JPH0354450B2 - - Google Patents

Info

Publication number
JPH0354450B2
JPH0354450B2 JP120983A JP120983A JPH0354450B2 JP H0354450 B2 JPH0354450 B2 JP H0354450B2 JP 120983 A JP120983 A JP 120983A JP 120983 A JP120983 A JP 120983A JP H0354450 B2 JPH0354450 B2 JP H0354450B2
Authority
JP
Japan
Prior art keywords
winding
conductors
rectangular
composite wire
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP120983A
Other languages
Japanese (ja)
Other versions
JPS59126613A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP120983A priority Critical patent/JPS59126613A/en
Publication of JPS59126613A publication Critical patent/JPS59126613A/en
Publication of JPH0354450B2 publication Critical patent/JPH0354450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、変圧器巻線、特に内鉄形変圧器に多
用されるインターリーブド巻線の転位構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a transposed structure of interleaved windings often used in transformer windings, particularly core type transformers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

内鉄形変圧器に使用される巻線には、その巻線
の電圧、電流に応じて種々の巻き方が選択適用さ
れているが、中でもインターリーブド巻線は急峻
なサージ電圧に対する電気的特性の優秀さから電
圧の高い巻線に多用されている。そのインターリ
ーブド巻線の導体としては、その必要な電流容量
に応じて平角導体(矩形断面の導体)を1本ある
いは複数本並列に使用したり、また、巻線内の占
積率を向上させるために第1図に示すように平角
導体1に薄い絶縁2を施こしたものを複数本まと
め、さらにその上に絶縁3を施こした電線(以下
これを複合線と称す)を1本あるいは複数本並列
に使用している。
Various winding methods are selected for the windings used in core type transformers depending on the voltage and current of the windings, but interleaved windings have particularly good electrical characteristics against steep surge voltages. Due to its excellent properties, it is widely used in high voltage windings. Depending on the required current capacity, one or more rectangular conductors (conductors with a rectangular cross section) may be used in parallel as the conductor of the interleaved winding, or the space factor within the winding may be improved. For this purpose, as shown in Fig. 1, a plurality of rectangular conductors 1 with thin insulation 2 are put together, and then one or more electric wires with insulation 3 applied thereon (hereinafter referred to as composite wire) are assembled. Multiple units are used in parallel.

第2図は、2本の平角導体からなる複合線を使
用したインターリーブド巻線4の導体配置を示し
ており、第3図は第2図の巻線A部の拡大断面図
であり、その図中の数字は巻回番号を、a、bは
複合線内の2本の平角導体を示している。第3図
から明らかなように、複合線の1つのセクシヨン
5から他のセクシヨン6への移行部(以下渡りと
称す)において、巻線外径側で複合線内の平角導
体はその半径方向位置の入替が行なわれる。この
ように渡り時に半径方向位置を入替えることによ
り、各平角導体と対向する巻線7との相対距離を
平等にすることができる。こうすることにより各
平角導体と対向する巻線間との相互インダクタン
スを等しくして複合線内平角導体の電流分流を平
等にすることができる。ここで、複合線内平角導
体の半径方向位置の入替を巻線内径側の渡りのあ
るセクシヨン間の巻線外径側渡り(以下、これを
特にハイセル渡りと称す)で行なつているが、こ
の部分はインターリーブド巻線を得るために必要
な導体切断と複合線内平角導体間の半径方向入替
えのための導体切断を兼用するためである。
Fig. 2 shows the conductor arrangement of the interleaved winding 4 using a composite wire consisting of two rectangular conductors, and Fig. 3 is an enlarged sectional view of the winding section A in Fig. 2. The numbers in the figure indicate the winding numbers, and a and b indicate the two rectangular conductors in the composite wire. As is clear from FIG. 3, at the transition part (hereinafter referred to as a crossing) from one section 5 of the composite wire to another section 6, the rectangular conductor in the composite wire is located at its radial position on the outer diameter side of the winding. Replacement is performed. By exchanging the radial positions during crossing in this manner, the relative distances between each rectangular conductor and the opposing winding 7 can be equalized. By doing so, the mutual inductance between each rectangular conductor and the opposing windings can be made equal, and the current divisions in the rectangular conductors within the composite wire can be made equal. Here, the radial position of the rectangular conductor in the composite wire is swapped between sections with crossovers on the inner diameter side of the winding at the transition on the outer diameter side of the winding (hereinafter, this is especially referred to as high cell crossover). This part is used both for cutting the conductor necessary to obtain the interleaved winding and for cutting the conductor for radially exchanging the rectangular conductors in the composite wire.

