JPS6410087B2 - - Google Patents

Info

Publication number
JPS6410087B2
JPS6410087B2 JP57110210A JP11021082A JPS6410087B2 JP S6410087 B2 JPS6410087 B2 JP S6410087B2 JP 57110210 A JP57110210 A JP 57110210A JP 11021082 A JP11021082 A JP 11021082A JP S6410087 B2 JPS6410087 B2 JP S6410087B2
Authority
JP
Japan
Prior art keywords
coil bobbin
core
iron core
coil
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57110210A
Other languages
Japanese (ja)
Other versions
JPS59906A (en
Inventor
Yoshio Yamamoto
Shigeru Shirai
Masayuki Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57110210A priority Critical patent/JPS59906A/en
Publication of JPS59906A publication Critical patent/JPS59906A/en
Publication of JPS6410087B2 publication Critical patent/JPS6410087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は永久磁石の力で保持し外部からの通電
によつて保持状態を解除する自己保持型ソレノイ
ドに関するもので、特にガス回路の開閉に使わ
れ、電池を電源とする電磁弁の駆動源として応用
する場合に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a self-holding solenoid that is held by the force of a permanent magnet and released from the holding state by external energization, and is particularly used for opening and closing gas circuits. This invention relates to a case where the invention is applied as a driving source for a solenoid valve using a battery as a power source.

従来例の構成とその問題点 自己保持型ソレノイドは保持状態を維持するた
めに外部からの通電を必要としないので、コイル
通電による発熱や電力消費が問題となる用途には
適している。しかし、電源が電池の場合には自己
保持型ソレノイドの自己保持状態を解除するため
の必要電圧が電池電圧の値以下でなければならな
い。自己保持型ソレノイドを自己保持型電磁弁と
してガス回路の遮断に用いる場合には遮断に必要
な締切圧力を十分確保できるだけのスプリングを
挿着しても開弁状態を維持できる永久磁石吸引力
を必要とし、この条件下でも電池電圧で確実な遮
断動作が行えるものでなければならない。
Conventional configurations and their problems Since self-holding solenoids do not require external energization to maintain the holding state, they are suitable for applications where heat generation and power consumption due to coil energization are a problem. However, if the power source is a battery, the voltage required to release the self-holding state of the self-holding solenoid must be lower than the battery voltage. When using a self-holding solenoid as a self-holding electromagnetic valve to shut off a gas circuit, a permanent magnet attraction force is required to maintain the valve open state even if a spring is inserted to ensure sufficient shutoff pressure necessary for shutoff. Even under these conditions, reliable shutoff operation must be possible with the battery voltage.

第1図に自己保持型ソレノイドの従来例を示し
た。又、第2図は第1図のA−A線断面図であ
る。ここで、コ字型の固定鉄心101の底面中央
には磁極102が固着され、その外周と固定鉄心
101との間にはコイルボビン103に巻回され
たコイル104が設けられている。固定鉄心10
1の折り曲げ自由端側の内面には一対の永久磁石
105が向かい合う方が同極となるよう着磁され
て位置しており、その内側には、外辺面が永久磁
石105の内面に接し中央に丸穴を形成した多数
の鉄板から成る積層鉄心106が固定されてい
る。これらの積層鉄心106とコイルボビン10
3は同心上に配列されて止め金107と共に案内
筒108によつて両端が咬められている。この案
内筒108の内側には可動鉄心109が軸線方向
に自由に移動し得るように挿入されている。以上
の構成であつて、案内筒108で一体にしたコイ
ルボビン103、積層鉄心106、止め金107
を永久磁石105と共に、固定鉄心101の折り
曲げ解放端側から挿入し、最後に止め金107を
固定鉄心101の自由端咬め部110で固着する
ことによつて完成する。
Figure 1 shows a conventional example of a self-holding solenoid. 2 is a sectional view taken along the line A--A in FIG. 1. Here, a magnetic pole 102 is fixed to the center of the bottom surface of the U-shaped fixed core 101, and a coil 104 wound around a coil bobbin 103 is provided between the outer periphery of the magnetic pole 102 and the fixed core 101. Fixed core 10
A pair of permanent magnets 105 are positioned on the inner surface of the bending free end side of the magnet 1, magnetized so that the opposing sides have the same polarity, and on the inner side, the outer side surface is in contact with the inner surface of the permanent magnet 105, and the center A laminated iron core 106 consisting of a large number of iron plates with round holes formed therein is fixed. These laminated iron core 106 and coil bobbin 10
3 are arranged concentrically, and both ends are engaged by a guide tube 108 together with a stopper 107. A movable core 109 is inserted into the guide tube 108 so as to be freely movable in the axial direction. With the above configuration, the coil bobbin 103, the laminated iron core 106, and the stopper 107 are integrated by the guide tube 108.
is inserted together with the permanent magnet 105 from the bent open end side of the fixed iron core 101, and finally the stopper 107 is fixed with the free end hooking part 110 of the fixed iron core 101 to complete the process.

