JPS6410544B2 - - Google Patents

Info

Publication number
JPS6410544B2
JPS6410544B2 JP13990880A JP13990880A JPS6410544B2 JP S6410544 B2 JPS6410544 B2 JP S6410544B2 JP 13990880 A JP13990880 A JP 13990880A JP 13990880 A JP13990880 A JP 13990880A JP S6410544 B2 JPS6410544 B2 JP S6410544B2
Authority
JP
Japan
Prior art keywords
cellulose
water
degree
dope
substitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13990880A
Other languages
Japanese (ja)
Other versions
JPS5765701A (en
Inventor
Masatoshi Saito
Tatsuyuki Abe
Kenji Kamiide
Kunihiko Okajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13990880A priority Critical patent/JPS5765701A/en
Publication of JPS5765701A publication Critical patent/JPS5765701A/en
Publication of JPS6410544B2 publication Critical patent/JPS6410544B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、セルロースのジメチルスルホオキ
シド/ホルムアルデヒド混合溶剤溶液にエステル
化剤を作用して得られる水溶性セルロースエステ
ルを水に溶解することからなる、安定で且つ公害
を惹起することがない成形用ドープの製法に関す
る。本発明の製法により得られる成形用ドープ
は、それから高分子量セルロース誘導体の繊維お
よびフイルムを無公害且つ低コストで製造するこ
とができる。そして、得られる成形品は大きな吸
水性を有し、特に繊維は衣料分野および医療分野
において有用である。 〔従来の技術および発明が解決しようとする課
題〕 セルロースは強固な分子間、及び分子内水素結
合を有するため、従来、銅アンモニアに代表され
る金属錯体、四級アミン、強酸等の極く限られた
媒体にのみ溶解するとされてきた。現在でも、セ
ルロースの繊維、フイルムの実際の製造に当たつ
ては、銅安法、ビスコース法が広く利用されてい
る。しかしながら、これらの工業的方法は、水消
費量が大きい、重金属を回収しなければならな
い、エネルギー消費量が大きいなどの欠点を有す
る。 近年、かかる欠点を解消するためにセルロース
の新しい有機溶媒の探索が行われるようになり、
セルロースを有機溶媒に溶解し、得られたドープ
を直接紡糸、成形するといつた工業的方法も提案
されている。例えば、特開昭53−70121には、セ
ルロースをジメチルスルホオキシド/ホルムアル
デヒド系で溶解し、得られるドープをアンモニア
を含有する気体雰囲気中に押し出す方法が示され
ている。しかしながら、このドープを直接成形す
る場合、高沸点溶媒であるジメチルスルホオキシ
ドの気化による除去に多大のエネルギーを要する
こと、溶剤回収に複雑なプロセスを要しコスト高
になること、また溶剤の気化に伴う人体への影
響、及び溶剤自体の分解の問題など多くの致命的
欠点を有することが判明してきた。 本発明者等は、かかるセルロースの成形に関す
る技術的、経済的困難を解決するため、よりセル
ロースに近い非イオン性セルロース誘導体、すな
わち、置換度が小さい非イオン性セルロース誘導
体をも安全で無公害かつ低コストな溶媒、例えば
水に溶解し、成形する方法を鋭意検討してきた。 一般に、かかる目的物を得るために不均一系で
セルロースを化学修飾することは、得られた生成
物の置換度のコントロール、重合度低下の抑制等
反応条件の設定が厄介であるとともに、特に低置
換度生成物の品質の安定化を計るには不向きであ
る。例えば、セルロースを硫酸触媒を用いて無水
酢酸で不均一酸化する場合、出発セルロースの重
合度の激減はまぬがれず、かつ置換度2.0以下の
ものを得るのは困難とされている。 最近、アール.ビー.セイモア、イー.エル.
ジヨンソン;ジヤーナル・オブ・ポリマー.サイ
エンス(R.B.Seymour、E.L.Johnson;Journal
of Polymer Science)16巻(1978)には、セル
ロースをジメチルスルホオキシド/ホルムアルデ
ヒド系に溶解した後、ピリジンを触媒とし無水酢
酸でこのセルロースをエステル化すること、そし
て、このエステル化に際して反応時間を適当に選
ぶことにより重合度低下の極めて少ないアセトン
可溶性誘導体が得られることが教示されている。 一方、従来セルロース誘導体、特に、メチルセ
ルロース、エチルセルロースのような非イオン性
セルロースエーテルにおいて水溶性が保持できる
置換度範囲は、エヌ.エム.ビーカルス、エル.
シーガル、セルロース・アンド・セルロース・デ
リバテイブス(N.M.Bikals、L.Segal、
Cellulose and Cellulose Derivatives)P193、
ワイリー・インターサイエンス、ニユーヨーク
(Wiley Interscience、New York)(1971)に記
載されるように、通常0.7〜0.8であり、また、重
合度(DP)が極めて低い(DP<150)エチルセ
ルロースで0.5〜0.6である。置換度がこれらの範
囲より低いとアルカリ水溶液にのみ溶解するとさ
れている。 本発明者等は、先の目的を達成するために、ジ
メチルスルホオキシド/ホルムアルデヒド混合溶
剤を用いたセルロース溶液の利点、即ち、セルロ
ースの解重合が小さく、セルロースを化学修飾す
る際反応が均一であり、置換度の制御が簡単に行
えると言う特徴を利用して、該セルロース溶液と
各種反応剤との反応性、及び得られた生成物の溶
解性等について鋭意検討を重ねた。その結果、驚
くべきことに、高分子量で、かつ極めて広い置換
度範囲で水に可溶であるばかりか、後処理によつ
て架橋及び/又はセルロースに再生できる非イオ
ン性セルロースエステルを見出し、本発明に至つ
たものである。 〔課題を解決するための手段〕 本発明に係る成形用ドープの製法は、セルロー
スのジメチルスルホオキシド/ホルムアルデヒド
混合溶剤溶液にエステル化剤を作用させ、得られ
る水溶性セルロースエステルを水に溶解すること
を特徴とする。 この成形用ドープは、安定でしかも無公害であ
る。すなわち、セルロースをジメチルスルホオキ
シド/ホルムアミド混合溶剤に溶解せしめてメチ
ロール化セルロースとなし、同一の系内に無水酢
酸、メチレンジアセテート、エチレンジアセテー
ト等のエステル化剤を加えることによつて、好ま
しくは置換度0.3〜0.8の水溶性セルロースエステ
ルとなし、次いでこのセルロースエステルを水に
溶解してなるドープであつて、極めて安定かつ無
公害であるとともに成形性にすぐれている。 これら一連のプロセスによつて得られる成形用
ドープの主特徴は、1)ドープ中のセルロースエ
ステルの重合度を、従来、不均一系反応によつて
はとうてい達成できなかつた高重合度(DP
1000)にすることが可能であること、ならびに
2)ドープ中のセルロースエステルの置換度を、
反応剤の添加量を選ぶことによつて、ほぼ定量的
にコントロールできることである。ここで「置換
度」とは、セルロース分子鎖のピラノーズ環中の
水酸基の水素原子に置き換える置換基数のピラノ
ーズ環1コに対する割合を示す。 原料となるセルロースは、天然に繊維の形で存
在している。例えば、木材中ではリグニンなどで
繊維が膠着しているが、パルプ化によつてリグニ
ンを除き繊維を遊離させて精製使用することが可
能である。また、綿は天然の状態で非セルロース
分の含有量が低く精製も容易であるためセルロー
ス原料として有利に利用できる。原料の重合度は
目的に応じて調整でき、少なくとも100以上あれ
ば十分である。又、生成物の機械的特性の向上を
図るためには重合度1000以上のものも使用でき
る。 ジメチルスルホオキシド/ホルムアルデヒドの
モル比は約2/1乃至約4/1であることが望ま
しい。また、セルロースをジメチルスルホオキシ
ド/ホルムアミド混合溶剤で溶解する場合、セル
ロース濃度はその重合度にも依るが、5〜10重量
%とすることが好ましい。溶解温度は、溶媒自体
の分解を防ぐために70〜90℃が好適である。 溶解後の反応過程における温度は、一度溶解し
たセルロースの反応剤及び溶媒による重合度低下
を防止するため20〜70℃が適切である。反応剤と
して、無水酢酸、メチレンジアセテート、エチレ
ンジアセテート等の酸無水物を用いる場合の反応
剤の量は、無水酢酸ではセルロースのグルコース
残基当たり4モル〜12モルであり、メチレンジア
セテートおよびエチレンジアセテートの場合は1
モル〜14モルである。反応剤の量がこれらの範囲
を外れると目的とする水溶性物を得ることができ
ず、特に、反応剤が多い場合には水単独には溶解
しなくなる。これら反応剤は触媒なしでもセルロ
ースと反応して所望の目的物を生成するが、ピリ
ジン、酢酸ソーダ等の触媒を用いれば、目的物を
得るまでの反応時間および反応剤の投入量を低減
することができる。 また、重合物の置換度は、アセチル化剤を用い
て得たセルロースエステルの場合はNMRのスペ
クトル解析、赤外線吸収スペクトル解析等によつ
ても決定できるが、水可溶性であることを利用し
て、水にかかるセルロースエステルを溶解し、ア
ルカリを用いケン化、その後酸で中和滴定する方
法でも決定することができる。 本発明におけるアセチル化された誘導体の置換
度は、中和滴定方によつて得られたものを指称す
る。 この様にして得られたセルロースエステルは、
無水酢酸、メチレンジアセテート、エチレンジア
セテート等から得られた生成物では、置換度
(DS)が0.3〜0.8の域で水に可溶である。DSが
0.8を超えると水/アセトンおよび有機溶媒に可
溶となる。DSが0.3未満では無機酸水溶液可溶と
なる。 本発明の方法において、成形用ドープの調製過
程で得られる、水可溶域にあるセルロースエステ