しかしながら、前記のような従来のインターリ
ーブド巻線の巻き方には次のような不具合があつ
た。即ち、複合線内の平角導体が2本の場合には
前述のようなハイセル渡り毎の導体半径方向の入
替えにより、対向巻線に対する並列導体間の転位
が完全に行われるが、複合線内の平角導体が3本
になつた場合には、導体間転位が不完全となり、
平角導体間の電流分流にアンバランスが生じ、こ
れが巻線負荷損失を増大させ、ひいては巻線温度
を上昇させてしまうというものである。以下、こ
の電流分流にアンバランスを生じる理由を説明す
る。
However, the conventional interleaved winding method described above has the following problems. In other words, when there are two rectangular conductors in a composite wire, the transposition between the parallel conductors for the opposing windings is completely achieved by replacing the conductors in the radial direction at each high cell crossing as described above. When there are three rectangular conductors, the dislocation between the conductors becomes incomplete,
An unbalance occurs in the current shunt between the rectangular conductors, which increases the winding load loss and, in turn, increases the winding temperature. The reason why this current shunt is unbalanced will be explained below.

第4図は、複合線内平角導体3本、1セクシヨ
ンの巻回数が4回のインターリーブド巻線を従来
の巻き方で巻いた場合の複合線内各平角導体位置
を示す。同図において、各平角導体は、ハイセル
渡り毎にその半径方向位置の入替えが行なわれて
おり、対向巻線に対する相互位置も一見平等に見
えるが、次のような不具合がある。即ち、平角導
体aと平角導体cは両者が2セクシヨン毎に対称
な位置を占めるため転位は完全であるが、平角導
体bは常に中間位置を占めるということは一見各
導体配置の平均化を思わせるが、対向巻線に対す
る相互インダクタンスには無視できない差が生じ
る。各平角導体への電流分流は各導体と対向する
巻線間のインピーダンスで決まるので、たとえ相
互インダクタンスに多少の差があつても、抵抗分
が同等であれば、電流分流にさほどのアンバラン
スを生じない場合もある。しかし、大容量変圧器
になるほど鉄心が太くなり、巻回数が減り、抵抗
分/インダクタンス分が小さくなるので、アンバ
ランスが増大してくる。電流分流アンバランスは
負荷損失を増加させ、巻線温度を上昇させるた
め、変圧器特性を悪化させる等の問題点がある。
FIG. 4 shows the position of each rectangular conductor in the composite wire when an interleaved winding wire with three rectangular conductors in the composite wire and four turns per section is wound in the conventional winding method. In the figure, the radial position of each rectangular conductor is changed every time the rectangular conductor crosses over the high cell, and the mutual positions with respect to the opposing windings appear to be equal at first glance, but there are the following problems. In other words, flat conductors a and c occupy symmetrical positions every two sections, so the dislocation is perfect, but flat conductor b always occupies an intermediate position, which at first glance seems to mean that the arrangement of each conductor is averaged. However, there is a non-negligible difference in mutual inductance between the opposing windings. The current shunt to each rectangular conductor is determined by the impedance between each conductor and the opposing windings, so even if there is a slight difference in mutual inductance, if the resistance is the same, there will be no significant unbalance in the current shunt. In some cases, it may not occur. However, as the capacity of the transformer increases, the core becomes thicker, the number of turns decreases, and the resistance/inductance decreases, leading to an increase in unbalance. Current shunt imbalance increases load loss and increases winding temperature, resulting in problems such as deterioration of transformer characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点を解消するもので、その
目的は、複合線内平角導体本数が3本の場合で
も、電流分流が平等になるように改良した変圧器
巻線を提供するにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide an improved transformer winding so that even when the number of rectangular conductors in a composite wire is three, current division is made equal.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、3本の
導体からなる複合線の第1の巻回部分と次に巻回
される前記複合線の第2の巻回部分との間に、そ
れ以外の巻回数目の前記複合線の巻回部分をはさ
み込んで巻回したセクシヨンを、複数個鉄心脚に
巻装してなる変圧器巻線において、隣接セクシヨ
ン間で前記複合線内の3本の導体のうち隣接する
2本の導体と残り1本の導体との間でのみ巻線半
径方向位置を入替えるようにした渡り部を少くと
も2個所設けたものである。そして、隣接セクシ
ヨン間の渡り部は変圧器巻線の巻始めから略1/3
と略2/3に相当するセクシヨンに設けられている。
In order to achieve the above-mentioned object, the present invention provides a structure in which a wire is connected between a first winding portion of a composite wire made of three conductors and a second winding portion of the composite wire to be wound next. In a transformer winding in which a plurality of sections are wound around an iron core leg by sandwiching the winding portion of the composite wire with a number of windings other than At least two transition portions are provided in which the positions in the winding radial direction are exchanged only between two adjacent conductors and the remaining one conductor. The transition between adjacent sections is approximately 1/3 from the beginning of the transformer winding.
It is provided in a section corresponding to approximately 2/3 of the area.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.

