JPS58179122A - Transformer protecting relay unit - Google Patents

Transformer protecting relay unit

Info

Publication number
JPS58179122A
JPS58179122A JP5967782A JP5967782A JPS58179122A JP S58179122 A JPS58179122 A JP S58179122A JP 5967782 A JP5967782 A JP 5967782A JP 5967782 A JP5967782 A JP 5967782A JP S58179122 A JPS58179122 A JP S58179122A
Authority
JP
Japan
Prior art keywords
transformer
magnetic flux
current
core
inrush current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5967782A
Other languages
Japanese (ja)
Other versions
JPH0216654B2 (en
Inventor
恵造 稲垣
斉藤 達
乾 芳彰
忠 佐藤
宏 佐々木
宮崎 照信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5967782A priority Critical patent/JPS58179122A/en
Publication of JPS58179122A publication Critical patent/JPS58179122A/en
Publication of JPH0216654B2 publication Critical patent/JPH0216654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は変圧器保護継電装置に係シ、特に変圧器の励磁
突入電流による誤動作を防止した変圧器保護継電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transformer protective relay device, and more particularly to a transformer protective relay device that prevents malfunctions caused by excitation inrush current of a transformer.

従来変圧器の巻線故障等の異常時における変圧器保護は
、保護対象変圧器の各端子を通過する電流全変圧比に相
当する等価変換した電流信号として変流器によりとり出
した電流差動又は電流比率差動方式によるのが多い。電
流差動又は電流比率差動方式においては変圧器の内部故
障時に差動電流が生ずるが、変圧器を無負荷励磁した場
合や外部故障除去時に電圧がロタした場合等に生ずるい
わゆる励磁突入電流によっても差動電流が生ずる。
Conventionally, transformer protection in the event of an abnormality such as a winding failure in a transformer is achieved by using a current differential signal taken out by a current transformer as an equivalent current signal corresponding to the total transformation ratio of the current passing through each terminal of the protected transformer. Alternatively, a current ratio differential method is often used. In current differential or current ratio differential systems, differential current is generated when there is an internal fault in the transformer, but due to the so-called excitation inrush current that occurs when the transformer is energized with no load or when the voltage rotates when removing an external fault, etc. A differential current also occurs.

そこで従来は励磁突入電流波形の特有性から励磁突入電
流と内部故障電流を判別し、励磁突入電流による誤動作
を防止している。一つの方法として励磁突入電流中の第
2高調波成分の割合が故障電流中のそれよりも多いこと
全利用して、差動電流中の第2高調波成分の割合が一定
値以上のときは励磁突入電流と判定してしゃ断器の引き
外し指令を出力しないようにする方法が用いられている
Conventionally, magnetizing inrush current and internal fault current are distinguished from the uniqueness of the magnetizing inrush current waveform to prevent malfunctions caused by magnetizing inrush current. One method is to fully utilize the fact that the proportion of the second harmonic component in the magnetizing inrush current is higher than that in the fault current, and when the proportion of the second harmonic component in the differential current is above a certain value, A method is used in which the current is determined to be an excitation inrush current and a breaker tripping command is not output.

しかしこの方法では第2高調波成分の割合が多いという
励磁突入電流の特徴を検出するには少なくとも1サイク
ルの時間が必要でメク、内部故障時にも少なくともこの
時間だけaしゃ断器引き外し指令の出力を遅延させなけ
ればならず、高速動作を阻害している問題点がおる。又
最近ケーブル系統が多用されており、対地静電容量の増
大によって変圧器の内部故障時の故障電流に多くの高調
渡分を含むことが指摘されている。系統の対地静電容量
、リアクタンス及び変圧器インピーダンス等によっては
故障電流中に第2高調波付近の低次高調波を含むことが
アシ、この場合上記従来方法では変圧器保護継電装置の
動作遅延となシ、ひいては誤不動作により変圧器タンク
が破壊し重大災害を招く恐れがある。
However, with this method, it takes at least one cycle to detect the characteristic of the excitation inrush current that has a high proportion of second harmonic components, and even in the event of an internal failure, the breaker trip command is output for at least this time. There is a problem in that the process must be delayed, which hinders high-speed operation. Furthermore, recently, cable systems have been widely used, and it has been pointed out that due to an increase in ground capacitance, the fault current in the event of an internal fault in a transformer includes many harmonic components. Depending on the ground capacitance, reactance, and transformer impedance of the system, the fault current may contain low-order harmonics near the second harmonic, and in this case, the conventional method described above may delay the operation of the transformer protection relay device. There is a risk that the transformer tank may be destroyed due to malfunction or malfunction, resulting in a serious disaster.

