JPH0862254A - Direct current detector - Google Patents

Direct current detector

Info

Publication number
JPH0862254A
JPH0862254A JP6217936A JP21793694A JPH0862254A JP H0862254 A JPH0862254 A JP H0862254A JP 6217936 A JP6217936 A JP 6217936A JP 21793694 A JP21793694 A JP 21793694A JP H0862254 A JPH0862254 A JP H0862254A
Authority
JP
Japan
Prior art keywords
current
component
magnetic core
current detector
idc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6217936A
Other languages
Japanese (ja)
Inventor
Toru Kai
徹 甲斐
Sumitoshi Sonoda
澄利 園田
Takanobu Iwagane
孝信 岩金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP6217936A priority Critical patent/JPH0862254A/en
Publication of JPH0862254A publication Critical patent/JPH0862254A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE: To accurately detect d.c. component at a low cost by winding secon dary coil around magnetic core and short-circuiting the coil. CONSTITUTION: Secondary coil wire 36 is wound around a magnetic core 32 and is short-circuited. In this case, the value I of current to be detected 31 including a direct current component is I=A.sinΩt+IDC (A: amplitude, Ω: angular frequency, IDC: direct current component). If primary coil wire 35 for flowing of current to be detector is wound n1 turns around a magnetic core 32 and the turns of the coil wire 36 is n2 , the current I2 in the wire 36 is I2 =(n1 /n2 ) A.sinΩt. Only the magnetic flux Φ for the current difference IDC is generated in the magnetic core 32 and Φ=K.n1 .IDC (K: constant). This magnetic flux Φis detected by a hole element 33. Since the current IDC is 1% of the current I, the element 33 and an amplifier 34 can have a smaller copacitance than in the case of detecting the current I and thus the accuracy is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流電流に含まれる直
流成分電流を検出する直流電流検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct current detector for detecting a direct current component current contained in an alternating current.

【0002】[0002]

【従来の技術】燃料電池発電あるいは太陽光発電などの
分散電源に使用されているインバータは、系統の交流電
源に接続され、発電電力を系統電源に送り返すため系統
の周波数に同期した周波数で運転される。インバータは
半導体スイッチング素子により構成され、PWM制御に
より上述のように系統の電源周波数に同期した交流電圧
を出力する。このPWM制御はパワーMOSFET、ト
ランジスタあるいはIGBTなどの半導体スイッチング
素子のON、OFFのデューティを高周波数のキャリア
周波数により変調し、50Hzあるいは60Hzの系統
周波数と同期した交流波形を作る。
2. Description of the Related Art Inverters used for distributed power sources such as fuel cell power generation and solar power generation are connected to an AC power source of the grid and are operated at a frequency synchronized with the frequency of the grid in order to send generated power back to the grid power It The inverter is composed of a semiconductor switching element, and outputs the AC voltage synchronized with the power supply frequency of the system by PWM control as described above. In this PWM control, ON / OFF duty of a semiconductor switching element such as a power MOSFET, a transistor, or an IGBT is modulated by a high frequency carrier frequency, and an AC waveform synchronized with a system frequency of 50 Hz or 60 Hz is created.

【0003】半導体スイッチング素子のオン電圧あるい
はスイッチング速度は、素子によりバラツキがあり、P
WM制御時にはこのバラツキによって出力の交流電圧に
直流成分が生じることがある。直流成分は系統に接続さ
れている電動機や変圧器に不平衡電流を発生させる。こ
のため電動機ではトルクリップルや速度変動が発生し、
異常過熱や装置の異常騒音あるいは寿命劣化の原因とな
る。また変圧器では、偏磁などにより異常過熱や異常騒
音を引き起す。従って、分散電源用インバータから系統
の電源に直流成分が流出した場合は、その直流成分を検
出し、分散電源用インバータを早急に停止する必要があ
る。この直流成分の直流許容値は定格電流の約1%以下
と言われている。系統の電源に流出する直流電源の検出
方法としては、一般にシャント抵抗あるいは直流電流検
出器(以後DCCTと略記する)が使用される。
The ON voltage or switching speed of the semiconductor switching element varies depending on the element, and P
During WM control, this variation may cause a DC component in the output AC voltage. The DC component causes an unbalanced current in the motor or transformer connected to the grid. As a result, torque ripples and speed fluctuations occur in the motor,
It may cause abnormal overheating, abnormal noise of the equipment, or deterioration of life. In addition, transformers cause abnormal overheating and noise due to magnetic bias. Therefore, when a DC component flows from the distributed power supply inverter to the power supply of the system, it is necessary to detect the DC component and immediately stop the distributed power supply inverter. The DC allowable value of this DC component is said to be about 1% or less of the rated current. A shunt resistor or a DC current detector (hereinafter abbreviated as DCCT) is generally used as a method of detecting a DC power source flowing out to the power source of the system.

