JPS6399721A - Differential protective relay - Google Patents

Differential protective relay

Info

Publication number
JPS6399721A
JPS6399721A JP61244162A JP24416286A JPS6399721A JP S6399721 A JPS6399721 A JP S6399721A JP 61244162 A JP61244162 A JP 61244162A JP 24416286 A JP24416286 A JP 24416286A JP S6399721 A JPS6399721 A JP S6399721A
Authority
JP
Japan
Prior art keywords
current
differential
current transformer
relay
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61244162A
Other languages
Japanese (ja)
Inventor
吉孝 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61244162A priority Critical patent/JPS6399721A/en
Publication of JPS6399721A publication Critical patent/JPS6399721A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、変流器と比率差動継電器または過電流継電器
とで構成される差動保護継電装置の誤動作防止装置に関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a malfunction prevention device for a differential protection relay device consisting of a current transformer and a ratio differential relay or an overcurrent relay. Regarding.

(従来の技術) 第8図に比率差動継電器を用いた従来の差動保護継電袋
に、等9図に過電流継電器を用いた従来の差動保護継電
装置の構成をそれぞれ単相分について示す。電気機器1
をはさんで変流器2aと2bが取付けられ、電機器機の
主回路電流IaおよびIbは上記変流器2aおよび2b
によりそれぞれ2次組流IsaおよびIsbに変換され
、ケーブル4aおよび4bを経て第8図においては比率
差動継電器3に入力され、差電流Idと2次組流Isa
およびIsbとの比率により故障の識別が行なt+tL
、第9図においては差電流Idが過電流継電器6に入力
され故障の識別が行なわれる。
(Prior art) Figure 8 shows the configuration of a conventional differential protection relay bag using a ratio differential relay, and Figure 9 shows the configuration of a conventional differential protection relay device using an overcurrent relay. Show about minutes. Electrical equipment 1
Current transformers 2a and 2b are installed across the current transformers 2a and 2b, and the main circuit currents Ia and Ib of the electrical equipment are connected to the current transformers 2a and 2b.
are converted into secondary currents Isa and Isb, respectively, and input to the ratio differential relay 3 in FIG. 8 via cables 4a and 4b, and the difference current Id and secondary current Is
Faults are identified based on the ratio between t+tL and Isb.
, in FIG. 9, the differential current Id is input to the overcurrent relay 6 to identify a failure.

電気機器1が回転機等健全状態で主回路電流IaとIb
が等しくなる場合、変流器2aと2bは同一定格のもの
が使用される。
When the electrical equipment 1 is in a healthy state such as a rotating machine, the main circuit currents Ia and Ib
If the current transformers 2a and 2b are equal, current transformers 2a and 2b having the same rating are used.

第8図及び第9図の差!すj保護装置は第10図の等価
回路で表わすことができる。抵抗RaおよびRhは第8
図においてはそれぞれ変流器2aおよび2bの巻線抵抗
とケーブル4aおよび4bの抵抗と比率差動継電器3の
抑制要素3aおよび3bの抵抗の和であり、第9図にお
いてはそれぞれ変流器2aおよび2bの巻線抵抗とケー
ブル4aおよび4bの抵抗の和である。
Difference between Figures 8 and 9! The protective device can be represented by the equivalent circuit shown in FIG. Resistors Ra and Rh are the eighth
In the figure, it is the sum of the winding resistance of current transformers 2a and 2b, the resistance of cables 4a and 4b, and the resistance of suppressing elements 3a and 3b of ratio differential relay 3, and in FIG. and the sum of the winding resistance of 2b and the resistance of cables 4a and 4b.