変圧器の励磁突入電流による変圧器保護継電装置の誤動
作を防止する他の従来方法として、変圧器を無負荷励磁
する最初の一定時間だけ、しゃ断器の引外し指令出力を
阻止しておく方法がある。
Another conventional method for preventing malfunction of the transformer protective relay device due to transformer excitation inrush current is to prevent the output of the breaker trip command for a certain period of time at the beginning of no-load excitation of the transformer. There is.

この方法の場合、変圧器を無負荷励磁した当初の内部故
障に対する保護動作が遅延され、外部故障除去時の突入
電流、並列変圧器投入時の突入電流等による誤動作を防
止できない欠点がある。
In the case of this method, the protective operation against an internal failure at the time of no-load excitation of the transformer is delayed, and there is a drawback that malfunctions due to inrush current when removing an external failure, inrush current when turning on a parallel transformer, etc. cannot be prevented.

本発明の目的は上記した従来技術の欠点をなくし、変圧
器の励磁突入電流を確実罠高速度検出してしゃ断器の引
き外し指令全阻止することにより、励磁突入を流による
誤動作を防止すると共に内部故障時に高速度動作するこ
とができる変圧器保護継電装置を提供するにおる。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to detect the transformer's magnetizing inrush current at high speed, and to completely block the breaker tripping command, thereby preventing malfunctions caused by the magnetizing inrush current. The present invention provides a transformer protection relay device that can operate at high speed in the event of an internal failure.

本発明は変圧器の励磁突入電流を高速度検出する手段と
して、励磁突入電流が流れているとき変圧器鉄心は磁気
飽和して多量の磁束が鉄心外に漏れていることに着目し
、鉄心からの漏れ磁束量又は漏れ磁束量の変化が一定埴
以上のとき励磁突入電流と判定して電流差動又は電流比
率差動方式におけるしゃ断器引き外し指令を阻止するよ
うにしたものである。
The present invention is a means for detecting the magnetizing inrush current of a transformer at high speed, by focusing on the fact that when the magnetizing inrush current is flowing, the transformer core is magnetically saturated and a large amount of magnetic flux leaks out of the core. When the amount of leakage magnetic flux or the change in the amount of leakage magnetic flux exceeds a certain value, it is determined that there is an excitation inrush current, and a breaker trip command in the current differential or current ratio differential method is blocked.

本発明の特徴を明確にするため、まず変圧器の励磁突入
電流現象と鉄心からの漏れ磁束の関係及び漏れ磁束検出
手段について説明する。第1図に変圧器の励磁電流工0
と鉄心内磁束密度Bの関係を示す。衆知のように磁束密
度Bが変圧器鉄心材料の飽和磁束密度8厘を毬えると励
磁電流工0が急激に増加する特性となる。変圧器が通常
に運転されている場否、磁束密度Bは飽和磁束密度B−
より小さく、励磁電流工0の作る磁束は鉄心内の閉磁路
を循環し、鉄心外へはほとんど漏れない。
In order to clarify the features of the present invention, first, the relationship between the magnetizing inrush current phenomenon of the transformer and the leakage flux from the iron core, and the leakage flux detection means will be explained. Figure 1 shows the excitation current of the transformer.
The relationship between B and magnetic flux density B in the iron core is shown. As is well known, when the magnetic flux density B exceeds the saturation magnetic flux density of 8 R of the transformer core material, the exciting current 0 increases rapidly. When the transformer is operated normally, the magnetic flux density B is the saturation magnetic flux density B-
The magnetic flux generated by the exciting current generator 0 circulates in a closed magnetic path within the iron core, and hardly leaks out of the iron core.