【0004】図4は太陽光発電分散電源用インバータを
系統電源に接続した場合の構成例である。図において1
は太陽電池、2はインバータのリップル吸収用コンデン
サ、3〜6は半導体スイッチング素子である。太陽電池
1により発電された直流電圧はリップル吸収コンデンサ
2を通して半導体素子3〜6に印加される。制御回路7
は系統電源10に同期したインバータ出力を発生させる
ためのPWM制御を行い、ON、OFF信号を駆動回路
8を通して前記半導体スイッチング素子に印加する。従
って太陽電池により発電された直流電圧は半導体スイッ
チング素子のON、OFFにより、系統周波数に同期し
た交流電圧に変換される。9は電流検出器(ここではD
CCTの例を示す)であり、インバータの出力電流を検
出する。一般に系統の電源周波数は50Hzあるいは6
0Hzであり、従ってこのインバータの出力周波数は5
0Hzあるいは60Hzで一定で運転される。
FIG. 4 shows an example of a structure in which an inverter for a distributed photovoltaic power source is connected to a system power source. 1 in the figure
Is a solar cell, 2 is a ripple absorbing capacitor of an inverter, and 3 to 6 are semiconductor switching elements. The DC voltage generated by the solar cell 1 is applied to the semiconductor elements 3 to 6 through the ripple absorption capacitor 2. Control circuit 7
Performs PWM control for generating an inverter output synchronized with the system power supply 10, and applies ON / OFF signals to the semiconductor switching element through the drive circuit 8. Therefore, the DC voltage generated by the solar cell is converted into an AC voltage synchronized with the system frequency by turning on and off the semiconductor switching element. 9 is a current detector (here, D
Is an example of CCT), and the output current of the inverter is detected. Generally, the power frequency of the system is 50Hz or 6
0 Hz, so the output frequency of this inverter is 5
It is operated constantly at 0 Hz or 60 Hz.

