JPS641043B2 - - Google Patents

Info

Publication number
JPS641043B2
JPS641043B2 JP4564382A JP4564382A JPS641043B2 JP S641043 B2 JPS641043 B2 JP S641043B2 JP 4564382 A JP4564382 A JP 4564382A JP 4564382 A JP4564382 A JP 4564382A JP S641043 B2 JPS641043 B2 JP S641043B2
Authority
JP
Japan
Prior art keywords
winding
conductors
conductor
section
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4564382A
Other languages
Japanese (ja)
Other versions
JPS58164207A (en
Inventor
Kenichi Hayashi
Takeshi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4564382A priority Critical patent/JPS58164207A/en
Publication of JPS58164207A publication Critical patent/JPS58164207A/en
Publication of JPS641043B2 publication Critical patent/JPS641043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明は内鉄形変圧器巻線における連続円板巻
線の転位構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a transposed structure of a continuous disc winding in a core transformer winding.

〔発明の技術的背景〕[Technical background of the invention]

内鉄形変圧器に使用される巻線には、その巻線
の電圧、電流に応じて種々の巻き方が選択適用さ
れているが、中でも連続円板巻線は構成の単純性
による工作の容易さ、および、電気的、機械的特
性の優秀さなどから、広範囲の電圧クラスの巻線
として多用されている。これは、連続円板巻線
が、その名に示すように巻始めから巻終り迄導体
を途中で切ることなく連続的に巻き上げて形成
し、巻線途中での導体接続作業を不要とすること
に依る。その連続円板巻線の導体としては、その
必要な電流容量に応じて平角導体(矩形断面をも
つた最も一般的な導体)を1本あるいは複数本並
列に使用したり、更に電流の大きな巻線に対して
は複数本の平角導体を撚り合わせた転位電線を1
本あるいは複数本並列に使用したりしている。
Various winding methods are selected and applied to the windings used in core type transformers depending on the voltage and current of the windings, but continuous disk windings are particularly easy to work with due to their simple structure. Due to its ease of use and excellent electrical and mechanical properties, it is widely used as a winding wire for a wide range of voltage classes. As the name suggests, continuous disk winding is formed by winding the conductor continuously from the beginning to the end without cutting it midway, eliminating the need for conductor connection work midway through the winding. Depends on. As the conductor for the continuous disc winding, one or more rectangular conductors (the most common conductor with a rectangular cross section) may be used in parallel, depending on the required current capacity, or windings with larger currents may be used. For wires, one transposed wire is made by twisting multiple rectangular conductors.
A book or multiple books are used in parallel.

第1図aは、2本の導体を並列に使用した連続
円板巻線1の導体配置を示しており、同図bに示
す巻線A部断面図中の数字は巻回番号を、アルフ
アベツトa,bは並列の2本の導体を示してい
る。図から明らかなように巻線の1つのセクシヨ
ン2から次のセクシヨン3へ移る(これを渡りと
称している)際には並列導体はその半径方向位置
の入替が行われる。尚、図中4は鉄心脚5側に巻
回された巻線1に対向する巻線を示している。
Figure 1a shows the conductor arrangement of a continuous disk winding 1 that uses two conductors in parallel. a and b indicate two parallel conductors. As is clear from the figure, when passing from one section 2 of the winding to the next section 3 (this is referred to as a crossing), the parallel conductors change their radial positions. In addition, 4 in the figure shows the winding opposite to the winding 1 wound on the iron core leg 5 side.

第2図は外側渡り部の斜視図である。この図か
らも判るように導体の渡りは一本毎に行われる。
こうすることにより、巻線セクシヨン2あるいは
3の半径方向寸法d(これをビルドと称している)
をその上下のセクシヨンから極端に変化させずに
巻くことができる。また、渡り時に並列導体の半
径方向位置を入替えることにより、各導体の対向
する巻線4との相対距離を平等にすることができ
る。これにより、各導体と対向する巻線間の相互
インダクタンスが等しくなり、並列導体の分流を
平等にすることができるようになる。
FIG. 2 is a perspective view of the outer transition section. As can be seen from this figure, the conductors are crossed one by one.
By doing this, the radial dimension d of winding section 2 or 3 (this is called the build)
can be wound without extreme changes from its upper and lower sections. Furthermore, by exchanging the radial positions of the parallel conductors during crossing, the relative distances between each conductor and the opposing winding 4 can be equalized. This equalizes the mutual inductance between each conductor and the opposing windings, making it possible to equalize the shunting of parallel conductors.