しかし変圧器を無負荷励磁した場合等で磁束密度Bが飽
和磁束密度B@を越えると変圧器鉄心の透磁率は空気又
は変圧器油の透磁率とほぼ等しくなるため、励磁電流I
oの作る磁束のうち飽和磁束密度Blを越えた分につい
ては鉄心がない場合と同じ分布となり鉄心外の空間に漏
れ磁束φLを生ずる。従って鉄心からの漏れ磁束φLと
鉄心内磁束密度Bとの関係は第2図に示すように第1図
で示したBとIoの関係とほぼ同じになるのは明らかで
ある。
However, when the magnetic flux density B exceeds the saturation magnetic flux density B@, such as when the transformer is excited with no load, the magnetic permeability of the transformer core becomes almost equal to the permeability of air or transformer oil, so the exciting current I
Of the magnetic flux produced by o, the portion exceeding the saturation magnetic flux density Bl has the same distribution as in the case without the iron core, and leakage magnetic flux φL is generated in the space outside the iron core. Therefore, it is clear that the relationship between the leakage magnetic flux φL from the iron core and the magnetic flux density B in the iron core, as shown in FIG. 2, is almost the same as the relationship between B and Io shown in FIG. 1.

変圧器鉄心飽和時の励磁電流工0による漏れ磁束φLの
分布の例を第3図に示す。第3図は簡単のためセンタコ
ア形単相変圧器の場合を模型的に示し念もので、1は変
圧器鉄心、2は巻it示す。
FIG. 3 shows an example of the distribution of leakage magnetic flux φL due to excitation current 0 when the transformer core is saturated. For the sake of simplicity, FIG. 3 schematically shows the case of a center core type single-phase transformer, where 1 indicates the transformer core and 2 indicates the winding.

漏れ磁束φLを検出する手段は変圧器タンク内のどこに
設置しても良いが、健全時の負荷電流及び内部故障電流
による磁束の影響ケ受けないようにする必要がある。こ
のためには第3図中例えばa−b、  Cで示すように
、鉄心継鉄部分において巻線と対向する反対側の部分に
鉄心と近接して設置するのが良い。健全時及び内部故障
時は鉄心は磁気飽和していないため、負荷電流及び内部
故障電流による磁束が第3図の漏れ磁束φLのように鉄
心を貫通してa、 b、(で示した位置に生ずることは
なく、外側から回シ込んで”t be cで示した位置
に生ずる影響本はとんどない。従って、変圧器鉄心外に
生じている磁束のうち励磁電流工0による漏れ磁束φL
のみを選択して検出するのは極めて容易である。又、第
3図”+ be cで例示し次位置の他では、鉄心の接
合部付近のように鉄心中の磁束が外部に漏れ易す位置を
選定するのは、漏れ磁束φL検出の高感度化に有効であ
る。漏れ磁束φLの方向は第3図に示すように’l b
、 C等の位置によって異なるので、検出する漏れ磁束
φLの方向は磁束検出手段を設置する場所によって高感
度となるよう適宜定めれば良い。
The means for detecting the leakage magnetic flux φL may be installed anywhere within the transformer tank, but it is necessary to prevent it from being affected by the magnetic flux due to the load current and internal fault current when it is healthy. For this purpose, it is preferable to install it close to the core at a portion of the core yoke portion on the opposite side facing the windings, as shown by, for example, a-b and C in FIG. Since the iron core is not magnetically saturated when it is healthy or when there is an internal failure, the magnetic flux due to the load current and internal fault current passes through the iron core as shown in the leakage magnetic flux φL in Figure 3 and reaches the positions indicated by a, b, (). There is almost no influence that occurs at the position indicated by t be c when it is inserted from the outside.Therefore, among the magnetic flux generated outside the transformer core, the leakage magnetic flux φL due to the exciting current wire 0
It is extremely easy to select and detect only those. In addition, in addition to the following positions shown in Figure 3 as an example, selecting a position where the magnetic flux in the iron core easily leaks to the outside, such as near the joint of the iron core, is important for the high sensitivity of detecting leakage magnetic flux φL. The direction of the leakage magnetic flux φL is 'l b as shown in Figure 3.
, C, etc., the direction of the leakage magnetic flux φL to be detected may be appropriately determined depending on the location where the magnetic flux detection means is installed so as to achieve high sensitivity.

