried. The resulting compound exhibits water solubility;
Its UV showed an absorption peak at 268 nm. Its IR
The figure was almost the same as that obtained in Example 1. This derivative was also soluble in organic solvents such as formic acid, formamide, dimethyl sulfoxide, dimethyl acetamide, γ-butylactone, and N-methylpyrrolidone. Example 3 Add 100 ml of the cellulose solution prepared in Example 1 to
As reaction catalysts for MDA, boron trifluoride ether complex salt, aluminum chloride, and pyridine were used separately in place of sodium acetate. First, the amount of boron trifluoride ether complex salt added was varied in the range from 0.05 ml to 0.5 ml, 15 ml of MDA was added, and the mixture was reacted at room temperature for 3 to 5 hours. The polymer component was recovered by precipitation with 500 ml of methanol, and the solubility of the product was examined, but it was not soluble in the solvent shown in Example 1. Moreover, its IR spectrum did not show any absorption characteristic of ester groups. Similarly aluminum chloride and pyridine
Add 15 ml of MDA, varying the amount added in the range from 0.01 g to 0.1 g, and let it cool at room temperature for 3 to 30 minutes.
The reaction was allowed to proceed for 5 hours. The results showed that, similar to the case of the boron trifluoride ether complex salt, the reactant did not dissolve in the solvent shown in Example 1. Even when EDA was used instead of MDA as a reactant, only sodium acetate was effective as a reaction catalyst, and boron trifluoride ether complex salt,
Aluminum chloride and pyridine were not effective as catalysts. Example 4 To 100 ml of the cellulose solution prepared in Example 1,
Sodium acetate was added in different amounts (1.5 mg and 3.75 mg) to examine the difference in reactivity to 15 ml of MDA. Example 1 when adding 1.5 mg of sodium acetate
It showed water solubility even in a region where the reaction rate was lower than the water solubility range shown in , that is, a region where the amount of bound acetic acid was low. The amount of bound acetic acid in this case was 8.4%. When we measured the ultraviolet (UV) absorption spectrum and infrared (IR) absorption spectrum of one of these samples, it showed absorption at 264 mΌ in the UV (see attached Figure 1). In IR, an absorption different from that of commercially available cellulose acetate appeared at 950 cm -1 (see attached Figure 2). The solid line curve in FIG. 1 is the UV absorption spectrum of the cellulose derivative, and the dotted line curve is the UV absorption spectrum of commercially available cellulose acetate. In the above cellulose derivative, new absorption is observed in the region (260 to 270 mΌ) showing the handmark, but not in cellulose acetate. The lower curve in FIG. 2 is the IR absorption spectrum of the cellulose derivative, and the upper curve is the IR absorption spectrum of commercially available cellulose acetate. The large difference between the upper and lower IR absorption spectra is the hand mark at 950 cm -1
It's in the nearby absorption band. Example 5 Two types of cellulose derivatives obtained by the method described in Example 1 (polymerization degree (DP) of raw material cellulose: 300 and
1000) dissolved in water at concentrations of 28% and 20%, respectively.
% dope was obtained. The dope was degassed under vacuum for a day and night, and the dope viscosity was measured to be 5,400 poise and 7,500 poise, respectively. The above dope was extruded from a spinning nozzle with 76 holes (diameter of each hole = 0.08 mm) into a dry cylinder controlled at 170° C. at a discharge rate of 3.0 cc/min, and dry spun. The physical properties of the obtained fibers are summarized in Table 2.