第5図は本発明のインターリーブド巻き変圧器
巻線の各導体配置図を示したもので、巻始めから
1/3および2/3に相当するセクシヨン間のハイセル
渡り部で新規な渡り方法を採用しており、その他
のセクシヨン間の渡りは従来のハイセル渡りと同
一である。すなわち、第5図には例示的に、複合
線内平角導体a、b、cの3本、1セクシヨンの
巻回数が4回、セクシヨン数16(巻始めから順に
第1、第2……第16セクシヨンという)のインタ
ーリーブド巻線が示されており、巻線の巻始めか
ら第4セクシヨンまでは従来と同様に複合線内平
角導体3本のうち両端の平角導体aとcがハイセ
ル渡り毎に入替つており、平角導体bは平角導体
aとcにはさまれた状態でハイセル渡りが行なわ
れている。しかして、巻始めから1/3に相当する
セクシヨン間(第5セクシヨンと第6セクシヨン
間)のハイセル渡りでは平角導体a、b、cの3
本のうち隣接する2本の平角導体b、cと残りの
1本の平角導体aとの間で半径方向位置の入替え
を行い、前者の2本の平角導体b、c間では半径
方向の入替えは行なわない。さらに1/3に相当す
るセクシヨン間すなわち巻始めから2/3に相当す
るセクシヨン間(第11セクシヨンと第12セクシヨ
ン間)のハイセル渡りでは平角導体b、c、aの
3本のうち隣接する2本の平角導体c、aと残り
の1本の平角導体bとの間で半径方向位置の入替
えを行い、前者の2本の平角導体c、a間では半
径方向の入替えは行なわない。なお、上記以外の
セクシヨン間のハイセル渡りでは従来と同様に複
合線内平角導体3本のうち両端の2本の平角導体
のみが入替つており、中間の平角導体は入替わら
ない。
Figure 5 shows the arrangement of each conductor in the interleaved transformer winding of the present invention, in which a new transition method is used at the high cell transition between the sections corresponding to 1/3 and 2/3 from the beginning of the winding. The transition between other sections is the same as the conventional high cell transition. That is, FIG. 5 illustratively shows three flat rectangular conductors a, b, and c in a composite wire, the number of turns in one section is four, and the number of sections is 16 (in order from the beginning of the winding, the first, second, . . . An interleaved winding with 16 sections (referred to as 16 sections) is shown, and from the beginning of the winding to the 4th section, the rectangular conductors a and c at both ends of the three rectangular conductors in the composite wire are connected at each high cell crossing. The rectangular conductor b is sandwiched between the rectangular conductors a and c, and high cell crossing is performed. Therefore, in the high cell crossing between the sections corresponding to 1/3 from the beginning of the winding (between the 5th section and the 6th section), 3 rectangular conductors a, b, and c
The radial position is swapped between the two adjacent flat conductors b and c and the remaining flat conductor a, and the radial position is swapped between the former two flat conductors b and c. will not be carried out. Furthermore, in the high cell crossing between the sections corresponding to 1/3, that is, between the sections corresponding to 2/3 from the beginning of the winding (between the 11th section and the 12th section), two of the three rectangular conductors b, c, and a are adjacent to each other. The radial positions are swapped between the main flat conductors c and a and the remaining flat conductor b, and the radial position is not swapped between the former two flat conductors c and a. In addition, in high cell crossings between sections other than the above, only the two rectangular conductors at both ends of the three rectangular conductors in the composite line are replaced, and the middle rectangular conductor is not replaced.