インダクタンスLaおよびり、 bは第8図においては
それぞれ変流器2aおよび2bの漏れインダクタンスと
ケーブル4aおよび4bのインダクタンスと比率差動継
電器3の抑制要素3aおよび3bのインダクタンスの和
であり、第9図においてはそれぞれ変流器2aおよび2
bの漏れインダクタンスとケーブル4aおよび4bのイ
ンダクタンスの和である。
Inductances La and B are the sum of the leakage inductance of current transformers 2a and 2b, the inductance of cables 4a and 4b, and the inductance of suppression elements 3a and 3b of ratio differential relay 3, respectively in FIG. In the figure, current transformers 2a and 2 are shown, respectively.
is the sum of the leakage inductance of b and the inductance of cables 4a and 4b.

RdおよびLdは第8図においてはそれぞれ比率差動継
電器3の動作要素3dの抵抗およびインダクタンスであ
り第9図においてはそれぞれ過電流継電器6の動作要素
6dの抵抗およびインダクタンスである。Lmaおよび
Lambはそれぞれ変流器2aおよび2bの励磁インダ
クタンスである。Ia’およびIb’はそれぞれ変流器
2aおよび2bの1次電流の2次換算であり、等価的な
電流源とみなすことができるゆIma及びImbはそれ
ぞれ変流器2aおよび2bの励磁電流である。第10図
の等価回路から差電流は次式となる。
Rd and Ld are the resistance and inductance of the operating element 3d of the ratio differential relay 3 in FIG. 8, respectively, and the resistance and inductance of the operating element 6d of the overcurrent relay 6 in FIG. Lma and Lamb are the excitation inductances of current transformers 2a and 2b, respectively. Ia' and Ib' are the secondary conversions of the primary currents of current transformers 2a and 2b, respectively, and can be considered as equivalent current sources. Ima and Imb are the exciting currents of current transformers 2a and 2b, respectively. be. From the equivalent circuit shown in FIG. 10, the difference current is expressed as follows.

Id= Ia’ −Ib’+ l1Ilb −Ima 
 −(1)電機器機1に異常がない場合Ia’とIb’
は等しいため、前記0式は次式となる。
Id=Ia'-Ib'+ l1Ilb-Ima
- (1) If there is no abnormality in electrical equipment 1, Ia' and Ib'
are equal, so the above equation 0 becomes the following equation.

Id= Iwb −Ima        −■従って
電気機器1に異常がない場合の差電流 Idは変流器2
aおよび2bの励磁電流1mbとImaの差となる。励
磁電流ImaとIw+bは変流器2aおよび2bの励磁
インダクタンスLmaおよびLmbによって決まり、通
常は励磁インダクタンスが大きいためImaとImbは
非常に小さく■式のIdも非常に小さな値となるが、変
流器2aまたは2bが飽和し始めると励磁インダクタン
スLmaまたはLmbが低下し、かつLmaとLIIl
bに不平衡が生じると前記励磁電流ImaとIs+bの
差が増大し、大きな差電流Idが現れることになる。
Id = Iwb - Ima -■ Therefore, the difference current when there is no abnormality in the electrical equipment 1 Id is the current transformer 2
This is the difference between the excitation currents 1 mb and Ima of a and 2b. The excitation currents Ima and Iw+b are determined by the excitation inductances Lma and Lmb of the current transformers 2a and 2b. Normally, the excitation inductance is large, so Ima and Imb are very small, and Id in the formula is also a very small value, but the current transformation When the capacitor 2a or 2b begins to saturate, the excitation inductance Lma or Lmb decreases, and Lma and LIIl
When an unbalance occurs in b, the difference between the excitation current Ima and Is+b increases, and a large difference current Id appears.

一般に変流器2aおよび2bは、ある範囲の故障電流に
対して飽和しないように選定されるが、通常の変流器は
鉄心のヒステリシス特性のため大きな残留磁束が存在し
、変流器の1次側に直流分が重畳されると、変流器の2
次側の抵抗分により、変流器の偏磁が進んでいき、前記
残留磁束と相まって飽和に至る場合がある。
Generally, the current transformers 2a and 2b are selected so as not to saturate over a certain range of fault current, but in a normal current transformer, a large residual magnetic flux exists due to the hysteresis characteristic of the iron core, When the DC component is superimposed on the next side, the current transformer's 2
Due to the resistance on the next side, biased magnetization of the current transformer progresses, and in combination with the residual magnetic flux, it may reach saturation.