【0005】電流検出器9でインバータの出力電流を検
出し、図5に示す処理回路21により直流成分を検出す
る。この処理回路は制御回路7の中の直流成分検出部を
示したものである。処理回路21はフィルタ回路22、
コンパレータ23で構成する。フィルタ回路は検出した
電流の50Hzあるいは60Hzの交流成分を除去し、
直流成分のみを検出する時定数に設定する。また、コン
パレータはフィルム回路の出力、すなわち直流成分が許
容値、例えば定格電流の1%を越えた時点でインパータ
への停止信号24を発生する。図6(a)は直流成分を
含んだインバータ出力電流、(b)はフィルタ回路出
力、(c)はインバータ停止信号を示している。
The current detector 9 detects the output current of the inverter, and the processing circuit 21 shown in FIG. 5 detects the DC component. This processing circuit shows the DC component detecting section in the control circuit 7. The processing circuit 21 is a filter circuit 22,
The comparator 23 is used. The filter circuit removes the 50Hz or 60Hz AC component of the detected current,
Set the time constant to detect only the DC component. Further, the comparator generates a stop signal 24 to the implanter when the output of the film circuit, that is, the DC component exceeds an allowable value, for example, 1% of the rated current. FIG. 6A shows an inverter output current including a DC component, FIG. 6B shows a filter circuit output, and FIG. 6C shows an inverter stop signal.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来技術で
は、電流検出器として図7に示すようなDCCTが使用
されている。DCCTは直流電流から交流電流まで広い
周波数範囲で電流を検出することができる電流検出器で
ある。DCCTは検出電流I(31)によって発生する
磁束を空隙をもつ磁芯32の磁気回路中にホール素子3
3を設置して、磁束を電圧に変換し、検出するものであ
る。ホール素子及び増幅器34の温度変動によるドリフ
トやオフセットにより、標準的には検出精度は約5%程
度である。従って、交流電流中の直流成分を、前述の方
法で検出するためには、検出精度は1%以上が必要であ
り、標準的なDCCTでは検出困難である。従って、交
流電流中の直流成分の検出を行うためには使用するDC
CTのホール素子及び増幅器は高精度で低温度変動の部
品が要求され、非常に高価な電流検出器となっている。
本発明はこのように高価となる電流検出器を、標準的な
部品を使用した低価格な直流電流検出器を提供すること
を目的とする。
However, in the prior art, the DCCT as shown in FIG. 7 is used as the current detector. DCCT is a current detector capable of detecting a current in a wide frequency range from direct current to alternating current. In the DCCT, the magnetic flux generated by the detection current I (31) is applied to the Hall element 3 in the magnetic circuit of the magnetic core 32 having an air gap.
3 is installed to convert the magnetic flux into a voltage and detect it. The detection accuracy is typically about 5% due to the drift and offset of the Hall element and amplifier 34 due to temperature fluctuations. Therefore, in order to detect the direct current component in the alternating current by the above-mentioned method, the detection accuracy needs to be 1% or more, which is difficult to detect by the standard DCCT. Therefore, the DC used to detect the DC component in the AC current.
The CT Hall element and amplifier require highly accurate parts with low temperature fluctuations, and are extremely expensive current detectors.
It is an object of the present invention to provide a low-priced DC current detector using such expensive current detector and standard components.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するた
め、本発明は空隙を有する磁芯と、前記磁芯に被測定電
流を通す電線を巻回した1次側コイルと、前記空隙中に
配置されたホール素子からなる電流検出器において、前
記磁芯に2次側コイルを巻回し、前記2次側コイルを短
絡する。また、前記電流検出器において、前記磁芯に2
つの2次側コイルを配置し、前記2次側コイルの一方を
短絡し、前記ホール素子の出力信号が零となるまで他方
の前記2次側コイルに直流電流を流す。また、前記電流
検出器において、前記ホール素子の出力信号をフィルタ
回路へ通すようにする。
In order to solve the above problems, the present invention provides a magnetic core having an air gap, a primary coil around which an electric wire for passing a current to be measured is wound around the magnetic core, and the air gap being provided in the air gap. In the current detector including the arranged Hall elements, the secondary coil is wound around the magnetic core, and the secondary coil is short-circuited. Further, in the current detector, 2
Two secondary coils are arranged, one of the secondary coils is short-circuited, and a direct current is passed through the other secondary coil until the output signal of the Hall element becomes zero. Further, in the current detector, the output signal of the Hall element is passed through the filter circuit.

【0008】[0008]

【作用】交流電流成分をこの短絡巻線が、アンペア回数
の法則により打ち消すため、磁芯に発生する交流磁束は
ゼロとなり、交流電流の直流成分のみの磁束となる。こ
の直流成分のみの磁束をホール素子により検出できる
Since the short-circuit winding cancels the AC current component according to the law of the number of ampere turns, the AC magnetic flux generated in the magnetic core becomes zero, and the magnetic flux has only the DC component of the AC current. The magnetic flux of only this DC component can be detected by the Hall element

【0009】[0009]