ルは、単にセルロースをアセチル化したものとは
本質的に化学構造が異なつたものであり、新規な
化学構造を有している。例えば、無水酢酸、メチ
レンジアセテート、エチレンジアセテートから得
られる誘導体はアセトキシメチルセルロースを主
成分とするものである。 上述した、水溶性が保持できる置換度域は、重
合度が約500以上のセルロースエステルについて
の限定であり、重合度がより小さい場合でも、水
溶性が保持できる置換度範囲は更に拡大される。
ここで水溶性セルロースエステルの重量平均分子
量(または重量平均重合度)は、DS=0.38のセ
ルロースモノアセテートに対して、ジメチルアセ
トアミド中で確立された、極限粘度数と光散乱に
よつて評価した重量平均分子量の関係式:〔η〕=
0.191×Mw0.60(25℃)(〔η〕は固有粘度、Mwは
重量平均分子量である。より一次的に評価したも
のである。 本発明によるドープの調製に当たつては、使用
するセルロースエステルの重合度や濃度に依存し
て種々の方法を採ることができる。重合度が1000
以下で、濃度が15〜20重量%以下のものならば、
通常のコールズ型溶解機またはニーダーで簡単に
調製できる。溶解温度は適宜選択できる。また、
重合度、濃度の両方が極めて高い場合、ゴム工業
等で使用されるミキシングロールでセルロースエ
ステルと水を前混練りした後、エクストルーダー
またはニーダーを用いて調製することができる。
この様に調製した水溶性ドープは長期間安定であ
る。 上述のように、高い重合度のセルロースエステ
ルを高い濃度に調製したドープから形成された成
形品の機械的特性、特に、強度、ヤング率等は著
しく向上することが期待される。また、本発明に
より得られるドープは、水を溶媒とするため経済
性にも優れ、ドープからの成形時に毒性ガスの発
散、重金属等の飛散が全くなく、無公害である。
また、水を溶媒とするため、ドープに水溶性架橋
剤その他の添加物を加え、成形品の後加工性を容
易にすることも可能である。例えば、本発明の構
成要素であるセルロースエステルの合成法の特徴
を生かし、合成物精製段階で、合成物に対して10
〜20重量%のパラホルムアルデヒドを含有したセ
ルロースエステルとして分離し、これを用いて水
溶性ドープを調製し、これを乾式紡糸すると、水
不溶性あるいは高膨潤性糸を製造することができ
る。上記した添加物の中には、金属塩類、極性の
高い有機溶媒、その他のセルロース化学変性剤等
も含まれ、それぞれ目的に応じて選択使用され
る。金属塩類として高温下で発泡性のものを用い
れば、スポンジ用発泡体等も成形可能である。 セルロースエステルドープの成形に際しては、
高沸点有機溶媒を用いた場合と異なり、低エネル
ギーで水分の除去が可能であり、また、溶媒の回
収損失に伴うコスト上昇も防ぐことができる。水
は人体に無害であり、作業環境も極めて良い。 また、本発明により得られるドープを紡糸し、
しかる後架橋処理して得られた繊維は、吸水性に
富み、衣料及び医療用として特に有用である。 〔実施例〕 次に、実施例について本発明を説明する。次に
掲げる各実施例は本発明の具体例を説明するもの
であり、本発明にどのような制限をも加えるもの
ではないと解釈されたい。 実施例 1 2規定硫酸中に浸漬して平均重合度を2900に調
製した精製セルロースリンター100gを真空乾燥
し、1級ジメチルスルホオキシド2およびパラ
ホルムアルデヒド100gの入つた5フラスコ中
に加え、90℃で10時間撹拌しながら溶解した。加
熱はシリコンバス中で行つた。セルロースが完全
に溶解したのを確かめた後、40℃に冷却し、無水
酢酸150g、ピリジン46gを加え、3時間撹拌し
ながら酢酸化を行つた。得られた溶液を、メタノ
ール10の入つた容量20に容器中に強力な撹拌
を行いながら注入し、室温下で沈澱させた。沈澱
物をポリエステル製濾布を用いて濾過し、メタノ
ール液を約70%除去した。濾過物を水に溶解し、
その後メタノールによる沈澱操作を3回繰り返
し、得られた沈澱物を真空中で24時間乾燥した。
得られた合成物を微粉末状に粉砕し、室温下で撹
拌しながら合成物5gを水に溶解させた。その結
果、常温において濃度40重量%まで水可溶であ
り、また、60℃における加温下では約60重量%ま
で水可溶であつた。合成物のアセチル置換度を中
和滴定法で定量した結果、置換度は0.60で、光散
乱光度計による分子量の測定結果重合度は2.110
であつた。 このものの重水中で得たC13―NMRスペクト
ルを図1、Aに示す。明らかに通常のセルロース
アセテートとは異なつて居り、主にアセトキシメ
チルセルロースと同定される。 実施例 2 実施例1に記載したと同様の方法で、薬用脱脂
綿100gをジメチルスルホオキシド/パラホルム
アルデヒド混合溶剤に溶解した後、ピリジンを一
定量(72g)加え、無水酢酸の添加量を表のよ
うに種々変化させ、アセチル化度の異なる8種類
の合成物を得た。各合成物の置換度を中和滴定法
によつて評価し、各合成物10gを100mlの水中に
室温で撹拌しながら投入し溶解性を調べた結果、
置換度0.3〜0.8の範囲で水可溶であつた。
[Industrial Application Field] This invention is a stable and non-polluting cellulose ester that is obtained by dissolving in water a water-soluble cellulose ester obtained by acting an esterifying agent on a dimethyl sulfoxide/formaldehyde mixed solvent solution of cellulose. This invention relates to a method for producing molding dope that does not require any additional processing. The molding dope obtained by the production method of the present invention allows fibers and films of high molecular weight cellulose derivatives to be produced pollution-free and at low cost. The resulting molded article has high water absorption properties, and the fibers are particularly useful in the clothing and medical fields. [Prior art and problems to be solved by the invention] Because cellulose has strong intermolecular and intramolecular hydrogen bonds, it has traditionally been difficult to use metal complexes such as copper ammonia, quaternary amines, strong acids, etc. It has been said that it is soluble only in the medium in which it is mixed. Even now, the copper ammonium method and the viscose method are widely used in the actual production of cellulose fibers and films. However, these industrial methods have drawbacks such as high water consumption, the need to recover heavy metals, and high energy consumption. In recent years, new organic solvents for cellulose have been searched to overcome these drawbacks.
An industrial method has also been proposed in which cellulose is dissolved in an organic solvent and the resulting dope is directly spun and shaped. For example, JP-A-53-70121 discloses a method in which cellulose is dissolved in a dimethyl sulfoxide/formaldehyde system and the resulting dope is extruded into a gas atmosphere containing ammonia. However, when directly molding this dope, it requires a large amount of energy to remove dimethyl sulfoxide, which is a high boiling point solvent, by vaporization, and a complicated process is required to recover the solvent, resulting in high costs. It has been found that this method has many fatal drawbacks, such as the accompanying effects on the human body and the problem of decomposition of the solvent itself. In order to solve the technical and economical difficulties associated with the molding of cellulose, the present inventors have developed a nonionic cellulose