第8図及び第9図においてしゃ断器5を投入すると、最
大で交流電流分のピーク値に等しい直流分が発生し主回
路の時定数により、直流分が減衰していく、この直流分
が変流器2aおよび2bの2次側にも現れ、変流器2a
および2bが飽和していない場合は前記理由により差電
流Idが非常に小さいため、変流器2aは前記直流分の
2次換算値と抵抗Raの積の積分により偏磁が進み、変
流器2bは前記直流分の2次換算値と抵抗Rbの積の積
分により偏磁が進む。
In Figures 8 and 9, when the breaker 5 is turned on, a DC component equal to the peak value of the AC current is generated at maximum, and the DC component attenuates due to the time constant of the main circuit. It also appears on the secondary side of current transformers 2a and 2b, and current transformer 2a
If 2b and 2b are not saturated, the difference current Id is very small due to the above reason, so the current transformer 2a becomes biased due to the integration of the product of the secondary conversion value of the DC component and the resistance Ra, and the current transformer 2a 2b, the biased magnetization progresses due to the integration of the product of the secondary conversion value of the DC component and the resistance Rb.

第8図および第9図において、変流器2a、 2bおよ
び継電器3または6の取付場所の関係からケーブル4a
と4bの長さが大きく異なる場合が多く第1゜図におけ
るRaとRbおよびLaとLbは大きく異なる場合が多
い、このため、前記偏磁の進み方に大きな差が生じると
共に、前記残留磁束にも差が生じるため、前記しゃ断器
5を投入した時、変流器2aまたは2bが飽和し、励磁
電流I+uaとIn+bに大きな差が生じ、これが差電
流となって現れ、第8図においては比率差動継電器3が
、第9図においては過電流継電器5が誤動作する可能性
がある。
In FIGS. 8 and 9, due to the installation location of current transformers 2a, 2b and relay 3 or 6,
In many cases, the lengths of 4b and 4b are significantly different, and Ra and Rb and La and Lb in Fig. When the circuit breaker 5 is turned on, the current transformer 2a or 2b becomes saturated, and a large difference occurs between the excitation currents I+ua and In+b. This appears as a difference current, and in FIG. There is a possibility that the differential relay 3, or the overcurrent relay 5 in FIG. 9, may malfunction.

上記誤動作の可能性は、保護しようとする電気機器1が
、誘導電動機のように、定格電流に比べ。
The possibility of the above-mentioned malfunction is high when the electrical equipment 1 to be protected is compared to the rated current, such as an induction motor.

しゃ断器5を投入した時の始動電流が相当大きくなる場
合や、リアクトルのように直流分の減衰時定数が長い機
器や、上記誘導電動機やリアクトルに電源を供給する小
容量発電機やバスダクト等の場合特に問題となる。
In cases where the starting current when the breaker 5 is turned on is considerably large, or in equipment such as a reactor that has a long DC component decay time constant, or in a small-capacity generator or bus duct that supplies power to the induction motor or reactor, etc. This is particularly problematic in cases where

(発明が解決しようとする問題点) 上記問題点に対して、従来変流器の鉄心断面積を大きく
シ、直流偏磁に対する裕度を設けることや、変流器の鉄
心にギャップを設けて残留磁束を少なくすることや、ケ
ーブルの太さを大きくしケ−プルの抵抗を少なくするこ
と、等、変流器を飽和させないようにして誤動作を防止
する対策や。
(Problems to be Solved by the Invention) In order to solve the above problems, the cross-sectional area of the core of the conventional current transformer has been increased to provide a margin against DC bias magnetism, and the core of the current transformer has been provided with a gap. Measures can be taken to prevent current transformers from becoming saturated and malfunction, such as reducing residual magnetic flux, increasing cable thickness and reducing cable resistance.