この自己保持型ソレノイドは、永久磁石105
から積層鉄心106、可動鉄心109、磁極10
2、固定鉄心101と流れる磁束によつて可動鉄
心109を磁極102側へ吸引している。コイル
104に通電すると、コイル磁束は前述の永久磁
石105の磁束と反対方向に流れようとし、その
結果、可動鉄心109と磁極102の接触面を通
る磁束量は減少し、吸引力が激減するので、図示
していないスプリングの方で可動鉄心109は磁
極102から引離される。コイル通電はパルス状
の一瞬で良く、再び吸引状態にもどすには外部か
らスプリングの力に打勝つて可動鉄心109が磁
極102と接触する位置まで押しもどせば良い。
This self-holding solenoid has a permanent magnet 105
From laminated iron core 106, movable iron core 109, magnetic pole 10
2. The movable core 109 is attracted toward the magnetic pole 102 by the magnetic flux flowing with the fixed core 101. When the coil 104 is energized, the coil magnetic flux tends to flow in the opposite direction to the magnetic flux of the permanent magnet 105, and as a result, the amount of magnetic flux passing through the contact surface between the movable iron core 109 and the magnetic pole 102 decreases, and the attractive force is drastically reduced. , the movable iron core 109 is separated from the magnetic pole 102 by a spring (not shown). The coil can be energized in a pulse-like instant, and in order to return to the attracted state again, it is sufficient to push the movable core 109 back to the position where it contacts the magnetic pole 102 by overcoming the force of the spring from the outside.

さて、ガス回路の遮断に用いるには挿着すべき
スプリングの荷重は大きくなるので、永久磁石1
05の吸引力も、この荷重以上は必要となる。単
に吸着保持状態での力を増加する丈なら磁石材質
や磁石面積の選択で自由に設計できるが、電池を
電源として通電して離脱する場合には、電池から
の供給電流で吸着面の磁束を減少させねばならな
いからコイルの巻数・抵抗との関係への配慮が必
要となる。即ち、同一コイルボビンに巻回する場
合、導線径を細くして巻数を増加すると、抵抗増
加のため電流が減少して励磁アンペアターンとし
ては減少する。又、導線径を太くすれば抵抗は減
少して電流は増加して巻数は少なくなるが励磁ア
ンペアターンは増加する。しかし、この場合、電
池を痛めずして供給し得る電流には上限があるの
で、むやみに低抵抗の巻線仕様にすることは出来
ない。すなわち、電池を電源とした場合、コイル
巻線スペースを一定としたら、おのずと供給し得
る励磁アンペアターンには一定の制約があること
が解る。従つて、遮断に必要なスプリング荷重に
打勝つ吸引力を持つ永久磁石を必要とする場合、
離脱させるに必要な励磁アンペアターンも大きく
必要となつて電池駆動の場合にはコイルスペース
の増大が必須要件となる場合がある。この場合第
1図及び第2図の従来例で、コイルボビン103
を軸線方向に長くする手段を採ればソレノイド全
体が細長い形状となつて弁に応用した場合の収納
スペースが長く必要となる問題があるばかりでな
く永久磁石105から見た磁路長も長くなつて吸
引保持力の低下も招くことになる。又コイルボビ
ン103を径方向に大きくする手段を採れば組立
の都合上から磁石105の対面距離も大きくなつ
て積層鉄心106の外形が大きくなる。従つて磁
石105から可動鉄心109までの間の磁路がや
はり長くなり積層鉄心106から可動鉄心109
を通らず固定鉄心101の折り曲げ部へ漏洩する
漏洩磁束の増加を招くことになつて吸引保持力が
低下することになる。
Now, since the load of the spring to be inserted will be large when used to interrupt the gas circuit, the permanent magnet 1
The suction force of 05 is also required to exceed this load. If the length simply increases the force in the attracted and held state, it can be designed freely by selecting the magnet material and magnet area, but when detaching by energizing a battery as a power source, the magnetic flux on the attracting surface is controlled by the current supplied from the battery. Since this must be reduced, consideration must be given to the relationship between the number of coil turns and resistance. That is, when winding on the same coil bobbin, if the diameter of the conductor is made thinner and the number of turns is increased, the current decreases due to the increase in resistance and the number of excitation ampere turns decreases. Also, if the conductor diameter is increased, the resistance decreases, the current increases, and the number of turns decreases, but the excitation ampere turns increases. However, in this case, there is an upper limit to the current that can be supplied without damaging the battery, so it is not possible to use a winding specification with low resistance unnecessarily. That is, when a battery is used as a power source and the coil winding space is constant, it can be seen that there are certain restrictions on the excitation ampere turns that can be supplied naturally. Therefore, if a permanent magnet is required that has an attractive force that overcomes the spring load required for shutoff,
The number of excitation ampere turns required for detachment is also large, and in the case of battery drive, an increase in coil space may be an essential requirement. In this case, in the conventional example shown in FIGS. 1 and 2, the coil bobbin 103
If the solenoid is lengthened in the axial direction, the entire solenoid becomes elongated, which not only requires a long storage space when applied to a valve, but also increases the length of the magnetic path as seen from the permanent magnet 105. This also results in a decrease in suction and holding power. Furthermore, if the coil bobbin 103 is made larger in the radial direction, the distance between the magnets 105 facing each other becomes larger for convenience of assembly, and the outer shape of the laminated iron core 106 becomes larger. Therefore, the magnetic path from the magnet 105 to the movable core 109 becomes long, and the magnetic path from the laminated core 106 to the movable core 109 becomes longer.
This results in an increase in leakage magnetic flux that does not pass through and leaks to the bent portion of the fixed iron core 101, resulting in a decrease in the attraction and holding force.