【実施例】本発明の実施例を図に基づいて説明する。図
1は本発明の第1の実施例を示す構成ブロック図であ
る。従来例の構成ブロック図の図7と異なる点は、磁芯
32に2次巻線36を配置し、この2次巻線36を短絡
した点である。図1により、本発明の電流検出方法を説
明する。図1において31は被検出電流であり、直流成
分を含んだ交流電流は(1)式で表される。 I=A・SIN(ωT)+IDC (1) 但し、Aは電流の振幅、ωは角周波数、IDCは直流成分
である。磁性体32に被検出電流が流れる1次巻線35
をn1 ターン巻く。また2次巻線36をn2 ターン巻と
して短絡すると2次巻線37は(2)式で示す電流I2
が流れる。 I2 =(n1 /n2 )A・SIN(ωT) (2) 2次巻線にはI2 が流れ、被検出電流によって発生する
磁束を打ち消すため、磁性体は直流成分の電流IDC分の
磁束のみが発生する。発生する磁束Φは(3)式とな
る。 Φ=K・n1 ・IDC (3) Kは定数、n1 は巻回数、IDCは直流式分電流 この磁束をホール素子33により検出する。この直流成
分の電流は交流電流に対して1%程度であるため、ホー
ル素子33及び増幅器34の増幅率は、交流電流を検出
する場合に比べ、小容量(約1%程度)の電流検出器相
当でよい。例えば、10Aの交流電流の場合、直流電流
は約0.1A(1%)となり、使用する電流検出器は
0.1Aの定格電流のDCCTでよい。このDCCTの
精度が標準的な仕様の5%とすると10AのDCCTに
比べ精度が約100倍向上したことになる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration block diagram showing a first embodiment of the present invention. The difference from FIG. 7 of the configuration block diagram of the conventional example is that a secondary winding 36 is arranged on the magnetic core 32 and the secondary winding 36 is short-circuited. The current detection method of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 31 is a current to be detected, and an alternating current containing a direct current component is expressed by equation (1). I = A · SIN (ωT) + I DC (1) where A is the amplitude of the current, ω is the angular frequency, and I DC is the DC component. Primary winding 35 in which current to be detected flows through magnetic body 32
Wind n 1 turns. When the secondary winding 36 is short-circuited by turning it into n 2 turns, the secondary winding 37 causes the current I 2 shown by the equation (2).
Flows. I 2 = (n 1 / n 2 ) A · SIN (ωT) (2) I 2 flows in the secondary winding and cancels the magnetic flux generated by the detected current, so the magnetic substance has a DC component current I DC Only a minute magnetic flux is generated. The generated magnetic flux Φ is given by equation (3). Φ = K · n 1 · I DC (3) K is a constant, n 1 is the number of turns, and I DC is a DC-type divided current. This magnetic flux is detected by the Hall element 33. Since the current of this DC component is about 1% with respect to the AC current, the amplification factor of the Hall element 33 and the amplifier 34 is a small-capacity (about 1%) current detector as compared with the case of detecting the AC current. Quite good. For example, in the case of an alternating current of 10 A, the direct current is about 0.1 A (1%), and the current detector used may be a DCCT with a rated current of 0.1 A. If the accuracy of this DCCT is 5% of the standard specifications, the accuracy is improved about 100 times as compared with the DCCT of 10A.

【0010】図2は本発明の第2の実施例を示す構成ブ
ロック図である。図において各部の名称は図1と同一の
符号を付けているので、重複説明を省略する。図1と異
なる点は、空隙を有する磁芯に2次側巻線を2つ配置し
た点である。そして前記2次巻線の一方を短絡し、他の
2次側巻線に、ホール素子33の出力信号が零となるよ
うに直流電流を流し、直流電流成分を測定する。この測
定方法を次に説明する。1次側コイルには交流成分を含
む電流I(31)が流れ、磁芯32を励磁する。すると
短絡した2次側巻線に(2)式で表される電流が流れ、
磁芯32の交流励磁成分を打ちけすので、磁芯32の空
隙に存在する磁束は、直流電流成分IDCに起因する直流
磁束のみとなる。したがって、この時点ではホール素子
33はこの直流電流磁束に基づく信号電圧を発生する。
次に、他の2次側巻線に、この直流磁束を打ち消す向き
に直流電流を徐々に通電する。そしてホール素子33の
信号電圧が零になったところの電流を見れば、これが、
求める検出電流の直流電流成分となる(磁気平衡形DC
CT)。
FIG. 2 is a block diagram showing the configuration of the second embodiment of the present invention. In the figure, the names of the respective parts are given the same reference numerals as in FIG. The difference from FIG. 1 is that two secondary windings are arranged in a magnetic core having an air gap. Then, one of the secondary windings is short-circuited, a DC current is passed through the other secondary winding so that the output signal of the Hall element 33 becomes zero, and the DC current component is measured. This measuring method will be described below. A current I (31) containing an AC component flows through the primary side coil to excite the magnetic core 32. Then, the current expressed by equation (2) flows in the short-circuited secondary winding,
Since the AC excitation component of the magnetic core 32 is eliminated, the magnetic flux existing in the air gap of the magnetic core 32 is only the DC magnetic flux due to the DC current component I DC . Therefore, at this time, the Hall element 33 generates a signal voltage based on this DC current magnetic flux.
Next, a DC current is gradually applied to the other secondary winding in the direction of canceling the DC magnetic flux. If you look at the current when the signal voltage of the Hall element 33 becomes zero, this is
It becomes the direct current component of the detected current (magnetic balance type DC
CT).