上記飽和によって過渡的に発生する差電流が消滅するま
で、継電器の出力をタイマーでロックする対策が行なわ
れたが、上記の変流器を飽和させない対策は、ある範囲
の故障電流で変流器を飽和させないために必要とする変
流器の大きさやケーブルの太さよりかなり大きな、もの
となり、上記の継電器出力をタイマーによりロックする
対策はしゃ断器投入から上記過渡現象消滅の間、差動保
護が行なわれないという問題点がある。
A countermeasure was taken to lock the output of the relay with a timer until the differential current that transiently occurs due to saturation disappears, but the countermeasure to prevent the current transformer from becoming saturated is to This is considerably larger than the size of the current transformer and the thickness of the cable required to prevent saturation of the relay, and the above-mentioned measure to lock the relay output with a timer requires differential protection from the time when the breaker is turned on until the above-mentioned transient phenomenon disappears. The problem is that it is not done.

本発明は上記問題点に対処すべくなされたものであり、
ある範囲の故障電流を検出するために必要とする変流器
の大きさまたはケーブルの太さより大きくすることなく
、しゃ断器投入時に発生する過渡的な直流分と変流器の
残留磁束とによって生じる差電流を抑制し誤動作を防止
する差動保護継電装置を提供することを目的とする。
The present invention has been made to address the above problems,
This is caused by the transient DC component generated when the breaker is closed and the residual magnetic flux of the current transformer, without making the current transformer size or cable thickness larger than that required to detect a certain range of fault current. It is an object of the present invention to provide a differential protection relay device that suppresses differential current and prevents malfunction.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するため、本発明では電気機器の主回路
の各相に上記電気機器をはさんで取付けられた同一定格
の一対の変流器と、上記1対の変流器の差電流により前
記電気機器の故障を検出する比率差動継電器または過電
流継電器とで構成される差動保護継電装置において、前
記電気機器健全時に前記1対の変流器の飽和の差によっ
て発生する差電流を抑制するため適当な大きさの抵抗ま
たはリアクトルを差電流が流れる回路に挿入したことを
特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a pair of current transformers of the same rating attached to each phase of the main circuit of the electrical equipment with the electrical equipment sandwiched therebetween; In a differential protection relay device comprising a ratio differential relay or an overcurrent relay that detects a failure in the electrical equipment based on the differential current between a pair of current transformers, the current transformer in the pair when the electrical equipment is healthy In order to suppress the differential current generated due to the difference in the saturation of the devices, a resistor or reactor of an appropriate size is inserted into the circuit through which the differential current flows.

(作用) 差電流が流れる回路に適当な大きさの抵抗またはリアク
トルを挿入したことにより差電流を抑制できるので誤動
作を防止することができる。
(Function) By inserting a resistor or reactor of an appropriate size into the circuit through which the differential current flows, the differential current can be suppressed and malfunctions can be prevented.

(実施例) 本発明の一実施例の構成及び作用を第1図により説明す
る。第1図は第8図の従来の差動保護継電装置の比率差
動継電器3の内部に動作要素3dと直列に誤動作防止抵
抗11と誤動作防止リアクトル12を設け、抑制要素3
aと直列に負担調整用抵抗13を設けたものである。第
1図の等価回路も第10図の等価回路となるがこの場合
Rdは比率差動継電器3の動作要素3dの抵抗と誤動作
防止抵抗11の和となりLdは比率差動継電器3の動作
要素3dのインダクタンスと誤動作防止リアクトル12
の和となる。
(Example) The structure and operation of an example of the present invention will be explained with reference to FIG. FIG. 1 shows a ratio differential relay 3 of the conventional differential protection relay device shown in FIG.
A load adjustment resistor 13 is provided in series with a. The equivalent circuit in FIG. 1 is also the equivalent circuit in FIG. 10, but in this case Rd is the sum of the resistance of the operating element 3d of the ratio differential relay 3 and the malfunction prevention resistor 11, and Ld is the operating element 3d of the ratio differential relay 3. Inductance and malfunction prevention reactor 12
is the sum of