本実施例では、セクシヨン間における複合線内
平角導体のハイセル渡りを上記したような構成に
することにより、それまで3本の複合線内平角導
体の中間に位置していた平角導体が端部へ、逆に
端部に位置していた平角導体の一方が中間に位置
することになる。従つて、巻始めから1/3および
2/3に相当するセクシヨンで上述した新規なハイ
セル渡りを行うことにより、各平角導体が巻線の
1/3づつでそれぞれの中間の位置を占めるように
する。すなわち、巻線全長にわたつて各平角導体
の占める位置が平等になり、転位が完全に行わ
れ、正しい電流分流が行われることになる。
In this example, by configuring the high cell crossing of the rectangular conductors in the composite line between sections as described above, the rectangular conductor that was previously located in the middle of the three rectangular conductors in the composite line is moved to the end. , conversely, one of the rectangular conductors that was located at the end is now located in the middle. Therefore, by performing the above-mentioned new high cell crossing in the sections corresponding to 1/3 and 2/3 from the beginning of the winding, each rectangular conductor can occupy the middle position in each 1/3 of the winding. do. In other words, the rectangular conductors occupy equal positions over the entire length of the winding, ensuring complete transposition and correct current shunting.

なお、上記実施例では、新規なハイセル渡りを
巻始めから1/3および2/3に相当するセクシヨン間
で行なつているが、この位置はおよその目安とし
て略1/3、略2/3とすれば十分であり、またその位
置にこだわらずにその新規なハイセル渡りを数回
あるいは全てに行つて全体として各平角導体の位
置関係が大体平等になるようにすれば良いことは
明白である。
In the above embodiment, the new high cell crossing is performed between sections corresponding to 1/3 and 2/3 from the start of winding, but these positions are approximately 1/3 and 2/3 as a rough guide. It is sufficient to do this, and it is clear that it is sufficient to make the new high cell crossing several times or all of them without worrying about the position, so that the positional relationship of each rectangular conductor is approximately equal as a whole. .

また、上記実施例ではハイセル渡り部に新規な
渡り方法をとつたものであるが、その他の渡り部
に新規な渡り方法をとることにより複合線内の各
平角導体への電流が平等になるインターリーブド
巻線が得られることも明白である。
In addition, in the above embodiment, a new crossing method is adopted at the high cell transition section, but by adopting a new crossing method at the other transition sections, it is possible to interleave the current to each rectangular conductor in the composite wire to be equal. It is also clear that a double winding can be obtained.

さらに、新規な渡り方法をとつていないハイセ
ル渡り部において複合線内の平角導体1本毎の半
径方向位置の入替えを行なわなくても上記と同様
に複合線内の各平角導体への電流分流が平等にな
ることも明らかである。
Furthermore, in the case of a high-cell transition section where a new crossing method has not been adopted, the current can be shunted to each rectangular conductor in the composite wire in the same way as above without changing the radial position of each rectangular conductor in the composite wire. It is also clear that there will be equality.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複合線内平角導体が3本の場
合でも各平角導体の電流分流が平等な変圧器巻線
を得ることができ、したがつて、低損失で冷却装
置なども小さくしたコンパクトな変圧器を提供す
ることができる。
According to the present invention, even when there are three rectangular conductors in a composite wire, it is possible to obtain a transformer winding in which the current branching of each rectangular conductor is equal. Therefore, it is possible to obtain a compact transformer winding with low loss and a small cooling device etc. transformers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の平角導体3本からなる複合線の
断面図、第2図は平角導体2本からなる複合線で
構成された従来のインターリーブド巻線の概略縦
断面図、第3図は第2図の巻線A部分の拡大説明
図、第4図は平角導体3本からなる複合線で構成
される従来の変圧器巻線の導体配置図、第5図は
本発明の変圧器巻線の導体配置図である。 1……平角導体、2,3……絶縁物、4……イ
ンターリーブド巻線、5,6……巻線のセクシヨ
ン、7……対向巻線、8……鉄心脚。
Fig. 1 is a cross-sectional view of a conventional composite wire consisting of three rectangular conductors, Fig. 2 is a schematic vertical cross-sectional view of a conventional interleaved winding composed of a compound wire consisting of two rectangular conductors, and Fig. Fig. 2 is an enlarged explanatory diagram of the winding A section, Fig. 4 is a conductor arrangement diagram of a conventional transformer winding composed of a composite wire consisting of three rectangular conductors, and Fig. 5 is a diagram of the transformer winding of the present invention. It is a conductor arrangement diagram of a line. 1... Rectangular conductor, 2, 3... Insulator, 4... Interleaved winding, 5, 6... Winding section, 7... Opposed winding, 8... Iron core leg.