以上のようにガス回路の遮断の目的に用いる自
己保持型ソレノイドを電池で動作させる場合には
従来例の構成は不適当であつた。
As described above, the configuration of the conventional example is inappropriate when a self-holding solenoid used for the purpose of interrupting a gas circuit is operated by a battery.

発明の技術的課題 本発明は、吸引保持力を高く確保しつつ電池で
作動が可能な自己保持型ソレノイドを得ることを
目的とし、特に永久磁石の力で吸引保持している
時の吸引力とコイルに励磁して離脱させる時の必
要励磁アンペアターンの安定化を確保できる構成
とするものである。
Technical Problems of the Invention The purpose of the present invention is to obtain a self-holding solenoid that can be operated by batteries while ensuring a high attraction and holding force. The structure is such that the necessary excitation ampere-turns are stabilized when the coil is energized and removed.

発明の技術的手段 すなわち底面から対称に曲げた脚部を有する略
コ字状の固定鉄心の底面中央にコイルボビンへ巻
回した電磁コイルを設け、固定鉄心の脚部の内側
で対称位置に同極が向かい合うよう一対の永久磁
石を設け、この永久磁石の間の空隙とコイルボビ
ン中央孔を貫通して摺動自在に可動鉄心を設け、
可動鉄心の摺動を案内する案内孔を中心に形成し
永久磁石を固定鉄心の脚部内側へ接するよう保持
する磁石ホルダを設け、前記可動鉄心はコイルボ
ビン中央孔に臨む部分は円柱状で磁石ホルダの案
内孔に臨む部分を角柱状とし、前記コイルボビン
と磁石ホルダは各々の中央孔と案内孔の中心が一
致するよう両者に位置決め部を形成したものであ
る。
Technical Means of the Invention In other words, an electromagnetic coil wound around a coil bobbin is provided at the center of the bottom surface of a substantially U-shaped fixed core with legs bent symmetrically from the bottom surface, and the electromagnetic coils are arranged with the same polarity at symmetrical positions inside the legs of the fixed core. A pair of permanent magnets are provided so that they face each other, and a movable iron core is provided so as to be able to slide freely through the gap between the permanent magnets and the center hole of the coil bobbin.
A magnet holder is provided, which is formed around a guide hole that guides the sliding movement of the movable core, and holds a permanent magnet in contact with the inside of the leg of the fixed core, and the movable core has a cylindrical portion facing the coil bobbin center hole, and a magnet holder. The portion facing the guide hole is prismatic, and the coil bobbin and magnet holder have positioning portions formed on both so that the centers of the center hole and the guide hole coincide with each other.

発明の作用 したがつてコイルボビンと磁石ホルダが分割可
能なので、磁石が対面した距離に関係なくコイル
ボビン外径の選定が可能であると同時に、磁石内
面は直接に広い面積を有する可動鉄心の角柱部に
対向していて中間の磁気回路部材との間に生じる
ギヤツプが無いので永久磁石の漏洩磁束が少くな
つている。又、吸着保持状態での可動鉄心の傾斜
は吸引力と離脱に必要な励磁アンペアターンのバ
ラツキに大きな影響を与えるが、本発明では、中
央孔と案内孔の中心が一致している上に、可動鉄
心を吸着面から離れた磁石ホルダの角形案内孔で
摺動支持しているので、この部分の隙間で生じる
傾斜を少くできる。従つて、強い吸着保持力を有
しつつも、電池のような低電力でバラツキなく確
実な動作を行わせることが可能となつたものであ
る。
Effect of the Invention Therefore, since the coil bobbin and the magnet holder can be separated, it is possible to select the outer diameter of the coil bobbin regardless of the distance at which the magnets face each other. Since there is no gap between the opposing and intermediate magnetic circuit members, the leakage magnetic flux of the permanent magnet is reduced. In addition, the inclination of the movable iron core in the suction and holding state has a large effect on the attraction force and the variation in excitation ampere turns required for detachment, but in the present invention, the centers of the center hole and the guide hole are aligned, and Since the movable iron core is slidably supported by the rectangular guide hole of the magnet holder that is located away from the attraction surface, the inclination that occurs in the gap in this area can be reduced. Therefore, while having a strong adsorption and holding force, it is possible to operate reliably and without variation using low power such as that of a battery.

実施例の構成 次に実施例に基づいて本発明を詳しく説明す
る。第3図は、一実施例であつて、上面図、縦断
面図、右側面図を示している。更に第4図は第3
図の実施例の一部を示す外観図である。
Configuration of Examples Next, the present invention will be explained in detail based on Examples. FIG. 3 shows one embodiment, and shows a top view, a vertical sectional view, and a right side view. Furthermore, Figure 4 shows the third
FIG. 3 is an external view showing a part of the embodiment shown in the figure.