Raは変流器2aの巻線抵抗とケーブル4aの抵抗と比
率差動継電器3の抑制要素3aの抵抗と負担調整用抵抗
13の和であり、Rdは変流器2bの巻線抵抗とケーブ
ル4bの抵抗と比率差動継電器3の抑制要素3bの抵抗
の和である。他の抵抗及びインダクタンスは第8図の場
合と同様である。第1O図の等価回路から変流器2aに
発生する電圧Vaと変流器2bに発生する電圧vbは次
式となる d        d Va=Ra・Iw+La1Isa+RdId+Ld訂1
d−曲■d        d ■b=Rb・工sb+Lb■工5b−Rd工d−Ldコ
ニd・・・・・・0)ここで、電機器機1が健全な場合
、差電流Idは励磁電流IabとI+iaO差となり前
記■式が成り立つことから(4式および171)式は次
式となる。
Ra is the sum of the winding resistance of the current transformer 2a, the resistance of the cable 4a, the resistance of the suppressing element 3a of the ratio differential relay 3, and the load adjustment resistor 13, and Rd is the sum of the winding resistance of the current transformer 2b and the cable 4a. 4b and the resistance of the suppression element 3b of the ratio differential relay 3. Other resistances and inductances are the same as in FIG. From the equivalent circuit in Figure 1O, the voltage Va generated in the current transformer 2a and the voltage vb generated in the current transformer 2b are expressed by the following formulad d Va=Ra・Iw+La1Isa+RdId+LdRevision 1
d - song ■ d d ■ b = Rb・engine sb + Lb ■ engineering 5b - Rd engineering d - Ld coni d...0) Here, when the electrical equipment machine 1 is healthy, the difference current Id is the exciting current Iab Since this is the difference between I+iaO and the equation (2) holds true, the equations (4 and 171) become the following equations.

Va=Ra−I sa+ La−I ga+Rd(Iw
h−I am)+ Ld−’(I mb−I ma)−
■dt                dtVb=R
a・I sa+ ””■I sa+Rd(I ma−I
 mb)+ Ldn(I ma−I mb)=(e変流
器2aが変流器2bより先に飽和し始めると変流器2a
の励磁電流Imaが変流器2bの励磁電流I++bより
大きくなり、Imb−Imbは負となる。変流器2aお
よび2bの鉄心の磁束がそれぞれ前記Vaおよびvbに
比例して増加することから、4式および4式よりRdの
電圧降下およびLdの電圧降下は、飽和し始めた°変流
器2aに対して磁束の増加を抑制し飽和していない変流
器2bに対して磁束の増加を促進する効果が生じる。
Va=Ra-I sa+ La-I ga+Rd(Iw
h-I am)+ Ld-'(I mb-I ma)-
■dt dtVb=R
a・I sa+ ””■I sa+Rd(I ma-I
mb) + Ldn(I ma - I mb) = (eIf current transformer 2a starts to saturate before current transformer 2b, current transformer 2a
The exciting current Ima of the current transformer 2b becomes larger than the exciting current I++b of the current transformer 2b, and Imb-Imb becomes negative. Since the magnetic fluxes of the iron cores of current transformers 2a and 2b increase in proportion to Va and vb, respectively, the voltage drop of Rd and the voltage drop of Ld start to saturate from equations 4 and 4. This has the effect of suppressing an increase in magnetic flux for current transformer 2a and promoting an increase in magnetic flux for current transformer 2b which is not saturated.