励磁電流Ioによる鉄心からの漏れ磁束φLを検出する
磁束検出手段としては半導体のホール効朱を利用した素
子、光ファラデー効果を利用する方法、コイルの磁気誘
導作用を利用したいわゆるサーチコイル等、従来から種
々の技術が開発されている。各々原理は異なるが、それ
ぞれφLに対応した出力を得ることができる。第4図に
励磁突入電流Io、鉄心からの漏れ磁束φL及びφLの
時間微分波形を示すが、例えばホール効果を利用した素
子の場合、磁束φLにほぼ比例した電圧出し念電圧出力
となるが、これ全積分することにょシφLに比例した′
Wa:圧が得られる。又光ファラデー効果を利用する方
法では磁束φもの情報を電気絶縁物である光ファイバー
にょシ変圧器タンク外に引き出せるという特徴がある。
Conventional magnetic flux detection means for detecting the leakage magnetic flux φL from the iron core due to the excitation current Io include elements that utilize the Hall effect of semiconductors, methods that utilize the optical Faraday effect, and so-called search coils that utilize the magnetic induction effect of coils. Various technologies have been developed since then. Although each principle is different, it is possible to obtain an output corresponding to φL. Figure 4 shows the time differential waveforms of the excitation inrush current Io, leakage magnetic flux φL from the iron core, and φL. For example, in the case of an element using the Hall effect, the voltage output is almost proportional to the magnetic flux φL, but, To fully integrate this, it is proportional to φL'
Wa: Pressure is obtained. In addition, the method using the optical Faraday effect has the characteristic that information of the magnetic flux φ can be extracted from the optical fiber, which is an electrical insulator, to the outside of the transformer tank.

以上のような種匝以上になったとき変圧器鉄心が磁気飽
和したことを検出し、励磁突入電流が流れていると判定
することができる。
When the value exceeds the initial value as described above, it is possible to detect that the transformer core is magnetically saturated and determine that an excitation inrush current is flowing.

次に第5図により本発明の詳細な説明する。第5図は本
発明の一実施例を示した概略図で、1は保一対象変圧器
の鉄心、2,3idそれぞれ鉄心1に巻回された1次及
び2次巻線、4は鉄心及び巻線を収納する変圧器タンク
、5.6はそれぞれ1次及び2次側しゃ断器、7,8は
それぞれ1次及び2次側変流器、9は比率差動継を要素
、1oは上記し友1個以上の磁束検出手段、11は磁束
検出継電要素、12は磁束検出継電要素の出力を引きの
ばすタイマ、13はインヒビット回路である。
Next, the present invention will be explained in detail with reference to FIG. FIG. 5 is a schematic diagram showing an embodiment of the present invention, in which 1 is the core of the transformer to be protected, 2 and 3 are the primary and secondary windings wound around the core 1, respectively, 4 is the core and The transformer tank that stores the windings, 5.6 are the primary and secondary circuit breakers, 7 and 8 are the primary and secondary current transformers, respectively, 9 is the ratio differential joint element, and 1o is the above element. 11 is a magnetic flux detection relay element, 12 is a timer for extending the output of the magnetic flux detection relay element, and 13 is an inhibit circuit.