derivative that is closer to cellulose, that is, a nonionic cellulose derivative with a low degree of substitution, which is safe, non-polluting, and has a low degree of substitution. We have been actively investigating methods of dissolving it in a low-cost solvent such as water and molding it. Generally, chemically modifying cellulose in a heterogeneous system to obtain such a target product is difficult to set reaction conditions such as controlling the degree of substitution of the obtained product and suppressing a decrease in the degree of polymerization. It is not suitable for stabilizing the quality of substitution degree products. For example, when cellulose is heterogeneously oxidized with acetic anhydride using a sulfuric acid catalyst, it is inevitable that the degree of polymerization of the starting cellulose will decrease dramatically, and it is difficult to obtain a degree of substitution of 2.0 or less. Recently, Earl. B. Seymour, E. L.
Johnsson; Journal of Polymer. Science (RB Seymour, EL Johnson; Journal
of Polymer Science), Vol. 16 (1978), describes the process of dissolving cellulose in a dimethyl sulfoxide/formaldehyde system and then esterifying the cellulose with acetic anhydride using pyridine as a catalyst. It is taught that by selecting the following, an acetone-soluble derivative with extremely little decrease in the degree of polymerization can be obtained. On the other hand, the range of degree of substitution in which water solubility can be maintained in conventional cellulose derivatives, particularly nonionic cellulose ethers such as methylcellulose and ethylcellulose, has been determined by N. M. Bikarus, L.
Segal, Cellulose and Cellulose Derivatives (NMBikals, L.Segal,
Cellulose and Cellulose Derivatives) P193,
It is usually 0.7-0.8, and 0.5-0.6 for ethylcellulose with a very low degree of polymerization (DP) (DP<150), as described in Wiley Interscience, New York (1971). It is. It is said that if the degree of substitution is lower than these ranges, it will dissolve only in an alkaline aqueous solution. In order to achieve the above objective, the present inventors have discovered the advantages of a cellulose solution using a dimethyl sulfoxide/formaldehyde mixed solvent, namely, the depolymerization of cellulose is small and the reaction is uniform when chemically modifying cellulose. Taking advantage of the feature that the degree of substitution can be easily controlled, intensive studies were conducted on the reactivity of the cellulose solution with various reactants, the solubility of the obtained products, etc. As a result, they surprisingly discovered a nonionic cellulose ester that not only has a high molecular weight and is soluble in water over an extremely wide range of degrees of substitution, but also can be crosslinked and/or regenerated into cellulose through post-treatment. This led to the invention. [Means for Solving the Problems] The method for producing a molding dope according to the present invention involves allowing an esterification agent to act on a dimethyl sulfoxide/formaldehyde mixed solvent solution of cellulose, and dissolving the resulting water-soluble cellulose ester in water. It is characterized by This molding dope is stable and non-polluting. That is, cellulose is preferably dissolved in a dimethyl sulfoxide/formamide mixed solvent to obtain methylolated cellulose, and an esterifying agent such as acetic anhydride, methylene diacetate, or ethylene diacetate is added to the same system. It is a dope made by preparing a water-soluble cellulose ester with a degree of substitution of 0.3 to 0.8 and then dissolving this cellulose ester in water, and is extremely stable and non-polluting, and has excellent moldability. The main characteristics of the molding dope obtained through these series of processes are: 1) The degree of polymerization of the cellulose ester in the dope can be increased to a high degree of polymerization (DP
1000) and 2) the degree of substitution of cellulose ester in the dope.