【0011】前記2次側巻線の短絡巻線に流れる短絡電
圧で、検出電流I(31)の交流成分が完全に打ち消さ
れずに、交流成分が残留する場合は、この残留した交流
成分と直流成分をホール素子33で検出した後、このホ
ール素子から出力される信号をフィルタ回路に通し、交
流成分を除去してもよい。図3は残留する電流成分を減
衰させるフィルタの特性を示している。商用周波数(5
0Hz又は60Hz)の周波数成分f0 を減衰させるた
めフィルタのカットオフ周波数fc を1〜5Hz程度に
設定する。これによりf0 成分の電流は約1/10以下
に減衰し、直流電流成分を抽出、検出することができ
る。
When the AC component of the detection current I (31) is not completely canceled by the short-circuit voltage flowing in the short-circuit winding of the secondary winding and the AC component remains, the remaining AC component and DC After detecting the component by the hall element 33, the signal output from this hall element may be passed through a filter circuit to remove the AC component. FIG. 3 shows the characteristics of the filter that attenuates the remaining current component. Commercial frequency (5
The cutoff frequency f c of the filter is set to about 1 to 5 Hz in order to attenuate the frequency component f 0 of 0 Hz or 60 Hz). As a result, the current of the f 0 component is attenuated to about 1/10 or less, and the direct current component can be extracted and detected.

【0012】[0012]

【発明の効果】以上述べたように、本発明によれば、交
流電流中に含まれる直流成分のみを検出するように電流
検出器を構成したため、直流成分を低コストの標準的な
DCCTにより精度良く検出できる。したがって、低価
格の直流成分電流の検出器を構成することができる。
As described above, according to the present invention, since the current detector is configured to detect only the DC component contained in the AC current, the DC component can be accurately measured by the standard DCCT at low cost. It can be detected well. Therefore, a low-priced DC component current detector can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成ブロック図。FIG. 1 is a configuration block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す構成ブロック図。FIG. 2 is a configuration block diagram showing a second embodiment of the present invention.

【図3】本発明の実施例におけるフィルタ特性。FIG. 3 is a filter characteristic according to the embodiment of the invention.

【図4】太陽発光電分散電源用インバータを系統電源に
接続した構成例。
FIG. 4 is a configuration example in which an inverter for a distributed solar power source is connected to a system power source.

【図5】交流電流から直流電流成分だけを分離するため
の処理回路。
FIG. 5 is a processing circuit for separating only a direct current component from an alternating current.

【図6】図4における各部の信号波形。6 is a signal waveform of each part in FIG.

【図7】従来の電流検出器の構成ブロック図。FIG. 7 is a configuration block diagram of a conventional current detector.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 コンデンサ 3、4、5、6 半導体スイッチング素子 7 制御回路 8 駆動回路 9 電流検出器 10 系統電源 21 処理回路 22 フィルタ回路 23 コンパレータ 24 停止信号 31 検出電流 32 磁芯 33 ホール素子 34 増幅器 35 1次側巻線 36 2次側巻線 1 Solar Battery 2 Capacitors 3, 4, 5, 6 Semiconductor Switching Element 7 Control Circuit 8 Drive Circuit 9 Current Detector 10 System Power Supply 21 Processing Circuit 22 Filter Circuit 23 Comparator 24 Stop Signal 31 Detected Current 32 Magnetic Core 33 Hall Element 34 Amplifier 35 primary winding 36 secondary winding