ここで、1は底面2から対称形に曲げた脚部3
を有する略コ字状の固定鉄心であり、底面2の中
央には磁極4が固着されている。次に、底面2と
脚部3で作られた空間にはコイルボビン5に巻回
した電磁コイル6が設けられる。コイルボビン5
は中央孔7が磁極4にはまり込むことによつて位
置決めされており、上端には後述の磁石ホルダと
の位置を決める角形の位置決め突起8が形成して
ある。一方、脚部3の端部近くには、脚部3の内
面に一対の永久磁石9が向かい合う側が同極とな
るように位置している。永久磁石9は磁石ホルダ
10によつてその位置に保持されているもので、
磁石ホルダ10の中央は角形の貫通した案内孔1
1があり、側面には平板状の磁石9を脚部3と接
する側だけを残し、他を包んでしまう磁石保持部
12があつて、磁石9は角状の凹部13に収納さ
れる。更に磁石ホルダ10自体は上端に爪部14
を有していて、これが固定鉄心1の脚部3末端の
くさび型をした溝15にはめられた後に熱融着さ
れて固定される。一方、下端には、コイルボビン
5の上端の角形の位置決め突起8とはまり合う位
置決め突起16を形成してある。こうして、コイ
ルボビン5と磁石ホルダ10は同軸線上に積み重
ねられたことになり、コイルボビン5の中央部7
と磁石ホルダ10の案内孔11も中心線が一致す
る。さて、これらの孔を摺動自在に動くのが可動
鉄心17であつて、コイルボビン中央孔7に出入
りする部分は円柱18であり、磁石ホルダ案内孔
11の中を出入りする部分は長角柱19になつて
いる。
Here, 1 is a leg 3 bent symmetrically from the bottom 2.
It is a substantially U-shaped fixed iron core having a magnetic pole 4 fixed to the center of the bottom surface 2. Next, an electromagnetic coil 6 wound around a coil bobbin 5 is provided in the space created by the bottom surface 2 and the legs 3. coil bobbin 5
is positioned by the center hole 7 fitting into the magnetic pole 4, and a rectangular positioning protrusion 8 is formed at the upper end to determine the position with a magnet holder, which will be described later. On the other hand, near the end of the leg portion 3, a pair of permanent magnets 9 are located on the inner surface of the leg portion 3 so that opposite sides thereof have the same polarity. The permanent magnet 9 is held in position by a magnet holder 10,
The center of the magnet holder 10 has a rectangular guide hole 1 that passes through it.
1, and a magnet holder 12 is provided on the side surface of the flat magnet 9, leaving only the side in contact with the leg 3 and enclosing the rest, and the magnet 9 is housed in an angular recess 13. Furthermore, the magnet holder 10 itself has a claw portion 14 at the upper end.
This is fitted into the wedge-shaped groove 15 at the end of the leg 3 of the fixed iron core 1 and then heat-sealed and fixed. On the other hand, a positioning protrusion 16 is formed at the lower end to fit into a rectangular positioning protrusion 8 on the upper end of the coil bobbin 5. In this way, the coil bobbin 5 and the magnet holder 10 are stacked on the same axis, and the central part 7 of the coil bobbin 5
The center lines of the guide hole 11 of the magnet holder 10 also coincide with each other. Now, the movable iron core 17 slides through these holes, the part that goes in and out of the coil bobbin center hole 7 is a cylinder 18, and the part that goes in and out of the magnet holder guide hole 11 is a rectangular pillar 19. It's summery.

さて、永久磁石9の磁束は磁石ホルダ10の案
内穴11を横切つて直接可動鉄心17の長角柱1
9に入り、円柱18から磁極4、固定鉄心1の底
面2、脚部3から永久磁石9に戻る。可動鉄心1
7に対する吸引保持力は円柱18の下端面と磁極
4の上端面の間に働いている。そして、電磁コイ
ル6に通電すると前述の磁気回路と逆方向に起磁
力が働いて吸引面の磁束量を減少させる。従つて
吸引保持力が激減して図示していないスプリング
などの外部の力によつて可動鉄心17は磁極4か
ら引離されることになる。
Now, the magnetic flux of the permanent magnet 9 crosses the guide hole 11 of the magnet holder 10 and directly passes through the long rectangular column 1 of the movable iron core 17.
9, from the cylinder 18 to the magnetic pole 4, to the bottom surface 2 of the fixed iron core 1, and from the leg 3 to the permanent magnet 9. Movable iron core 1
The attraction and holding force for the magnetic pole 7 is exerted between the lower end surface of the cylinder 18 and the upper end surface of the magnetic pole 4 . When the electromagnetic coil 6 is energized, a magnetomotive force acts in the opposite direction to the magnetic circuit described above, reducing the amount of magnetic flux on the attraction surface. Therefore, the attraction and holding force is drastically reduced, and the movable iron core 17 is separated from the magnetic pole 4 by an external force such as a spring (not shown).