第5図の本発明の実施例において、保護対象変圧器に励
磁突入電流が生じた場合の動作タイムチャートを第6図
に示す、以下第6図により第5図の本発明の実施例の動
作を説明する。アナログ方式の場合でも比率差動継電要
素9の動作は第6図に示すように比較的早い。上記した
ように鉄心からの漏れ磁束φLは励磁突入電流即ち差動
電流工とほぼ同じ波形である。磁束検出継電要素11は
1個以上の磁束検出手段1oの出力により鉄心からの漏
れ磁束φLが一定筐以上になったことを判定して動作す
る。タイマ12により磁束検出網′#1費素11の出力
tlサイクル程度引きのばす。以上によシインヒビット
回路13からはしゃ断器引き外し指令は出ない。磁束検
出継電要素11を比率差動継電要素9と同様にアナログ
方式として適当な時定数をも之せれば、タイマ12は必
ずしも必要でない。ただし、励磁突入電流の場合は比率
差動継電要素9よシ磁束検出継電要素11を早く動作さ
せる構成とする必要がある。変流器の変流比誤差等によ
って健全時でも生ずる差動電流による誤動作防止等のた
め、比率差動継電要素9の最小動作電流は通常定格電流
の10〜20%以上とされる。これに対し、前記したよ
うに磁束検出一手段10の設置個所を選定することによ
シ変圧器鉄心が磁気飽和していないときの鉄心からの漏
れ磁束φLはほぼ零とすることができるため、磁束検出
継電要素11は比率差動継を要素9よシも高感度にでき
、早く動作させることは容易でおる。一方円部故障時に
おいては磁束検出継電要素11は動作しないため、比率
差動継電要素9の動作と同時にインヒビット回路13か
らしゃ断器引き外し指令が出力される。従来方式におい
て、比率差動継電要素が仮に早く動作しても、波形の判
定に1サイクル以上を要しこの時間だけしゃ断器引き外
し指令の出力が遅れるのと比べて明らかに内部故障時の
高速動作が可能である。
In the embodiment of the present invention shown in FIG. 5, the operation time chart when a magnetizing inrush current occurs in the transformer to be protected is shown in FIG. 6.The operation of the embodiment of the invention shown in FIG. Explain. Even in the case of the analog method, the operation of the ratio differential relay element 9 is relatively fast as shown in FIG. As described above, the leakage magnetic flux φL from the iron core has almost the same waveform as the excitation inrush current, that is, the differential current flow. The magnetic flux detection relay element 11 operates based on the output of one or more magnetic flux detection means 1o when it is determined that the leakage magnetic flux φL from the iron core has exceeded a certain value. The timer 12 prolongs the output of the magnetic flux detection network '#1 element 11 by about tl cycles. As described above, no breaker tripping command is issued from the inhibit circuit 13. If the magnetic flux detection relay element 11 is an analog system like the ratio differential relay element 9 and has an appropriate time constant, the timer 12 is not necessarily required. However, in the case of excitation inrush current, it is necessary to configure the magnetic flux detection relay element 11 to operate faster than the ratio differential relay element 9. In order to prevent malfunctions due to differential currents that occur even when the current transformer is in good condition due to current transformation ratio errors, etc., the minimum operating current of the ratio differential relay element 9 is normally set to 10 to 20% or more of the rated current. On the other hand, by selecting the installation location of the magnetic flux detection means 10 as described above, the leakage magnetic flux φL from the core when the transformer core is not magnetically saturated can be made almost zero. The magnetic flux detection relay element 11 can make the ratio differential relay more sensitive than the element 9, and can easily operate quickly. On the other hand, when the circular part fails, the magnetic flux detection relay element 11 does not operate, so a breaker tripping command is output from the inhibit circuit 13 at the same time as the ratio differential relay element 9 operates. In the conventional method, even if the ratio differential relay element operates quickly, it takes more than one cycle to determine the waveform, and the output of the breaker trip command is delayed by this time. High-speed operation is possible.

本発明の他の実施例を第7図に示す。第7図において第
5図と同一部品は同一符号を付し説明を省略する。第7
図において第5図と異なるのはタイマ12t−インヒビ
ット回路の後段に配置した点でおる。第7図において保
護対象変圧器に励磁突入taが生じた場合の動作タイム
チャートを第8図に示す。比率差動継電要素9をディジ
タル式とすることKよシ、第8図に示すように差動電流
■に対してほぼ時間遅れなく動作させることができる。
Another embodiment of the invention is shown in FIG. In FIG. 7, parts that are the same as those in FIG. 5 are given the same reference numerals, and explanations thereof will be omitted. 7th
The difference between the figure and FIG. 5 is that the timer 12t-inhibit circuit is placed at the latter stage. FIG. 8 shows an operation time chart when inrush ta occurs in the transformer to be protected in FIG. 7. If the ratio differential relay element 9 is of a digital type, it can be operated with almost no time delay with respect to the differential current (2), as shown in FIG.

磁束検出継電要素11の動作は第6図で説明したのと同
じであるが、比率差動継電要素9より早く動作し、遅く
復帰するようにしている。これは前記したように磁束検
出継1に要素11を比率差動継を要素9よシ高感度とす
ることで達成される。
The operation of the magnetic flux detection relay element 11 is the same as that described in FIG. 6, but it operates earlier than the ratio differential relay element 9 and returns later. This is achieved by making the element 11 in the magnetic flux detection joint 1 more sensitive than the element 9 in the differential joint as described above.

従ってインヒビット回路13は動作せず、しゃ断器引き
外し指令は出力されない。内部故障時に磁束検出継電要
素11は動作せず、比率差動継電要素9が動作するのと
同時にイ/ヒビット回路が動作し、しゃ断器引き外し指
令が出力されるので、第6図で示したものよシ高速動作
できる。タイマ12は内部故障時において比率差動継電
要素9及びインヒビット回路の動作断続に対して、しゃ
断器の引き外し指令を連続して出力するためのものであ
る。
Therefore, the inhibit circuit 13 does not operate, and no breaker trip command is output. When an internal failure occurs, the magnetic flux detection relay element 11 does not operate, and the I/HIBIT circuit operates at the same time as the ratio differential relay element 9 operates, and a breaker trip command is output. The one shown can operate at high speed. The timer 12 is used to continuously output a breaker trip command in response to intermittent operation of the ratio differential relay element 9 and the inhibit circuit in the event of an internal failure.