【衚】 癜床は、日立枬色蚈EPR−型を甚い波長
400nmでキダリブレヌシペンし、その反射率で瀺
した。衚より明らかな劂く、重合床の高い誘導䜓
を甚いた方が埗られる繊維の物性面より奜たしい
こずが刀る。 実斜䟋  実斜䟋の衚−䞭に蚘茉した誘導䜓No.、
DP300をホルムアミドに38重量の濃床にな
るよう溶解したずころ、埮小の剪断力を負荷する
こずにより容易に偏光顕埮鏡盎亀ニコル䞋で光孊
異方性を瀺すドヌプを埗るこずが出きた。このド
ヌプを枛圧䞋で䞀昌倜脱泡凊理し、゚クストルヌ
ダ内埄12mmφを甚いお、0.07mmφ、50孔のノ
ズルから吐出量2.5c.c.分で吐出し、1.8cmの゚ア
ギダツプを通しおメタノヌル氎、
系凝固济䞭に糞条を走行させ、ドラムに
巻取぀た。しかる埌、䞀昌倜氎に浞挬した埌、自
然也燥した。埗られた繊維の性胜を衚−に瀺
す。
[Table] Whiteness is measured using Hitachi colorimeter EPR-type.
Calibration was performed at 400 nm and the reflectance was shown. As is clear from the table, the use of derivatives with a high degree of polymerization is more preferable in terms of the physical properties of the resulting fibers. Example 6 Derivatives listed in Table 1 of Example 1 (No. 6,
DP = 300) was dissolved in formamide to a concentration of 38% by weight, and by applying a minute shearing force, it was possible to easily obtain a dope that exhibited optical anisotropy under crossed Nicols under a polarizing microscope. This dope was defoamed under reduced pressure for a day and night, and then extruded using an extruder (inner diameter 12 mmφ) from a 0.07 mmφ, 50-hole nozzle at a discharge rate of 2.5 cc/min, and passed through a 1.8 cm air gap with methanol/water (=1 /1,
The yarn was run through a V/V) system coagulation bath and wound onto a drum. After that, it was soaked in water for a day and night, and then air-dried. Table 3 shows the performance of the obtained fibers.

【衚】 この衚から刀るように、実斜䟋ず同じ重合床
300の誘導䜓を甚いおも䜿甚する溶媒を倉える
こずにより物性の優れた繊維を埗るこずができ
る。このこずは、特異性、即ち、光孊的異方性を
瀺すドヌプを玡糞すれば配向性の高い、ひいお
は、匕匵匷床および初期ダング率の高い繊維を埗
るこずができるこずを意味しおいる。
[Table] As can be seen from this table, even if a derivative with the same degree of polymerization (300) as in Example 5 is used, fibers with excellent physical properties can be obtained by changing the solvent used. This means that by spinning a dope that exhibits specificity, that is, optical anisotropy, it is possible to obtain fibers with high orientation, and thus high tensile strength and initial Young's modulus.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、本発明方法によ぀お埗られた新芏セ
ルロヌス誘導䜓の玫倖UV吞収スペクトルを
瀺す実線。比范のためセルロヌスアセテヌト
のUVスペクトルも茉せおいる点線。第図
は、本発明方法によ぀お埗られた新芏セルロヌス
誘導䜓䞋偎曲線ず垂販セルロヌスアセテヌト
䞊偎曲線の赀倖IR吞収スペクトルを瀺
す。
FIG. 1 shows the ultraviolet (UV) absorption spectrum of the novel cellulose derivative obtained by the method of the present invention (solid line). For comparison, the UV spectrum of cellulose acetate is also shown (dotted line). FIG. 2 shows infrared (IR) absorption spectra of the novel cellulose derivative obtained by the method of the present invention (lower curve) and commercially available cellulose acetate (upper curve).