コイルボビン5の挿入は第3図の右側面図の例
では右側から磁極4の厚さ分だけ上方へ持ち上げ
た状態で行い、その後、磁極4が中央孔7にはま
るように下方に下げて完了し、一方、磁石ホルダ
10は一対の磁石9を凹部13を収納した状態で
脚部3の上方から下方へ挿入し、位置決め突起8
と16がかん合した状態まで押し込み、爪部14
を熱融着して完了する。従つて、両者の挿入方向
が異るのでコイルボビン5の外径は脚部3の対辺
距離の制約を受けないからコイルスペースを十分
確保することが可能となる。従つて、電池が許容
し得る電流の範囲内で巻数を増加することによつ
て動作に十分なアンペアターンを確保する設計が
可能となるものである。又、磁石9と対向する内
側磁路は角柱状の可動鉄心17なので固定側磁気
回路内での漏洩は少なく抑制することが可能であ
る。更に、磁極4の厚さはコイルボビン挿入の面
から余り厚く出来ないので固定鉄心1の脚部3か
ら可動鉄心17の円柱18へ漏洩する吸引力に貢
献しない磁束が心配されるが、実施例のようにコ
イルボビン挿入部の脚部の対辺距離が磁石部の脚
部の対辺距離より広く採つてあるので、この部分
からの漏洩磁束も低減することが可能である。次
に、磁極4と可動鉄心17の端面との密着状態は
吸着保持力と動作アンペアターンのバラツキに大
きな影響を持つが、その密着状態は加工時の表面
荒さよりも可動鉄心の傾きの影響が大きい。本発
明では異形断面を持つ可動鉄心を用いるので従来
例のように非磁性の案内パイプを全長に設けるこ
とは出来ないが、、吸着位置から離れた磁石ホル
ダ10の案内孔11で摺動支持することによつて
可動鉄心17と案内孔11の間の隙間による傾斜
を少くしている。
In the example shown in the right side view of FIG. 3, the coil bobbin 5 is inserted by lifting it upward by the thickness of the magnetic pole 4 from the right side, and then lowering it downward so that the magnetic pole 4 fits into the center hole 7. On the other hand, in the magnet holder 10, the pair of magnets 9 are inserted from above to below the legs 3 with the recesses 13 accommodated, and the positioning protrusions 8
and 16 are engaged, and then press the claw part 14
Complete by heat fusing. Therefore, since the insertion directions of the two are different, the outer diameter of the coil bobbin 5 is not restricted by the distance across opposite sides of the leg portion 3, so that a sufficient coil space can be secured. Therefore, by increasing the number of turns within the range of current that the battery can tolerate, it is possible to design a battery to ensure sufficient ampere turns for operation. Further, since the inner magnetic path facing the magnet 9 is a prismatic movable core 17, leakage within the fixed side magnetic circuit can be suppressed to a small extent. Furthermore, since the thickness of the magnetic pole 4 cannot be made too thick in view of the coil bobbin insertion, there is a concern that magnetic flux that does not contribute to the attractive force leaks from the leg portion 3 of the fixed core 1 to the cylinder 18 of the movable core 17. Since the distance between the opposite sides of the legs of the coil bobbin insertion part is set wider than the distance between the opposite sides of the legs of the magnet part, leakage magnetic flux from this part can also be reduced. Next, the state of close contact between the magnetic pole 4 and the end face of the movable core 17 has a large effect on the adsorption holding force and the variation in operating ampere turns, but the close state is influenced more by the inclination of the movable core than by the surface roughness during machining. big. Since the present invention uses a movable iron core with an irregular cross section, it is not possible to provide a non-magnetic guide pipe along the entire length as in the conventional example, but it is slidably supported by the guide hole 11 of the magnet holder 10 located away from the attraction position. In particular, the inclination caused by the gap between the movable iron core 17 and the guide hole 11 is reduced.