This can be controlled almost quantitatively by selecting the amount of reactant added. Here, the "degree of substitution" refers to the ratio of the number of substituents replacing hydrogen atoms of hydroxyl groups in the pyranose ring of the cellulose molecular chain to one pyranose ring. Cellulose, the raw material, exists naturally in the form of fibers. For example, in wood, fibers are stuck together with lignin, but by pulping, the lignin can be removed and the fibers can be liberated and purified for use. In addition, cotton has a low non-cellulose content in its natural state and is easy to purify, so it can be advantageously used as a raw material for cellulose. The degree of polymerization of the raw material can be adjusted depending on the purpose, and a degree of at least 100 is sufficient. Further, in order to improve the mechanical properties of the product, those having a degree of polymerization of 1000 or more can be used. Desirably, the dimethyl sulfoxide/formaldehyde molar ratio is from about 2/1 to about 4/1. Further, when cellulose is dissolved in a dimethyl sulfoxide/formamide mixed solvent, the cellulose concentration is preferably 5 to 10% by weight, although it depends on its degree of polymerization. The dissolution temperature is preferably 70 to 90°C in order to prevent decomposition of the solvent itself. The temperature in the reaction process after dissolution is suitably 20 to 70°C in order to prevent the degree of polymerization of the cellulose once dissolved from decreasing due to the reactant and solvent. When an acid anhydride such as acetic anhydride, methylene diacetate, or ethylene diacetate is used as a reactant, the amount of the reactant is 4 to 12 moles per glucose residue in cellulose for acetic anhydride; 1 for ethylene diacetate
moles to 14 moles. If the amount of the reactant is out of these ranges, the desired water-soluble product cannot be obtained, and in particular, if the amount of the reactant is large, it will not dissolve in water alone. These reactants react with cellulose to produce the desired target product even without a catalyst, but if a catalyst such as pyridine or sodium acetate is used, the reaction time to obtain the target product and the amount of reactant input can be reduced. I can do it. In addition, the degree of substitution of the polymer can also be determined by NMR spectrum analysis, infrared absorption spectrum analysis, etc. in the case of cellulose ester obtained using an acetylating agent, but by taking advantage of its water solubility, It can also be determined by dissolving cellulose ester in water, saponifying it with an alkali, and then neutralizing and titrating with an acid. The degree of substitution of the acetylated derivative in the present invention refers to that obtained by neutralization titration. The cellulose ester obtained in this way is
Products obtained from acetic anhydride, methylene diacetate, ethylene diacetate, etc. are soluble in water with a degree of substitution (DS) in the range of 0.3 to 0.8. DS is
When it exceeds 0.8, it becomes soluble in water/acetone and organic solvents. When DS is less than 0.3, it becomes soluble in inorganic acid aqueous solution. In the method of the present invention, the cellulose ester in the water-soluble range obtained in the process of preparing the molding dope has a chemical structure essentially different from that obtained by simply acetylating cellulose, and is a novel chemical. It has a structure. For example, derivatives obtained from acetic anhydride, methylene diacetate, and ethylene diacetate have acetoxymethylcellulose as a main component. The above-mentioned substitution degree range in which water solubility can be maintained is limited to cellulose esters having a degree of polymerization of about 500 or more, and even when the polymerization degree is smaller, the substitution degree range in which water solubility can be maintained is further expanded.
Here, the weight average molecular weight (or weight average degree of polymerization) of the water-soluble cellulose ester is the weight evaluated by the intrinsic viscosity number and light scattering established in dimethylacetamide for cellulose monoacetate with DS = 0.38. Relational formula for average molecular weight: [η]=
0.191×Mw 0.60 (25℃) ([η] is the intrinsic viscosity and Mw is the weight average molecular weight. This is a more primary evaluation. In preparing the dope according to the present invention, the cellulose ester used Various methods can be used depending on the degree of polymerization and concentration of
If the concentration is below 15-20% by weight,
It can be easily prepared using an ordinary Coles-type dissolver or kneader. The melting temperature can be selected as appropriate. Also,
When both the degree of polymerization and the concentration are extremely high, it can be prepared by pre-kneading cellulose ester and water using a mixing roll used in the rubber industry, and then using an extruder or kneader.