Claims (1)

【特蚱請求の範囲】  ゞメチルスルホキシドパラホルムアルデヒ
ドに溶解したセルロヌスずメチレンゞアセテヌト
たたぱチレンゞアセテヌトずの反応によ぀お埗
られ、䞀぀の高分子鎖䞭の数平均ピラノヌズ環数
が100以䞊で、䞔぀、ピラノヌズ環䞭にメチレン
ゞオキシ連鎖を有し、その末端が結合酢酞量に換
算しお8.4〜42の割合でアセチル基で眮換され、
溶液状態で260nm〜280nmに玫倖吞収を瀺すこず
を特城ずするセルロヌス誘導䜓。  觊媒ずしお酢酞゜ヌダを䜿甚するこずによ぀
お埗られる特蚱請求の範囲第項蚘茉のセルロヌ
ス誘導䜓。  本質的に氎およびその他の極性溶媒に可溶で
ある特蚱請求の範囲第項たは第項蚘茉のセル
ロヌス誘導䜓。
[Claims] 1. Obtained by the reaction of cellulose dissolved in dimethyl sulfoxide/paraformaldehyde with methylene diacetate or ethylene diacetate, the number average number of pyranose rings in one polymer chain is 100 or more, In addition, it has a methylenedioxy chain in the pyranose ring, and the terminal thereof is substituted with an acetyl group at a rate of 8.4 to 42% in terms of the amount of bound acetic acid,
A cellulose derivative characterized by exhibiting ultraviolet absorption at 260 nm to 280 nm in a solution state. 2. The cellulose derivative according to claim 1, which is obtained by using sodium acetate as a catalyst. 3. The cellulose derivative according to claim 1 or 2, which is essentially soluble in water and other polar solvents.
JP16663980A 1980-11-28 1980-11-28 Novel cellulosic derivative Granted JPS5792002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16663980A JPS5792002A (en) 1980-11-28 1980-11-28 Novel cellulosic derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16663980A JPS5792002A (en) 1980-11-28 1980-11-28 Novel cellulosic derivative

Publications (2)

Publication Number Publication Date
JPS5792002A JPS5792002A (en) 1982-06-08
JPS6410521B2 true JPS6410521B2 (en) 1989-02-22

Family

ID=15835000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16663980A Granted JPS5792002A (en) 1980-11-28 1980-11-28 Novel cellulosic derivative

Country Status (1)

Country Link
JP (1) JPS5792002A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328603A (en) * 1990-03-20 1994-07-12 The Center For Innovative Technology Lignocellulosic and cellulosic beads for use in affinity and immunoaffinity chromatography of high molecular weight proteins

Also Published As

Publication number Publication date
JPS5792002A (en) 1982-06-08

Similar Documents

Publication Publication Date Title
Zheng et al. Preparation and characterization of chitosan/poly (vinyl alcohol) blend fibers
JP5820688B2 (en) Solvent used for dissolving polysaccharide, molded product using the solvent, and method for producing polysaccharide derivative
US4302252A (en) Solvent system for cellulose
US4352770A (en) Process for forming shaped cellulosic product
US4851522A (en) Process for the preparation of solutions of a ligno-cellulosic material and solutions obtained
JP3222122B1 (en) Method for producing regenerated cellulose fiber or yarn
US20040046277A1 (en) Protein shaped body and method for the production thereof according to the nmmo method
US5549861A (en) Process for the production of shaped structures of cellulose
JP2002512271A (en) Method for activating and derivatizing cellulose
JPH0113481B2 (en)
EP1167391B1 (en) Cellulose triacetate and process for producing the same
JPS6410521B2 (en)
JP3267781B2 (en) Method for producing regenerated cellulose molded article
US3188237A (en) Activation of amylose
JPS62195395A (en) Production of low-molecular-weight cellulose derivative having narrow molecular weight distribution
JPS6410544B2 (en)
US2035939A (en) Process for the preparation of artificial fibers
JPH0464322B2 (en)
US4129451A (en) Spinnable cellulose solution and process for making same
CN115873134B (en) Homogeneous synthesis of cellulose acetate in ionic liquid and spinning forming method
JPH0138401B2 (en)
KR20130047258A (en) Regenerated cellulose fiber and methods of preparing the same
US3387070A (en) Method for producing shaped articles of water-insoluble poly-dl-alanine
JPH0327561B2 (en)
GB2071667A (en) Acetyl Derivatives of Cellulose