同様に変流器2bが変流器2aより先に飽和し始めると
変流器2bの励磁電流Imbより変流器2aの励磁電流
工■aより大きくなりImb−Inmbが正となるため
、Rdの電圧降下およびLdの電圧降下は飽和し始めた
変流器2bに対して磁束の増加を抑制し飽和していない
変流器2aに対しては磁束の増加を抑制する効果が生じ
る。
Similarly, if the current transformer 2b starts to saturate before the current transformer 2a, the exciting current Imb of the current transformer 2b becomes larger than the exciting current a of the current transformer 2a, and Imb-Inmb becomes positive, so Rd The voltage drop in Ld and the voltage drop in Ld have the effect of suppressing an increase in magnetic flux for the current transformer 2b that has begun to saturate, and suppressing an increase in magnetic flux for the current transformer 2a that is not saturated.

このようにRdおよびLdは電気機器1が健全な場合変
流器2dと2bの飽和の不平衡を減少させる効果がある
ため適当な大きさの1摂動作防止抵抗11および誤動作
防止リアクトルlOを差電流回路に挿入することにより
、過渡的な直流分と変流器の残留磁束による差電流を抑
制し、差動保護継電装置の、(1動作を防止することが
できる。
In this way, Rd and Ld have the effect of reducing the unbalance of saturation between the current transformers 2d and 2b when the electrical equipment 1 is healthy. By inserting it into the current circuit, it is possible to suppress the differential current caused by the transient DC component and the residual magnetic flux of the current transformer, and prevent the (1) operation of the differential protection relay device.

またに記誤動作は主に変流器2aと2b2次側の負担の
差に起因することから、変流器2次負担を等しくするた
めの負担調整用抵抗12を、2次負担の小さい変流器側
へ接続することで、誤動作防止に効果がある。
In addition, since the malfunction described above is mainly caused by the difference in the load on the secondary side of the current transformers 2a and 2b, the load adjustment resistor 12 is used to equalize the secondary load of the current transformer. Connecting to the device side is effective in preventing malfunctions.

第1図の一実施例では負担調整用リアクトルを省略して
いるが、負担調整リアクトルを負担調整用抵抗と直列に
挿入する場合も本発明の一実施例に含まれる。変流器2
aと2bが同一定格でも、変流器の残留磁束や飽和レベ
ルが同一とならない場合が多く、上記適当な大きさの誤
動作防止抵抗11および誤動作防止リアクトル10と負
担調整用抵抗12および負担調整用リアクトルを組合わ
せることにより、より効果的に誤動作を防止することが
できる。
Although the load adjustment reactor is omitted in the embodiment of FIG. 1, the case where the load adjustment reactor is inserted in series with the load adjustment resistor is also included in the embodiment of the present invention. current transformer 2
Even if a and 2b have the same rating, the residual magnetic flux and saturation level of the current transformer are often not the same. By combining reactors, malfunctions can be more effectively prevented.

第2図の実施例は誤動作防止抵抗11、誤1す3作防止
リアクトル10および負担調整用抵抗12を比率差動@
1’itt器外部に取付けたものであり、作用は第1図
の実施例と同じであり本発明に含まれる。
The embodiment shown in FIG. 2 is a ratio differential @
This is installed outside the 1'itt device, and its function is the same as that of the embodiment shown in FIG. 1, so it is included in the present invention.

第3図及び第4図はそれぞれ比率差動継電器の内部及び
外部に変成器13を介して誤動作防止抵抗11、誤動作
防止リアクトル10および負担調整用抵抗12を挿入し
たものであり作用は第1図の実施例と同じであり本発明
に含まれる。
3 and 4, a malfunction prevention resistor 11, a malfunction prevention reactor 10, and a load adjustment resistor 12 are inserted inside and outside a ratio differential relay via a transformer 13, respectively, and the operation is as shown in FIG. 1. This embodiment is the same as the above embodiment and is included in the present invention.

第5図は変成器13を介して誤it!l+作防止抵抗1
1および誤動作防止リアクトル10を動作要素3dと直
列に挿入し負担調整用抵抗12を抑制要素3aと直列に
挿入したもので作用は第1図と同様であり本発明に含ま
れる。
FIG. 5 shows the error it! through the transformer 13! l+ motion prevention resistance 1
1 and a malfunction prevention reactor 10 are inserted in series with the operating element 3d, and a load adjustment resistor 12 is inserted in series with the suppressing element 3a, and the operation is the same as that in FIG. 1 and is included in the present invention.