Claims (1)

【特許請求の範囲】 1 3本の導体からなる複合線の第1の巻回部分
と次に巻回される前記複合線の第2の巻回部分と
の間にそれ以外の巻回数目の前記複合線の巻回部
分をはさみ込んで巻回したセクシヨンを、複数個
鉄心脚に巻装してなる変圧器巻線において、隣接
セクシヨン間で前記複合線内の3本の導体のうち
隣接する2本の導体と残り1本の導体との間での
み巻線半径方向位置を入替えるようにした渡り部
を少くとも2箇所設けたことを特徴とする変圧器
巻線。 2 隣接セクシヨン間の渡り部は変圧器巻線の巻
始めから略1/3と略2/3に相当するセクシヨンに設
けられている特許請求の範囲第1項記載の変圧器
巻線。
[Claims] 1. Between the first winding portion of a composite wire consisting of three conductors and the second winding portion of the composite wire that is wound next, In a transformer winding in which a plurality of sections are wound around core legs with the winding portion of the composite wire sandwiched therebetween, adjacent sections of the three conductors in the composite wire are connected between adjacent sections. A transformer winding characterized in that at least two transition portions are provided in which the positions in the winding radial direction are exchanged only between two conductors and one remaining conductor. 2. The transformer winding according to claim 1, wherein the transition portions between adjacent sections are provided in sections corresponding to approximately 1/3 and approximately 2/3 from the winding start of the transformer winding.
JP120983A 1983-01-10 1983-01-10 Transformer winding Granted JPS59126613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP120983A JPS59126613A (en) 1983-01-10 1983-01-10 Transformer winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP120983A JPS59126613A (en) 1983-01-10 1983-01-10 Transformer winding

Publications (2)

Publication Number Publication Date
JPS59126613A JPS59126613A (en) 1984-07-21
JPH0354450B2 true JPH0354450B2 (en) 1991-08-20

Family

ID=11495070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP120983A Granted JPS59126613A (en) 1983-01-10 1983-01-10 Transformer winding

Country Status (1)

Country Link
JP (1) JPS59126613A (en)

Also Published As

Publication number Publication date
JPS59126613A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
US3359518A (en) Interleaved windings effecting a uniformly distributed surge potential
US4270111A (en) Electrical inductive apparatus
US3925743A (en) Interleaved winding for electrical inductive apparatus
US3766504A (en) Interleaved transformer winding having three parallel connected conductors
JPH0354450B2 (en)
EP0114648B1 (en) Onload tap-changing transformer
US3569883A (en) Electrical winding
US3611229A (en) Electrical winding with interleaved conductors
JPS6325484B2 (en)
JPS635887B2 (en)
US3710292A (en) Electrical windings
JP3013506B2 (en) Helical coil
JPS58148414A (en) Continuous disc winding
US3673530A (en) Electrical windings
JPS6347245B2 (en)
JPS6236370B2 (en)
JPS641043B2 (en)
US3460084A (en) Interleaved electrical winding structures
JPS5846047B2 (en) On-load tap switching autotransformer
JPH01313914A (en) Winding for transformer
JPS60100410A (en) Transformer winding
JPS6214656Y2 (en)
JPS59121907A (en) Continuous disk winding
JPS6037704A (en) Transformer winding
JPS59121909A (en) Continuous disk winding