第7図で示した本発明の実施例では励磁突入電流と内部
故障電流が重畳した場合にも高速動作できる特徴を有す
る。以下これを第9図の動作タイムチャートで説明する
。第9図の差動電流工は励磁突入電流と、励磁突入電流
が流れ始めると同時に発生した内部故障電流が重量した
場合を示している。第8図と異なるのは比率差動継電要
素9が差動電流工の負側の半波でも応動し、イ/ヒビッ
ト回路13が動作している点である。タイマ12によ〕
イ/ヒビット回路13の出力が引きのばされ、しゃ断器
の引き外し指令が出力される。差動電流の第2高波成分
含有率で励磁突入電流を判定するような従来方法では励
磁突入電流が減衰するまでしゃ断器の引き外し指令が出
力されないのと比べると極めて高速の動作が可能である
。変圧器の巻線部分短絡など内部故障が残留している状
態でしゃ断器を投入して無負荷励磁する場合、あるいは
しゃ断器投入後変圧器鉄心が磁気飽和する前に内部故障
が発生した場合等では、磁束検出継電要素11が漏れ磁
束φLを検出する前に内部故障電流が流れて比率差動継
電要素9及びイ/ヒビット回路13が動作するので更に
高速度でしゃ断器引き外し指令を出力することができる
The embodiment of the present invention shown in FIG. 7 has a feature that it can operate at high speed even when the excitation inrush current and internal fault current are superimposed. This will be explained below using the operation time chart of FIG. The differential current circuit in FIG. 9 shows the case where the magnetizing inrush current and the internal fault current that occurs at the same time as the magnetizing inrush current starts to flow are heavy. The difference from FIG. 8 is that the ratio differential relay element 9 responds even to the negative half wave of the differential current, and the I/HIBIT circuit 13 operates. By timer 12]
The output of the enable/hibit circuit 13 is extended, and a breaker tripping command is output. This enables extremely high-speed operation compared to the conventional method in which the magnetizing inrush current is determined based on the second high wave component content rate of the differential current, in which the breaker tripping command is not output until the magnetizing inrush current has attenuated. . When a breaker is turned on and energized without load while an internal fault such as a short circuit in the windings of the transformer remains, or when an internal fault occurs before the transformer core reaches magnetic saturation after the breaker is turned on, etc. Then, before the magnetic flux detection relay element 11 detects the leakage magnetic flux φL, an internal fault current flows and the ratio differential relay element 9 and the I/HIBIT circuit 13 operate, so the breaker tripping command is issued at an even higher speed. It can be output.

変圧器巻線の゛短絡故障等で健全部分の巻線にかかる電
圧位相が変化したシ、健全時よシ高電圧になるような場
合で鉄心に磁気飽和を生ずると、やはり差動電流は内部
数#電流と励磁電流が重畳し次ものとなる、このような
場合通常は変圧器を無負荷励磁した場合と比べると鉄心
の磁気飽和の程度は低く、磁気飽和してbる時間は1サ
イクルのうちごく短い期間である。従って上記と同様に
鉄心が磁気飽和していない期間の内部故障電流により比
率差動継電要素9が動作し、高速度でしゃ断器引き外し
指令を出力することができる。内部故障によって健全部
の巻線に高電圧がかかつて鉄心が正負両側に磁気飽和す
るような場合、磁束検出継電要素11を、最初に検出し
た漏れ磁束φLと同方向の磁束のみに応動するようにす
れば、逆方向の磁気飽和による漏れ磁束φLに対して磁
束検出要素11は動作せず、第9図と同様にしゃ断器引
き外し指令を確実に出力することができる。これは内部
故障時の変圧器保護継電装置の動作信頼・性の向上に効
果がある。なおこのような構成にした場合、次の励磁突
入電流に対して漏れ磁束検出継電要素11が確実に動作
できるよう、漏れ磁束検出継電要素11が動作した後は
ぼ1サイクル以上の適当な時間経過後は、正側及び負側
のどちらの漏れ磁束に対しても動作できるようにしてお
く。
If the voltage phase applied to the winding in a healthy part changes due to a short-circuit failure in the transformer winding, or if the voltage becomes higher than when it was healthy, and magnetic saturation occurs in the iron core, the differential current will still change internally. In such a case, the degree of magnetic saturation of the core is lower than when the transformer is excited with no load, and the time for magnetic saturation is one cycle. This is a very short period of time. Therefore, similarly to the above, the ratio differential relay element 9 is operated by the internal fault current during the period when the iron core is not magnetically saturated, and the breaker trip command can be outputted at high speed. If a high voltage is applied to the winding in a healthy part due to an internal failure and the iron core is magnetically saturated on both positive and negative sides, the magnetic flux detection relay element 11 responds only to the magnetic flux in the same direction as the first detected leakage magnetic flux φL. If this is done, the magnetic flux detection element 11 will not operate against the leakage magnetic flux φL due to magnetic saturation in the opposite direction, and the breaker tripping command can be reliably output as in FIG. 9. This is effective in improving the operational reliability and performance of the transformer protection relay device in the event of an internal failure. In addition, when such a configuration is adopted, after the leakage flux detection relay element 11 operates, in order to ensure that the leakage flux detection relay element 11 can operate in response to the next excitation inrush current, an appropriate cycle of approximately one cycle or more is required after the leakage flux detection relay element 11 operates. After the time has elapsed, it is possible to operate with respect to both positive and negative side leakage flux.