The water-soluble dope prepared in this way is stable for a long period of time. As mentioned above, it is expected that the mechanical properties, particularly the strength, Young's modulus, etc. of a molded article formed from a dope containing a high concentration of cellulose ester with a high degree of polymerization will be significantly improved. Furthermore, the dope obtained by the present invention is excellent in economical efficiency since water is used as a solvent, and there is no emission of toxic gas or scattering of heavy metals during molding from the dope, and the dope is non-polluting.
Furthermore, since water is used as a solvent, it is also possible to add a water-soluble crosslinking agent and other additives to the dope to facilitate post-processing of the molded product. For example, by taking advantage of the characteristics of the method of synthesizing cellulose ester, which is a component of the present invention, in the synthetic product purification stage, 10%
A cellulose ester containing ~20% by weight of paraformaldehyde is isolated, used to prepare a water-soluble dope, and dry-spun to produce a water-insoluble or highly swellable yarn. The above-mentioned additives also include metal salts, highly polar organic solvents, other cellulose chemical modifiers, etc., and each is selected and used depending on the purpose. If a metal salt that is foamable at high temperatures is used, foams for sponges and the like can be formed. When molding cellulose ester dope,
Unlike the case of using a high boiling point organic solvent, water can be removed with low energy, and cost increases due to loss of recovery of the solvent can also be prevented. Water is harmless to humans, and the working environment is also very good. Furthermore, by spinning the dope obtained according to the present invention,
The fibers obtained by such post-crosslinking treatment have high water absorption properties and are particularly useful for clothing and medical purposes. [Example] Next, the present invention will be explained with reference to an example. The following examples are intended to illustrate specific examples of the invention, and should not be construed as imposing any limitations on the invention. Example 1 100 g of purified cellulose linter prepared by immersing in 2N sulfuric acid to have an average degree of polymerization of 2900 was vacuum dried, added to 5 flasks containing 2 primary dimethyl sulfoxide and 100 g of paraformaldehyde, and heated at 90°C. Dissolved with stirring for 10 hours. Heating was carried out in a silicon bath. After confirming that the cellulose was completely dissolved, the mixture was cooled to 40°C, 150 g of acetic anhydride and 46 g of pyridine were added, and acetation was carried out with stirring for 3 hours. The resulting solution was poured into a 20 volume container containing 10 volumes of methanol while stirring vigorously, and precipitated at room temperature. The precipitate was filtered using a polyester filter cloth to remove about 70% of the methanol solution. Dissolve the filtrate in water,
Thereafter, the precipitation operation with methanol was repeated three times, and the resulting precipitate was dried in vacuum for 24 hours.
The obtained compound was ground into a fine powder, and 5 g of the compound was dissolved in water with stirring at room temperature. As a result, it was found to be water-soluble up to a concentration of 40% by weight at room temperature, and to be water-soluble up to about 60% by weight when heated at 60°C. As a result of quantifying the degree of acetyl substitution of the compound by neutralization titration, the degree of substitution was 0.60, and as a result of molecular weight measurement using a light scattering photometer, the degree of polymerization was 2.110.
It was hot. The C 13 -NMR spectrum of this product obtained in heavy water is shown in Figure 1, A. It is clearly different from ordinary cellulose acetate, and is mainly identified as acetoxymethylcellulose. Example 2 In the same manner as described in Example 1, 100 g of medicated absorbent cotton was dissolved in a mixed solvent of dimethyl sulfoxide/paraformaldehyde, a certain amount (72 g) of pyridine was added, and the amount of acetic anhydride was adjusted as shown in the table. By making various changes, eight types of compounds with different degrees of acetylation were obtained. The degree of substitution of each compound was evaluated by neutralization titration, and 10 g of each compound was poured into 100 ml of water at room temperature with stirring to investigate the solubility.
It was soluble in water with a degree of substitution ranging from 0.3 to 0.8.