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 38/28 H02M 7/48 Z 9181−5H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 38/28 H02M 7/48 Z 9181-5H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空隙を有する磁芯と、前記磁芯に被測定
電流を通す電線を巻回した1次側コイルと、前記空隙中
に配置されたホール素子からなる電流検出器において、 前記磁芯に2次側コイルを巻回し、前記2次側コイルを
短絡したことを特徴とする直流電流検出器。
1. A current detector comprising a magnetic core having an air gap, a primary coil having an electric wire for passing a current to be measured wound around the magnetic core, and a Hall element arranged in the air gap, wherein: A direct current detector characterized in that a secondary coil is wound around a core and the secondary coil is short-circuited.
【請求項2】 前記電流検出器において、 前記磁芯に2つの2次側コイルを配置し、前記2次側コ
イルの一方を短絡し、前記ホール素子の出力信号が零と
なるまで他方の前記2次側コイルに直流電流を流すこと
を特徴とする直流電流検出器。
2. The current detector, wherein two secondary-side coils are arranged on the magnetic core, one of the secondary-side coils is short-circuited, and the other of the secondary-side coils is until the output signal of the Hall element becomes zero. A direct current detector characterized in that a direct current is passed through the secondary coil.
【請求項3】 前記電流検出器において、 前記ホール素子の出力信号をフィルタ回路へ通すことを
特徴とする請求項1または2記載の直流電流検出器。
3. The DC current detector according to claim 1, wherein in the current detector, the output signal of the Hall element is passed through a filter circuit.
JP6217936A 1994-08-19 1994-08-19 Direct current detector Pending JPH0862254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217936A JPH0862254A (en) 1994-08-19 1994-08-19 Direct current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6217936A JPH0862254A (en) 1994-08-19 1994-08-19 Direct current detector

Publications (1)

Publication Number Publication Date
JPH0862254A true JPH0862254A (en) 1996-03-08

Family

ID=16712034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217936A Pending JPH0862254A (en) 1994-08-19 1994-08-19 Direct current detector

Country Status (1)

Country Link
JP (1) JPH0862254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166626A (en) * 1995-12-18 1997-06-24 U R D:Kk Sensor for detecting very small current superposed upon large alternating current
WO2000043795A1 (en) * 1999-01-21 2000-07-27 Tdk Corporation Current sensor
CN104576005A (en) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 Alternating current transformer
JP2019103234A (en) * 2017-12-01 2019-06-24 東芝産業機器システム株式会社 Dc active filter and converter
CN112362953A (en) * 2020-09-16 2021-02-12 昆明理工大学 Direct current bias current detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166626A (en) * 1995-12-18 1997-06-24 U R D:Kk Sensor for detecting very small current superposed upon large alternating current
WO2000043795A1 (en) * 1999-01-21 2000-07-27 Tdk Corporation Current sensor
US6411078B1 (en) 1999-01-21 2002-06-25 Tdk Corporation Current sensor apparatus
CN104576005A (en) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 Alternating current transformer
JP2019103234A (en) * 2017-12-01 2019-06-24 東芝産業機器システム株式会社 Dc active filter and converter
CN112362953A (en) * 2020-09-16 2021-02-12 昆明理工大学 Direct current bias current detection device

Similar Documents

Publication Publication Date Title
US8373952B2 (en) Integrated DC link inductor and common mode current sensor winding
JP6234385B2 (en) Detection of leakage current including continuous components in the vehicle
JP3286431B2 (en) DC current sensor
WO2018101053A1 (en) Electricity leakage detection device
EP2665929B1 (en) A wind turbine fault detection circuit and method
Abdelhakim et al. Coupled-inductor-based DC current measurement technique for transformerless grid-tied inverters
US9083259B2 (en) Bridgeless power factor correction circuit with improved critical mode (CRM) operation
JPH0862254A (en) Direct current detector
JPH08237936A (en) Noise filter for voltage type inverter
JPH1198835A (en) H-bridge step-up circuit
JPH07312823A (en) Dc leak detection and protective device
JPH04368420A (en) Inverter type power supply apparatus
US10348233B2 (en) DC bus ripple reduction
JPH07213072A (en) Grounding protective device for single-phase three-wire inverter
JPH11162769A (en) Apparatus and method for evaluating dc polarization of transformer
JPH07264873A (en) Power converter
JP2003018740A (en) Dc ground fault detector and interconnected system power generating apparatus
JP3328728B2 (en) Motor power detection device and overload protection device
EP0309254B1 (en) Apparatus and process for deriving an AC voltage from a DC voltage including detecting direct current magnetic flux deflections of an electrical transformer
RU2821432C1 (en) Device for detecting turn-to-turn short circuit in electrical machine windings
JPH02307374A (en) Power converter
RU2593380C1 (en) Device for offset from magnetisation current rush during connection under voltage for transformer differential protection
JP2000002738A (en) Direct current leak detector
US3217231A (en) Low ripple rectifier
JPH09182449A (en) Leakage detector