以上説明した本発明の実施例における変圧器の内部故障
を検出する継電要素としては電流差動方式を例としたが
、これは特に限定される吃のではなく、例えば単巻変圧
器の電圧調整変圧器保護用として用いられている電流位
相比較方式にも適用できるのは明らかである。この場合
、本発明を適用すれば内部故障を検出する継電要素が励
磁突入電流で動作してもしゃ断器の引き外し指令を確実
に阻止することができるので、内部故障検出感度を高感
度にできるという特徴がある。又、励磁突入電流による
変圧器保護継電装置の誤動作防止の信頼性向上のため、
従来の例えば差動電流波形によって励磁突入電流と判定
した出力と、磁束検出継電要素11の出力のオア判定出
力を第5図のタイマ12又は第7図のインヒビット回路
13に入力するようにしても良い。要するに変圧器鉄心
からの漏れ磁束φLt−検出してしゃ断器の引き外し指
令を阻止するように構成したものは不発明の範ちゅうに
入ると解すべきである。
In the embodiments of the present invention described above, a current differential system is used as an example of a relay element for detecting an internal failure of a transformer. It is clear that the present invention can also be applied to the current phase comparison method used to protect regulating transformers. In this case, by applying the present invention, even if the relay element that detects the internal fault operates with the excitation inrush current, the breaker tripping command can be reliably blocked, so the internal fault detection sensitivity can be increased. It has the characteristic that it can be done. In addition, in order to improve the reliability of preventing malfunctions of transformer protective relay devices due to excitation inrush current,
For example, the OR judgment output of the conventional output determined to be a magnetizing inrush current based on a differential current waveform and the output of the magnetic flux detection relay element 11 is inputted to the timer 12 in FIG. 5 or the inhibit circuit 13 in FIG. Also good. In short, it should be understood that a structure configured to detect the leakage magnetic flux φLt from the transformer core and prevent the breaker from being issued a tripping command falls within the scope of non-invention.

以上詳述したように本発明によれば簡単な構成で変圧器
鉄心の磁気飽和を確実に検出できるので、励磁突入電流
による変圧器保持継電装置の誤動作を防止し、且つ変圧
器内部故障時のしゃ断器引き外し指令を高速度で確実に
出力することができる効果がある。
As detailed above, according to the present invention, the magnetic saturation of the transformer core can be reliably detected with a simple configuration, thereby preventing malfunction of the transformer holding relay device due to excitation inrush current, and preventing the malfunction of the transformer holding relay device due to magnetizing inrush current. This has the effect of reliably outputting the breaker trip command at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は変圧器の励磁電流と鉄心からの漏れ
磁束の関係を説明するための路線図、第5図は本発明の
一実施例を示す路線図、第6図は第5図の実施例におけ
る動作タイムチャート、第7図は本発明の他の実施例を
示す路線図、第8図及び第9図は第7図の実施例の動作
を説明するためのタイムチャートである。 1・・・鉄心、2.3・・・巻線、5.6・・・しゃ断
器、第1に    箪22 第30
1 to 4 are route diagrams for explaining the relationship between the excitation current of the transformer and the leakage magnetic flux from the iron core, FIG. 5 is a route diagram showing one embodiment of the present invention, and FIG. FIG. 7 is a route map showing another embodiment of the present invention, and FIGS. 8 and 9 are time charts for explaining the operation of the embodiment shown in FIG. . 1... Iron core, 2.3... Winding wire, 5.6... Breaker, 1st 22nd 30th