第5図は、本発明の一実施例である自己保持型
ソレノイドをガス遮断弁へ応用した例を示す縦断
面図である。自己保持型ソレノイド20は第3図
の例と同様であるが、可動鉄心17の頂部には弁
軸21がネジ固定され、この弁軸21に対して径
方向で密着する弁ゴム22が挿入され、図に於て
下面には弁板23が設けられている。一方、固定
鉄心1の脚部3に対して溶接固着された取付フラ
ンジ24があつて、この上に設けたスプリング受
け25と前記弁板23との間にスプリング26が
挿着されている。以上で、弁体として完成し、こ
れを、弁ハウジング26の中へ取付ける。弁ハウ
ジング26には接続孔27,28があり、その中
間に弁座29が設けられて前述の弁ゴム22と対
応している。弁体の取付フランジ24は一方をネ
ジ固定され、他方は弁ハウジング26に設けた溝
30に挿入されて位置が決められる。弁ハウジン
グ26の中に弁体を収納した後、底板31で気密
シールされている。更に、32は開弁軸で、これ
と一体に回転するカム33が弁軸29の頂部の平
担面に当つて回転によつて直線方向に移動させる
ものである。
FIG. 5 is a longitudinal sectional view showing an example in which a self-holding solenoid according to an embodiment of the present invention is applied to a gas cutoff valve. The self-holding solenoid 20 is similar to the example shown in FIG. 3, but a valve shaft 21 is screwed to the top of the movable core 17, and a valve rubber 22 is inserted into the valve shaft 21, which closely contacts the valve shaft 21 in the radial direction. In the figure, a valve plate 23 is provided on the lower surface. On the other hand, a mounting flange 24 is fixedly welded to the leg portion 3 of the fixed iron core 1, and a spring 26 is inserted between the spring receiver 25 provided thereon and the valve plate 23. With the above steps, the valve body is completed, and this is installed into the valve housing 26. The valve housing 26 has connecting holes 27 and 28, and a valve seat 29 is provided between the connecting holes 27 and 28, and corresponds to the valve rubber 22 described above. One side of the mounting flange 24 of the valve body is fixed with a screw, and the other side is inserted into a groove 30 provided in the valve housing 26 to determine its position. After the valve body is housed in the valve housing 26, it is hermetically sealed with a bottom plate 31. Furthermore, 32 is a valve opening shaft, and a cam 33 that rotates together with this shaft contacts the flat surface of the top of the valve shaft 29 and moves it in a linear direction by rotation.

実施例の効果 以上の構成に於て、何らかの異常状態が発生し
て遮断する必要がある時、電磁コイル6にパルス
電流を通電するとその瞬間に永久磁石9による吸
引保持力が激減するのでスプリング26の力で可
動鉄心17は磁極4から引離され、弁ゴム22、
弁軸21と共に上方へ移動してガス通路を遮断す
る。この時、弁軸21に対して弁ゴム22は径方
向に密着した部分を中心として幾分かの首振りが
可能な構造であるから弁座29に対する可動鉄心
17の動作軸線の直角度が少し悪くても閉塞性を
確保することができる。次に、開弁軸32を反時
計方向に回転するとカム33と弁軸29の頂部平
担面が当接して弁全体をスプリング26に打勝つ
て押し下げ、第5図の点線で示したカム位置で可
動鉄心17に再び吸引保持され開弁することにな
る。
Effects of the Embodiment In the above configuration, when a pulse current is applied to the electromagnetic coil 6 when some abnormal condition occurs and it is necessary to shut off, the attraction and holding force by the permanent magnet 9 is drastically reduced, so the spring 26 The movable iron core 17 is separated from the magnetic pole 4 by the force of the valve rubber 22,
It moves upward together with the valve stem 21 to shut off the gas passage. At this time, since the valve rubber 22 has a structure that allows some oscillation around the part in close contact with the valve shaft 21 in the radial direction, the perpendicularity of the operating axis of the movable iron core 17 with respect to the valve seat 29 may be slightly At worst, occlusion can be ensured. Next, when the valve opening shaft 32 is rotated counterclockwise, the cam 33 and the flat top surface of the valve shaft 29 come into contact, overcoming the spring 26 and pushing down the entire valve, to the cam position shown by the dotted line in FIG. Then, the movable iron core 17 attracts and holds the valve again, and the valve opens.

この用途の場合、ガス配管中に存在する管工事
の時に混入する切粉や、ガス管の錆による鉄粉が
ガスの流れに乗つて遮断弁の部分に来ることがあ
る。これら磁性粉末が永久磁石9の周辺に吸着す
ると、可動鉄心17と磁極4の吸着面を通らない
漏洩磁束が増加して吸引保持力を低下させる原因
となる。この点、従来例の第1図に示した構成で
は右側面図で明らかなように永久磁石106の側
面が露出しているので、この時分に磁性粉末が吸
着しやすく吸引力に貢献しない漏洩磁束が増加し
てしまう。しかし、第4図の磁石ホルダ10のよ
うに永久磁石9の周囲を包んでいるので、磁性粉
末が吸着しにくくなつていると共に、吸着した場
合でも永久磁石9の本体から離れた位置になるの
で漏洩磁束を増加させてしまう程度が少ない。こ
のように、外部から鉄粉等が付着した場合に吸引
保持力の低下が少なく出来る効果を有している。
In this case, chips mixed into the gas piping during pipe work and iron powder due to rust on the gas pipes may come along with the gas flow and reach the shutoff valve. When these magnetic powders are attracted around the permanent magnet 9, leakage magnetic flux that does not pass through the attracting surfaces of the movable iron core 17 and the magnetic pole 4 increases, causing a decrease in the attraction and holding force. In this regard, in the conventional configuration shown in FIG. 1, the side surface of the permanent magnet 106 is exposed as shown in the right side view, so magnetic powder tends to be attracted at this time and leakage does not contribute to the attraction force. Magnetic flux will increase. However, since the magnet holder 10 shown in FIG. 4 wraps around the permanent magnet 9, it becomes difficult for the magnetic powder to be attracted to it, and even if it does, it will be located far away from the main body of the permanent magnet 9. The extent to which leakage magnetic flux is increased is small. In this way, there is an effect that the reduction in suction and holding power can be reduced even when iron powder or the like adheres from the outside.