【表】 ○溶解、 △ゲル化、 ×不溶。
実施例 3 実施例1で得た重合度2.110の合成物を15重量
%の濃度で水に溶解してドープを得た。かかるド
ープを巻き取り速度100m/分、処理温度400℃、
吐出量2.22g/分、口金孔数12、口金孔径d=
0.5m/mの条件下で乾式紡糸した。得られた糸条
は単糸デニール16.7d、引つ張り強度2.5g/d、引
つ張り伸度7%、JISL1037による方法で測定し
た公定水分率15.5%で水中で膨潤した。 比較例 1 実施例1に記載した方法で調製した精製セルロ
ースリンターを氷酢酸、無水酢酸、硫酸を用いて
三酢酸化し、しかる後、濃塩酸を触媒として73.5
重量%の氷酢酸水で40℃で12日間加水分解した。
得られたセルロースアセテートは水溶性を示し、
中和滴定法で測定した置換度は0.61であつた。ま
た、光散乱光計度による測定結果、その重合度は
300であつた。この合成物のC13―NMRスペクト
ルを図1、Bに示す。かかる合成物を15重量%の
割合で水に溶解し、上記乾式紡糸条件と同一条件
下に紡糸した。その結果、得られた紡糸の引つ張
り強度は1.3g/d、伸度30%であつた。 上記結果と実施例3の結果との比較から明らか
なように、本発明に係る高重合度合成物から機械
的性質に優れた成形品を得ることができる。 実施例 4 実施例1に記載した方法で得られた合成物1.5
gを150mlの水に溶解した。得られた溶液の固有
粘度〔η〕を合成直後から10日おきに3ケ月間測
定した。測定直後では〔η〕=430cm3/g(25℃)
であり、3ケ月間、25℃の水浴中に保存した後で
は〔η〕=410cm3/g(25℃)で、溶液は清澄でゲ
ル化現象は認められず極めて安定性が良好であつ
た。 実施例 5 実施例1で得られたジメチルスルホオキシド/
パラホルムアルデヒドドープに、室温下で撹拌し
ながら触媒なしで無水酢酸を176〜806g加え、3
時間反応させ酢酸化度の異なる各種反応溶液を製
造した。得られた各反応溶液をメタノール10の
入つた容器20の容器中に強力な撹拌を行いなが
ら注入し、室温下で沈澱させた。メタノールで十
分洗浄した後乾燥し、各反応溶液から約95gの合
成物を得た。得られた各合成物10gを室温下で
100mlの水中に撹拌しながら投入し溶解性を調べ、
各合成物の置換度を中和滴定法によつて測定し
た。その結果、置換度0.3〜0.8の範囲で水溶性を
示した。得られた合成物のNMR分析結果は実施
例1で得たものと同一であつた。 実施例 6 実施例1におけるジメチルスルホオキシド/パ
ラホルムアルデヒドドープに、触媒として0.2g
の酢酸ソーダを加え十分撹拌した後、オイルバス
を用い80℃に加熱し、メチレンジアセテート50〜
1960mlを加え、撹拌を続けながら10時間反応を行
い、反応度の異なる反溶液を製造した。得られた
各反応溶液をメタノール中に沈澱させ、置換度の
異なる合成物を得た。10gの各合成物を100mlの
水中に投入した結果、中和滴定法で決定した置換
度で0.30―10.8の範囲で水溶性を示した。得られ
た合成物のNMR分析結果は、実施例1で得たも
のと同一であつた。 実施例 7 実施例1で得られたセルロース/ジメチルスル
ホオキシド/パラホルムアルデヒド/無水酢酸/
ピリジン系のドープをメタノール中に粗精沈澱さ
せた後、濾過し、沈澱物を真空中で24時間乾燥し
た。このもののホルマリン含量をアセチルアセト
ン/水蒸気蒸留発色法で求めたところ、繊維重量
に対し3%であつた。この合成物を、実施例3に
記載したと同様の方法で乾式紡糸し、引つ張り強
度3.0g/d、引つ張り伸度4%、公定水分率10.4
%の糸条を得た。また、25℃水溶水に10日間放置
したが、糸条の膨潤、変質は認められなかつた。
この糸条を用いて製織した結果極めて腰の強い布
帛を得た。
[Table] ○Dissolution, △Gelation, ×Insoluble.
Example 3 The composite having a polymerization degree of 2.110 obtained in Example 1 was dissolved in water at a concentration of 15% by weight to obtain a dope. The dope was wound at a winding speed of 100 m/min, a processing temperature of 400°C,
Discharge rate 2.22g/min, number of mouth holes 12, mouth hole diameter d=
Dry spinning was carried out under the condition of 0.5 m/m. The obtained yarn had a single yarn denier of 16.7 d, a tensile strength of 2.5 g/d, a tensile elongation of 7%, and an official moisture content of 15.5% as measured by the method according to JISL1037, and was swollen in water. Comparative Example 1 Purified cellulose linter prepared by the method described in Example 1 was triacetated using glacial acetic acid, acetic anhydride, and sulfuric acid, and then treated with concentrated hydrochloric acid as a catalyst.
It was hydrolyzed with glacial acetic acid water at 40°C for 12 days.
The obtained cellulose acetate shows water solubility,
The degree of substitution measured by neutralization titration was 0.61. In addition, the degree of polymerization was determined by light scattering photometry.
It was 300. The C 13 -NMR spectrum of this compound is shown in Figure 1B. This composite was dissolved in water at a ratio of 15% by weight, and spun under the same dry spinning conditions as described above. As a result, the resulting spun yarn had a tensile strength of 1.3 g/d and an elongation of 30%. As is clear from the comparison between the above results and the results of Example 3, molded articles with excellent mechanical properties can be obtained from the high polymerization degree composite according to the present invention. Example 4 Compound 1.5 obtained by the method described in Example 1
g was dissolved in 150 ml of water. The intrinsic viscosity [η] of the obtained solution was measured every 10 days for 3 months immediately after synthesis. Immediately after measurement [η] = 430cm 3 /g (25℃)
After being stored in a water bath at 25°C for 3 months, [η] = 410 cm 3 /g (25°C), the solution was clear and no gelation was observed, indicating extremely good stability. . Example 5 Dimethyl sulfoxide obtained in Example 1/
Add 176 to 806 g of acetic anhydride without a catalyst to the paraformaldehyde dope while stirring at room temperature.
Various reaction solutions with different degrees of acetation were prepared by reacting for a certain period of time. Each of the obtained reaction solutions was poured into a container 20 containing 10 methanol with strong stirring, and precipitated at room temperature. After thorough washing with methanol and drying, about 95 g of synthesized product was obtained from each reaction solution. 10g of each of the obtained compounds was added at room temperature.
Pour it into 100ml of water while stirring and check the solubility.
The degree of substitution of each compound was measured by neutralization titration. As a result, it showed water solubility in a substitution degree range of 0.3 to 0.8. The NMR analysis results of the resulting compound were the same as those obtained in Example 1. Example 6 Add 0.2 g of catalyst to the dimethyl sulfoxide/paraformaldehyde dope in Example 1.
of sodium acetate and stirred thoroughly, heated to 80℃ using an oil bath to dissolve methylene diacetate from 50 to 50℃.
1960 ml of the solution was added and the reaction was carried out for 10 hours while stirring to produce counter solutions with different degrees of reactivity. Each of the obtained reaction solutions was precipitated in methanol to obtain compounds with different degrees of substitution. When 10 g of each compound was poured into 100 ml of water, the degree of substitution determined by neutralization titration showed water solubility in the range of 0.30-10.8. The NMR analysis results of the resulting compound were the same as those obtained in Example 1. Example 7 Cellulose obtained in Example 1/dimethyl sulfoxide/paraformaldehyde/acetic anhydride/
After crudely precipitating the pyridine-based dope in methanol, it was filtered, and the precipitate was dried in vacuum for 24 hours. The formalin content of this product was determined by an acetylacetone/steam distillation color method and was found to be 3% based on the weight of the fiber. This composite was dry spun in the same manner as described in Example 3, with a tensile strength of 3.0 g/d, a tensile elongation of 4%, and an official moisture content of 10.4.
% yarn was obtained. Furthermore, although the yarn was left in aqueous solution at 25°C for 10 days, no swelling or deterioration of the yarn was observed.
As a result of weaving using this thread, an extremely stiff fabric was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Aは本発明に係るドープのC13―NMRスペク
トル、また、Bは従来のセルロースジアセテート
を加水分解して得られた水溶性セルロースアセテ
ートの水溶液のC13―NMRスペクトルをそれぞ
れ表す。
A represents a C 13 -NMR spectrum of the dope according to the present invention, and B represents a C 13 -NMR spectrum of an aqueous solution of water-soluble cellulose acetate obtained by hydrolyzing conventional cellulose diacetate.