渡りは巻線セクシヨンの内側および外側で行わ
れるが、これらの相互位置を並列導体本数や導体
太さに応じて調整することにより、渡り部での凸
張りをなくし、内外径共ほぼ真円に巻き上げるこ
とが可能となる。
The transition takes place on the inside and outside of the winding section, but by adjusting the mutual positions of these according to the number of parallel conductors and the thickness of the conductors, the convexity at the transition section is eliminated, and the inside and outside diameters are almost perfectly round. It is possible to roll it up.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、この従来の連続円板巻線の巻き
方には次のような不具合があつた。即ち、並列導
体が2本の場合には前述のような渡り毎の導体半
径方向位置の入替により、対向巻線に対する導体
転位が完全に行われるが、セクシヨン内の並列導
体が4本になつた場合は、導体間転位が不完全と
なり、並列導体間の分流にアンバランスが生じ、
これが巻線負荷損失を増大させ、ひいては巻線温
度を上昇させてしまうのである。以下、これにつ
いて説明する。
However, this conventional continuous disk winding method has the following drawbacks. In other words, when there are two parallel conductors, the conductor transposition to the opposing winding is completed by exchanging the conductor radial position at each crossing as described above, but when the number of parallel conductors in the section becomes four. In this case, the dislocation between the conductors becomes incomplete, causing an imbalance in the shunt between the parallel conductors.
This increases the winding load loss and, in turn, increases the winding temperature. This will be explained below.

第3図は並列導体4本、セクシヨン当りの巻回
数が2回の場合の従来の巻き方でのセクシヨン内
各導体配置を示している。図において、各並列導
体はセクシヨン毎にその半径方向位置の入替が行
われており、対向巻線に対する相互位置も一見平
等に見えるが、実は次のような不具合がある。即
ち、導体aとあるいは導体bとcはそれぞれ両者
が各セクシヨン毎に対称な位置を占めるため、そ
れぞれの間での転位は安全であるが導体bとcは
常に導体aおよびdの中間に配置される。導体b
とcが常に中間を占めるということは一見各導体
の配置の平均化を思わせ、事実各導体の全長はほ
ぼ同等(即ち、抵抗分は同等)になるのである
が、対向巻線に対する相互インダクタンスには無
視できない差が生じる。各導体の分流は、各導体
と対向巻線間のインピーダンスで決まるので、た
とえ相互インダクタンスに多少の差があつても抵
抗分が同等であれば分流にさほどのアンバランス
を生じない場合もあるが、特に大容量変圧器にな
るほど鉄心が太くなり、巻回線が減り、抵抗分と
インダクタンス分の比が小さくなるので極端なア
ンバランスが生じることになる。
FIG. 3 shows the arrangement of each conductor in a section in a conventional winding method in which there are four parallel conductors and the number of turns per section is two. In the figure, the radial positions of the parallel conductors are changed for each section, and although their mutual positions with respect to the opposing windings appear to be equal at first glance, there is actually the following problem. That is, conductor a and conductors b and c occupy symmetrical positions in each section, so dislocation between them is safe, but conductors b and c are always placed between conductors a and d. be done. conductor b
The fact that and c are always in the middle suggests that the arrangement of each conductor is averaged, and in fact the total length of each conductor is almost the same (that is, the resistance is the same), but the mutual inductance for the opposing windings There is a difference that cannot be ignored. The shunt current of each conductor is determined by the impedance between each conductor and the opposing winding, so even if there is a slight difference in mutual inductance, if the resistance components are the same, there may not be much unbalance in the shunt current. In particular, as the transformer becomes larger in capacity, the core becomes thicker, the number of windings decreases, and the ratio of resistance to inductance becomes smaller, resulting in extreme imbalance.