発明の効果 以上述べたように本発明は、略コ字状の固定鉄
心の底面に電磁コイルを設け、脚部内面に一対の
永久磁石を設けると共に、永久磁石間の空隙と電
磁コイル中央孔を貫通して摺動自在な可動鉄心を
設け、可動鉄心の摺動を案内する案内孔を形成し
永久磁石を脚部内面に保持する磁石ホルダと有
し、可動鉄心は永久磁石と対向する部分が角柱状
でコイルボビンの中央孔に臨む部分は円柱状にし
た形状であり、可動鉄心は磁石ホルダの角形案内
孔で角柱部分が摺動案内された自己保持型ソレノ
イドであるから、コイルボビンと磁石ホルダが分
割されて、コイルボビン外径は永久磁石間の対辺
距離の制約を受けることが無くなると共に、可動
鉄心の摺動に対しては完全な案内部が形成されて
いる。従つて、電池のような低電圧でしかも供給
電流の上限値に制約がある電源の場合でも十分な
アンペアターンが確保できる。又、可動鉄心を吸
引保持することに役立たない漏洩磁束を生じる要
素が少ないので吸引保持力を高く得られる。従つ
て、自己保持型ソレノイドとしての動作信頼性の
向上が期待されるものである。
Effects of the Invention As described above, the present invention provides an electromagnetic coil on the bottom of a substantially U-shaped fixed core, a pair of permanent magnets on the inner surface of the legs, and a space between the permanent magnets and a central hole of the electromagnetic coil. A movable iron core that can be freely slid through is provided, a guide hole is formed to guide the sliding movement of the movable iron core, and a magnet holder is provided to hold a permanent magnet on the inner surface of the leg. The part facing the center hole of the coil bobbin is prismatic and has a cylindrical shape, and the movable core is a self-holding solenoid with the prismatic part slidingly guided by the rectangular guide hole of the magnet holder. By being divided, the outer diameter of the coil bobbin is no longer restricted by the distance between the opposite sides between the permanent magnets, and a complete guide portion is formed for the sliding movement of the movable iron core. Therefore, sufficient ampere turns can be ensured even in the case of a power source such as a battery that has a low voltage and has a limited upper limit value of supply current. Furthermore, since there are fewer elements that produce leakage magnetic flux that is not useful for attracting and holding the movable core, a high attracting and holding force can be obtained. Therefore, it is expected that the operational reliability of the self-holding solenoid will be improved.

更に、コイルボビンと磁石ホルダが分割される
ことによつて組立性が良くなると共に、磁気回路
構成部材が少いことと可動鉄心の傾斜が少いこと
によつて吸着保持力と離脱に必要な励磁アンペア
ターンのばらつきも少くできる。
Furthermore, since the coil bobbin and magnet holder are separated, ease of assembly is improved, and because there are fewer magnetic circuit components and the tilt of the movable core is small, the attraction and holding force and the excitation required for detachment are improved. Variations in ampere turns can also be reduced.

又、自己保持型ソレノイドでは離脱位置から保
持位置に復帰操作されたことを電極コイルに生じ
る瞬時起電力で検知する方法を用いることがある
が、本発明では、その起電力値が高く得られると
いう効果もある。それは、可動鉄心の傾斜を少く
するために従来は非磁性ではあるが導電性の案内
筒を用いていたが、復帰操作の瞬間に生じる急激
な磁束変化を案内筒の中を流れる短絡電流によつ
て暖和する作用があつて、このため起電力値が低
下してしまう。本発明ではこのような案内筒を持
たないので十分な起電力が得られ、システムとし
ての信頼性も高める効果を有している。
In addition, self-holding solenoids sometimes use a method of detecting the return operation from the release position to the holding position using the instantaneous electromotive force generated in the electrode coil, but in the present invention, a high electromotive force value can be obtained. It's also effective. Conventionally, a non-magnetic but conductive guide tube was used to reduce the inclination of the movable core. This causes a warming effect, which causes the electromotive force value to decrease. Since the present invention does not have such a guide tube, sufficient electromotive force can be obtained, and the system has the effect of increasing reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cは従来例のソレノイドを示す
上面図、正面図、断面図、第2図は第1図のA−
A線断面図、第3図a,b,cは本発明の一実施
例を示す自己保持型ソレノイドの上面図、断面
図、側面図、第4図は第3図のコイルボビンと磁
石ホルダの斜視図、第5図は本発明の一実施例で
ある自己保持型ソレノイドをガス遮断弁に応用し
た場合の縦断面図である。 1……固定鉄心、2……底面、3……脚部、5
……コイルボビン、6……電磁コイル、7……コ
イルボビン中央孔、8,16……位置決め部、9
……永久磁石、10……磁石ホルダ、11……案
内孔、12……永久磁石保持部、17……可動鉄
心。
Figures 1a, b, and c show a top view, front view, and cross-sectional view of a conventional solenoid, and Figure 2 shows A--A in Figure 1.
A sectional view taken along the line A, FIGS. 3a, b, and c are top views, sectional views, and side views of a self-holding solenoid showing one embodiment of the present invention. FIG. 4 is a perspective view of the coil bobbin and magnet holder shown in FIG. 3. FIG. 5 is a longitudinal cross-sectional view of a self-holding solenoid according to an embodiment of the present invention applied to a gas cutoff valve. 1...Fixed iron core, 2...Bottom surface, 3...Legs, 5
... Coil bobbin, 6 ... Electromagnetic coil, 7 ... Coil bobbin center hole, 8, 16 ... Positioning part, 9
... Permanent magnet, 10 ... Magnet holder, 11 ... Guide hole, 12 ... Permanent magnet holding part, 17 ... Movable iron core.