Claims (1)

【特許請求の範囲】 1 セルロースのジメチルスルホオキシド/ホル
ムアルデヒド混合溶剤溶液にエステル化剤を作用
させ、得られる水溶性セルロースエステルを水に
溶解することを特徴とする成形用ドープの製法。 2 無水酢酸、メチレンジアセテートおよびエチ
レンジアセテートの中から選ばれたエステル化剤
を作用させて、置換度(DS)が0.3DS0.8で
ある水溶性セルロースエステルを得る特許請求の
範囲第1項記載の成形用ドープの製法。 3 水溶性セルロースエステルとしてアセトキシ
メチルセルロースを得る特許請求の範囲第1項記
載の成形用ドープの製法。
[Scope of Claims] 1. A method for producing a molding dope, which comprises treating a solution of cellulose in a dimethyl sulfoxide/formaldehyde mixed solvent with an esterifying agent and dissolving the resulting water-soluble cellulose ester in water. 2. Claim 1: A water-soluble cellulose ester having a degree of substitution (DS) of 0.3DS0.8 is obtained by the action of an esterifying agent selected from acetic anhydride, methylene diacetate, and ethylene diacetate. Method for producing the described molding dope. 3. A method for producing a molding dope according to claim 1, in which acetoxymethylcellulose is obtained as a water-soluble cellulose ester.
JP13990880A 1980-10-08 1980-10-08 Cellulose derivative dope for molding Granted JPS5765701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13990880A JPS5765701A (en) 1980-10-08 1980-10-08 Cellulose derivative dope for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990880A JPS5765701A (en) 1980-10-08 1980-10-08 Cellulose derivative dope for molding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24588988A Division JPH01131201A (en) 1988-10-01 1988-10-01 Production of cellulose ether dope for forming