第6図は過電流継電器を使用した差動保護継電装置にお
いて、誤動作防止抵抗11、誤動作防止リアクトル10
および負担調整用抵抗12を挿入したものであるが作用
は第1図と同様であり本発明に含まれる。
Figure 6 shows a differential protection relay device using an overcurrent relay, including a malfunction prevention resistor 11 and a malfunction prevention reactor 10.
Although a load adjustment resistor 12 is inserted, the operation is the same as that in FIG. 1 and is included in the present invention.

第7図は誤動作防止抵抗11、誤動作防止リアクトルI
Oおよび負担調整用抵抗12を変成器を介して挿入した
ものであるが作用は第1図と同様であり本発明に含まれ
る。上記実施例の部分的に組み合わせて、第1図と同様
の作用を得る場合も本発明に含まれる。
Figure 7 shows malfunction prevention resistor 11 and malfunction prevention reactor I.
O and the load adjustment resistor 12 are inserted through a transformer, but the operation is the same as that in FIG. 1 and is included in the present invention. The present invention also includes a case where the above embodiments are partially combined to obtain the same effect as shown in FIG. 1.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、しゃ断器投入時に保
護しようとする電気機器に過渡的な直流分が発生し、変
流器の残留磁束とで変流器が飽和してしまう場合におい
ても、上記電気機器が健全な場合は、差電流の流れる回
路に挿入された、誤動作防止用の抵抗およびリアクトル
と変流器の2次負担調整用の抵抗により、保護しようと
する電気機器をはさんで設けられた同一定格の一対の変
流器の飽和の程度が等しくなり、差電流が抑制されるた
め、ある範囲の故障電流を検出するために必要とする変
流器の大きさまたはケーブルの太さより大きくすること
なく誤動作を防止することができる差動保護継電装置を
提供することができる。
As described above, according to the present invention, even when a transient DC component is generated in the electrical equipment to be protected when the breaker is turned on, and the current transformer is saturated with the residual magnetic flux of the current transformer, , If the electrical equipment mentioned above is in good condition, the electrical equipment to be protected can be sandwiched by a resistor for preventing malfunction and a resistor for adjusting the secondary load of the reactor and current transformer inserted into the circuit through which the differential current flows. The degree of saturation of a pair of current transformers of the same rating will be equal, and the differential current will be suppressed. It is possible to provide a differential protection relay device that can prevent malfunctions without increasing the thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第7図は、本発明の一実施例による誤動作防
止装置をもつ差動保護継電装置の接続図、第8図および
第9図は従来の差動保護継電装置の接続図、第10図は
第1図から第9図までの差動保護継電装置の等価回路で
ある。 1・・・電気機器       2a、2b・・・変流
器3・・・比率差動継電器    3a、3b・・・抑
制要素3d・・・動作要素       4a、 4b
・・・ケーブル5・・・しゃ断器       6・・
・過電流継電器6d・・・動作要素       7a
、7b、7d・・・抵抗8a、8b、8d、8e、8f
−インダクタンス9a 、 9b・・・等値組流源 IO・・・誤動作防止リアクトル 11・・・誤動作防止抵抗   12・・・負担調整用
抵抗13・・・変成器 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図   第2図 第3図   第4図 第5図 第7図
1 to 7 are connection diagrams of a differential protection relay device having a malfunction prevention device according to an embodiment of the present invention, and FIGS. 8 and 9 are connection diagrams of a conventional differential protection relay device. , and FIG. 10 are equivalent circuits of the differential protective relay devices shown in FIGS. 1 to 9. 1... Electrical equipment 2a, 2b... Current transformer 3... Ratio differential relay 3a, 3b... Suppression element 3d... Operating element 4a, 4b
... Cable 5 ... Breaker 6 ...
・Overcurrent relay 6d...Operating element 7a
, 7b, 7d...Resistors 8a, 8b, 8d, 8e, 8f
- Inductance 9a, 9b...Equivalent pair flow source IO...Malfunction prevention reactor 11...Malfunction prevention resistor 12...Load adjustment resistor 13...Transformer agent Patent attorney Noriyuki Chika Hirofumi MitsumataFigure 1Figure 2Figure 3Figure 4Figure 5Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)電気機器の主回路の各相に前記電気機器をはさん
で取付けられた同一定格の一対の変流器と、前記1対の
変流器の差電流により、前記電気機器の故障を検出する
比率差動継電器または過電流継電器とで構成される差動
保護継電装置において、前記電気機器健全時に前記1対
の変流器の飽和の差によって発生する差電流を抑制する
ため適当な大きさの抵抗またはリアクトルを差電流が流
れる回路に挿入してなしたことを特徴とする差動保護継
電装置。
(1) A pair of current transformers of the same rating are installed in each phase of the main circuit of the electrical equipment with the electrical equipment in between, and the difference in current between the pair of current transformers prevents failure of the electrical equipment. In a differential protection relay device composed of a ratio differential relay or an overcurrent relay to be detected, an appropriate A differential protection relay device characterized in that it is constructed by inserting a resistor or reactor of a certain size into a circuit through which a differential current flows.
(2)1対の変流器の2次側の負担を等しく調整するた
めの抵抗またはリアクトルを、上記1対の変流器の二次
側に設けたことを特徴とする特許請求の範囲第1項記載
の差動保護継電装置。
(2) A resistor or a reactor for equally adjusting the load on the secondary sides of the pair of current transformers is provided on the secondary sides of the pair of current transformers. The differential protection relay device according to item 1.
JP61244162A 1986-10-16 1986-10-16 Differential protective relay Pending JPS6399721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244162A JPS6399721A (en) 1986-10-16 1986-10-16 Differential protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244162A JPS6399721A (en) 1986-10-16 1986-10-16 Differential protective relay