Claims (1)

【特許請求の範囲】 1 底面から対称に曲げた脚部を有する略コ字状
の固定鉄心と、固定鉄心の底面中央に設け、コイ
ルボビンを巻回した電磁コイルと、固定鉄心の脚
部内側対称位置に設け同極が向かい合つた一対の
平板状の永久磁石と、永久磁石間の空隙及びコイ
ルボビン中央孔を貫通し摺動自在に設けた可動鉄
心と、可動鉄心の摺動を案内する角形の案内孔を
中央に有し前記一対の永久磁石を固定鉄心脚部内
面に接つするよう保持する磁石ホルダとから構成
され、前記可動鉄心はコイルボビン中央孔に臨む
部分は円柱状で磁石ホルダの案内孔に臨む部分を
角柱状とし、前記コイルボビンと磁石ホルダは
各々の中央孔と案内孔の中心が一致するよう両者
に位置決め部を形成した自己保持型ソレノイド。 2 固定鉄心の脚部は、その対辺距離が電極コイ
ル部分より永久磁石部分の方を狭くした特許請求
の範囲第1項記載の自己保持型ソレノイド。
[Scope of Claims] 1. A substantially U-shaped fixed core with legs bent symmetrically from the bottom, an electromagnetic coil provided at the center of the bottom of the fixed core and wound with a coil bobbin, and a symmetrical inner leg of the fixed core. A pair of flat permanent magnets with the same polarity facing each other, a movable iron core that is slidably provided through the gap between the permanent magnets and the center hole of the coil bobbin, and a square-shaped permanent magnet that guides the sliding movement of the movable iron core. A magnet holder has a guide hole in the center and holds the pair of permanent magnets in contact with the inner surface of the fixed core legs, and the movable core has a cylindrical portion facing the coil bobbin center hole to guide the magnet holder. The self-holding solenoid has a prismatic portion facing the hole, and a positioning portion is formed on both the coil bobbin and the magnet holder so that the center of the center hole and the guide hole are aligned with each other. 2. The self-holding solenoid according to claim 1, wherein the leg portion of the fixed core has a distance across opposite sides narrower at the permanent magnet portion than at the electrode coil portion.
JP57110210A 1982-06-25 1982-06-25 Self-retention type solenoid Granted JPS59906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110210A JPS59906A (en) 1982-06-25 1982-06-25 Self-retention type solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110210A JPS59906A (en) 1982-06-25 1982-06-25 Self-retention type solenoid

Publications (2)

Publication Number Publication Date
JPS59906A JPS59906A (en) 1984-01-06
JPS6410087B2 true JPS6410087B2 (en) 1989-02-21

Family

ID=14529844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110210A Granted JPS59906A (en) 1982-06-25 1982-06-25 Self-retention type solenoid

Country Status (1)

Country Link
JP (1) JPS59906A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2547949B (en) * 2016-03-04 2019-11-13 Johnson Electric Int Ag Plunger for magnetic latching solenoid actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513880U (en) * 1978-07-10 1980-01-29

Also Published As

Publication number Publication date
JPS59906A (en) 1984-01-06

Similar Documents

Publication Publication Date Title
US9324524B2 (en) Electromagnetic relay
US5161779A (en) Magnet system
JP4066040B2 (en) Electromagnet and operation mechanism of switchgear using the same
US9190233B2 (en) Solenoid device and electromagnetic relay
JP5124048B2 (en) Release-type electromagnet device
JP2006222438A (en) Electromagnet and operating mechanism of switching device using the same
CN108780689B (en) Solenoid coil
WO2019181359A1 (en) Electromagnetic relay
WO2011081169A1 (en) Valve device
US11047500B2 (en) Dual coil solenoid valve for a fuel gas control valve and the control method thereof
JPS6410087B2 (en)
US11948738B2 (en) Systems and methods for a solenoid having a permanent magnet
JPH01302707A (en) Electromagnet
JP2002260512A (en) Magnet switch
JPH0231770Y2 (en)
JPS58158904A (en) Self-holding type solenoid
JPS6355770B2 (en)
JPS63133605A (en) Polarized electromagnet device
JP3726203B2 (en) Solenoid fixing method
JP3395236B2 (en) Solenoid valve
JPH118116A (en) Insertion type electromagnet
JPS601814A (en) Permanent magnet built-in type solenoid
JPH0313668Y2 (en)
JPH0154592B2 (en)
JPS59739Y2 (en) polarized electromagnetic device