この分流アンバランスは負荷損を増加させ、巻
線温度を上昇させるため変圧器特性を悪化させる
ほか、極端な場合は巻線を焼損させる等の問題が
あるため、是非とも回避する必要がある。
This shunt imbalance increases load loss and increases winding temperature, deteriorating transformer characteristics, and in extreme cases can cause winding burnout, so it must be avoided at all costs.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、セクシヨン内並列導
体が4本の場合でも分流が平等になるような改良
された内鉄形変圧器の連続円板巻線を提供するこ
とを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide an improved continuous disk winding for a core type transformer in which the shunt current is equal even when there are four parallel conductors in a section.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、連続円板
巻線を構成する4本の並列導体のうち、隣り合う
2本ずつの導体同士の位置は変えずに、2組を互
いに半径方向の位置に入れ替えてセクシヨン間を
渡すことにより転位を行い、全体としていずれの
導体も半径方向に占める位置の割合が等しくなる
ようにしたことを特徴とする。
In order to achieve this object, the present invention aims at radially positioning two sets of four parallel conductors constituting a continuous disk winding without changing the positions of two adjacent conductors. The conductor is characterized in that the transposition is performed by replacing the conductor with the conductor and passing it between the sections, so that the proportion of the position occupied by each conductor in the radial direction is equal as a whole.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第4図は本発明の一実施例に係る連続円板巻線
の各導体配置図を示したもので、一般の渡りは従
来方法と同一であるが、巻線全長の中央部に相当
するセクシヨン間の渡り部で新規な渡り方法をと
つている。即ち、この箇所の渡りは4本の導体の
うち相隣る2本は一度に渡らせ、これら2本間の
半径方向位置の入替は行わず、2組の相隣る2本
間については従来の方法で渡らせるというもので
ある。このような渡り方法とすることにより、そ
れまで中間に位置していた導体bおよびcは渡り
後には端部へ、逆に端部に位置していた導体aお
よびdは中間に位置することになる。
Figure 4 shows the arrangement of each conductor in a continuous disk winding according to an embodiment of the present invention.The general crossing is the same as in the conventional method, but the section corresponding to the center of the entire length of the winding is A new crossing method is used at the crossing point. In other words, for the crossing at this point, two of the four conductors that are adjacent to each other are crossed at once, and the radial positions of these two conductors are not swapped, and the conventional method is used for the two sets of adjacent two conductors. The idea is to have them cross over. By adopting this crossing method, conductors b and c, which were previously located in the middle, will move to the ends after crossing, and conversely, conductors a and d, which were located at the ends, will be located in the middle. Become.

従つて、巻線中央部でこの新規な渡りを行うこ
とにより、各導体が巻線の1/2ずつでそれぞれの
中間の位置を占めるようにできる。中間を占める
区間がそれぞれ平等になれば、一般のセクシヨン
間では従来通りの割りで両端および中間の導体同
士は完全に対称配置となるので、結局巻線全長に
わたつて各導体の占める位置が平等になり、従つ
て転位が完全に行われ正しい分流が行われること
になる。
Therefore, by making this new transition in the middle of the winding, each conductor can occupy a position halfway between each half of the winding. If the sections occupying the middle become equal, the conductors at both ends and the middle will be placed in a completely symmetrical arrangement with the conventional distribution between general sections, so each conductor will occupy an equal position over the entire length of the winding. Therefore, the dislocation will be completed and the correct flow will be divided.

尚、以上の説明で新規な転位を巻線中央部に限
定したが、この位置はおよその目安として略中央
部とすれば十分であり、またその位置にこだわら
ずにこの新規渡りを数回行つて、全体として各導
体が中間位置を占める区間がそれぞれ略1/2ずつ
になるようにすれば良いことは明白である。ま
た、2本同時に渡ることで上下のセクシヨンと半
径方向寸法差が従来方法より大きくなるが、内外
渡り位置の調整と絶縁物の詰物を入れてやること
で支障なくできる。
In the above explanation, the new dislocation was limited to the center of the winding, but it is sufficient to set this location approximately at the center as a rough guide. Therefore, it is clear that the overall length of the section in which each conductor occupies the intermediate position is approximately 1/2. Also, by crossing two wires at the same time, the difference in radial dimension between the upper and lower sections becomes larger than in the conventional method, but this can be done without any problem by adjusting the position of the transition between the inside and outside and inserting an insulating filler.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、セクシヨン内並
列導体が4本の場合でも各導体の分流が平等な連
続円板巻線が得られる。この結果、低損失で冷却
装置などを小さくしたコンパクトな内鉄形変圧器
を得ることができるようになる。
As described above, according to the present invention, even when there are four parallel conductors in a section, a continuous disk winding can be obtained in which the branch currents of each conductor are equal. As a result, it becomes possible to obtain a compact core type transformer with low loss and a small cooling device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は並列導体2本で構成された連続円板巻
線の導体配置説明図で、aはその断面斜視図、b
はそのA部拡大図、第2図は外側渡り部での導体
入替を示す斜視図、第3図は並列導体4本で構成
された従来の連続円板巻線の導体配置図、第4図
は並列導体4本で構成された本発明の一実施例を
示す連続円板巻線の導体配置図である。 1……連続円板巻線、2,3……巻線セクシヨ
ン、4……対向巻線、5……鉄心脚。
Figure 1 is an explanatory diagram of the conductor arrangement of a continuous disc winding composed of two parallel conductors, where a is a cross-sectional perspective view, and b
is an enlarged view of part A, Figure 2 is a perspective view showing conductor replacement at the outer transition section, Figure 3 is a conductor arrangement diagram of a conventional continuous disk winding composed of four parallel conductors, and Figure 4. 1 is a conductor layout diagram of a continuous disc winding wire, showing an embodiment of the present invention, which is constructed of four parallel conductors. 1... Continuous disk winding, 2, 3... Winding section, 4... Opposing winding, 5... Iron core leg.