Publications (1)

Publication Number Publication Date
JPS6399721A true JPS6399721A (en) 1988-05-02

Family

ID=17114690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244162A Pending JPS6399721A (en) 1986-10-16 1986-10-16 Differential protective relay

Country Status (1)

Country Link
JP (1) JPS6399721A (en)

Similar Documents

Publication Publication Date Title
JP2001359234A (en) Modular current sensor and power supply unit
JP2007300700A (en) Noise reducing reactor and noise reducing device
JPS6366139B2 (en)
JPS6399721A (en) Differential protective relay
Liew Nuisance trippings of residual current circuit breakers or ground fault protectors of power sources connected to computer and electronic loads
CA1099341A (en) Circuit arrangement for detecting grounds in a static converter
US3974423A (en) Differential current protective device
US2290101A (en) Protective arrangement
JPH0862254A (en) Direct current detector
US3710190A (en) Fault current protective circuit for a load supplied from single or polyphase systems
Ristic et al. The major differences between electromechanical and microprocessor based technologies in relay setting rules for transformer current differential protection
SU1118938A1 (en) Device for measuring ohmic resistances of alternating current electric circuits
JPS58103823A (en) Neutral point grounding protecting device for transformer
JPS6338688Y2 (en)
McConnell Transductor-Type Field Ripple Detector for Synchronous Generators
JPH01141364A (en) Instrument for measuring ac current
JPS6046725A (en) Differential protecting relaying device of transformer
JPS58179122A (en) Transformer protecting relay unit
JPS62250821A (en) Three-phase differential relay
JPS62250819A (en) Three-phase ratio differential relay
JPH10341527A (en) Transformer protective relay device
JPS6169330A (en) Ground-fault detector
JPS6051333B2 (en) Circuit breaker load current detection circuit
JPS6146116A (en) Transformer protective relaying device
JPH0688149U (en) Ratio differential relay for generator