Publications (2)

Publication Number Publication Date
JPS5765701A JPS5765701A (en) 1982-04-21
JPS6410544B2 true JPS6410544B2 (en) 1989-02-22

Family

ID=15256425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990880A Granted JPS5765701A (en) 1980-10-08 1980-10-08 Cellulose derivative dope for molding

Country Status (1)

Country Link
JP (1) JPS5765701A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182186A (en) * 2008-01-31 2009-08-13 Teijin Dupont Films Japan Ltd White polyester film for protective film for rear surface of solar cell
CN113955865B (en) * 2021-10-22 2022-06-21 南京大学 Green and efficient hydroxyethyl cellulose modified scale inhibitor for inhibiting silicon dioxide scaling and preparation method thereof

Also Published As

Publication number Publication date
JPS5765701A (en) 1982-04-21

Similar Documents

Publication Publication Date Title
JP5820688B2 (en) Solvent used for dissolving polysaccharide, molded product using the solvent, and method for producing polysaccharide derivative
JP2732554B2 (en) Polymer blends of cellulose acetate and starch acetate for use in producing fiber, film, and plastic materials and methods for preparing the blends
US4097666A (en) Solvent system for polysaccharides
US5900479A (en) Chitin-based coatings
US4255300A (en) Composition and process for making precipitated cellulose-polyvinyl alcohol biconstituent composition
JPS63175121A (en) High strength fiber from chitin derivative
US4443595A (en) Cellulose ester derivatives and a process for the production thereof
US9222223B1 (en) Esterified cellulose pulp compositions and related methods
WO1999054361A1 (en) Method for activating and derivatizing cellulose
US5514790A (en) Starch intermediate product, a process for producing a starch intermediate product, and a process for further processing of a starch intermediate product
JPH0113481B2 (en)
JPS6410544B2 (en)
JPS6146001B2 (en)
JPS604841B2 (en) Manufacturing method of cellulose ester
US3188237A (en) Activation of amylose
JPH07189019A (en) Production of regenerated cellulose formed product
US2500029A (en) Cellulose ester materials insoluble in organic solvents
CN110409013B (en) Spinning process for preparing St-g-PAN fiber by wet method
US9708760B2 (en) Esterified cellulose pulp compositions and related methods
JPH0138401B2 (en)
US3326893A (en) Method for making amylose derivatives
JPH0327561B2 (en)
US2048685A (en) Process of making cellulose esters and the products resulting therefrom
US1950663A (en) Manufacture of cellulose esters
JPS60155710A (en) Method for forming yarn