Claims (1)

【特許請求の範囲】 1、 変圧器の内部故障を検出してしゃ断器の引き外し
指令を出力する変圧器保護継電装置において、上記変圧
器内にその鉄心からの漏れ磁束を検出する磁束検出手段
を設け、該磁束検出手段の出力に応じて上記しゃ断器の
引き外し指令を阻止することを特徴とする変圧器保護継
電装置。 2 上記磁束検出手段を保護対−変圧器の鉄心継鉄部分
のうち負荷電流及び内部故障電流による磁束の影響が少
ない位置に鉄心と近接して設置したことを特徴とする特
許請求の範囲第1項記載の変圧器保護継電装置。
[Scope of Claims] 1. In a transformer protective relay device that detects an internal failure in a transformer and outputs a breaker trip command, a magnetic flux detection system that detects leakage magnetic flux from the iron core in the transformer. A transformer protection relay device comprising: means for blocking a tripping command for the breaker according to the output of the magnetic flux detecting means. 2. Claim 1, characterized in that the magnetic flux detection means is installed close to the core in a core yoke portion of the protective transformer at a position where the influence of magnetic flux due to load current and internal fault current is small. Transformer protection relay device as described in .
JP5967782A 1982-04-12 1982-04-12 Transformer protecting relay unit Granted JPS58179122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5967782A JPS58179122A (en) 1982-04-12 1982-04-12 Transformer protecting relay unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5967782A JPS58179122A (en) 1982-04-12 1982-04-12 Transformer protecting relay unit

Publications (2)

Publication Number Publication Date
JPS58179122A true JPS58179122A (en) 1983-10-20
JPH0216654B2 JPH0216654B2 (en) 1990-04-17

Family

ID=13120058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5967782A Granted JPS58179122A (en) 1982-04-12 1982-04-12 Transformer protecting relay unit

Country Status (1)

Country Link
JP (1) JPS58179122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538044A (en) * 2013-11-11 2016-12-08 ニューロネティクス インコーポレイテッド Monitoring and detecting magnetic stimulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115125A (en) * 1980-02-15 1981-09-10 Hirotsugu Taoka Transformer differential relay
JPS56147729U (en) * 1981-04-02 1981-11-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115125A (en) * 1980-02-15 1981-09-10 Hirotsugu Taoka Transformer differential relay
JPS56147729U (en) * 1981-04-02 1981-11-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538044A (en) * 2013-11-11 2016-12-08 ニューロネティクス インコーポレイテッド Monitoring and detecting magnetic stimulation

Also Published As

Publication number Publication date
JPH0216654B2 (en) 1990-04-17

Similar Documents

Publication Publication Date Title
RU2743460C1 (en) Method and device for fast elimination of ferromagnetic resonance of voltage transformer
Hamilton Analysis of transformer inrush current and comparison of harmonic restraint methods in transformer protection
US7050279B2 (en) Method and apparatus for high impedance grounding of medium voltage AC drives
JPS62503071A (en) ground fault circuit breaker
US3863109A (en) Short circuit sensing device for electromagnetic induction apparatus
Hunt et al. Practical experience in setting transformer differential inrush restraint
US3832600A (en) Transformer internal fault detector
CN100461572C (en) Floating threshold and current ratio brake combined turn-to-turn protection method for electric generator
EP0300075B1 (en) Current detector
KR930010686B1 (en) Sudden pressure relay supervisory apparatus
JPS58179122A (en) Transformer protecting relay unit
US2290101A (en) Protective arrangement
US3414772A (en) Differential relay with restraining means responsive to transformer bank voltage
JPH07312823A (en) Dc leak detection and protective device
JP3199940B2 (en) Transformer protection relay device
Prasad Modelling of power transformer for differential protection using ATP-EMTP
RU2096885C1 (en) Method and device for ground fault protection of generator stator winding
JP3447811B2 (en) Transformer protection relay system for substation equipment and transformer protection method for substation equipment
JPS5852838Y2 (en) transformer protection device
JPS6146116A (en) Transformer protective relaying device
JPS6169330A (en) Ground-fault detector
SU1647756A1 (en) Device blocking relay protection operation for supply circuit faults
SU720610A1 (en) Device for protecting transformer against single-phase short circuit
JPS6321420B2 (en)
Gajić et al. Application of numerical relays for HV shunt reactor protection