Claims (1)

【特許請求の範囲】[Claims] 1 4本の並列導体を各セクシヨン間の内側およ
び外側交互にその半径方向配置位置に対称に入れ
替え転位させながら連続的に巻回していくことに
より形成する内鉄形変圧器の連続円板巻線におい
て、少なくとも1個所のセクシヨン間で、前記4
本の並列導体のうちの相隣る2本の導体ずつを組
としてその2本の導体は平行のまま2組を互に半
径方向の位置を入れ替えてセクシヨン間を渡すこ
とにより、4本の導体の半径方向配置を平均化し
たことを特徴とする内鉄形変圧器の連続円板巻
線。
1 Continuous disk winding of a core transformer formed by continuously winding four parallel conductors while alternating inside and outside of each section, symmetrically replacing and transposing the radial positions of the conductors. 4 above between at least one section.
Two adjacent conductors of the parallel conductors of the book are made into pairs, and the two conductors are kept parallel, and the radial positions of the two pairs are exchanged and passed between the sections. A continuous disk winding of a core type transformer characterized by an averaged radial arrangement of.
JP4564382A 1982-03-24 1982-03-24 Continuous disk winding Granted JPS58164207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4564382A JPS58164207A (en) 1982-03-24 1982-03-24 Continuous disk winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4564382A JPS58164207A (en) 1982-03-24 1982-03-24 Continuous disk winding

Publications (2)

Publication Number Publication Date
JPS58164207A JPS58164207A (en) 1983-09-29
JPS641043B2 true JPS641043B2 (en) 1989-01-10

Family

ID=12725044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4564382A Granted JPS58164207A (en) 1982-03-24 1982-03-24 Continuous disk winding

Country Status (1)

Country Link
JP (1) JPS58164207A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201542A (en) * 2014-04-08 2015-11-12 株式会社神戸製鋼所 reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814592Y2 (en) * 1977-02-24 1983-03-23 株式会社ダイヘン High series capacity transformer winding
JPS5658214A (en) * 1979-10-17 1981-05-21 Toshiba Corp Transformer winding

Also Published As

Publication number Publication date
JPS58164207A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
US4384227A (en) Armature winding for a dynamoelectric machine
US3359518A (en) Interleaved windings effecting a uniformly distributed surge potential
US3688233A (en) Electrical inductive apparatus having serially interconnected coils
JPS641043B2 (en)
JPS6348409B2 (en)
JPS635887B2 (en)
JP3013506B2 (en) Helical coil
US3925743A (en) Interleaved winding for electrical inductive apparatus
JPS6325484B2 (en)
JPH01246807A (en) Disc winding
JPS6347245B2 (en)
JPH023285B2 (en)
JPS60100410A (en) Transformer winding
JPH0354450B2 (en)
JP2829508B2 (en) Single-phase three-wire single-turn transformer
JPS6214656Y2 (en)
JPS5846047B2 (en) On-load tap switching autotransformer
JPH01313914A (en) Winding for transformer
JPS59126614A (en) Continuous disk winding
JPS59121909A (en) Continuous disk winding
JPS59121907A (en) Continuous disk winding
JPS6037704A (en) Transformer winding
JPS6022490B2 (en) electromagnetic induction winding
JPS5861611A (en) Winding for electric induction apparatus
JPS6228736Y2 (en)