JPS6399546A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6399546A
JPS6399546A JP24422086A JP24422086A JPS6399546A JP S6399546 A JPS6399546 A JP S6399546A JP 24422086 A JP24422086 A JP 24422086A JP 24422086 A JP24422086 A JP 24422086A JP S6399546 A JPS6399546 A JP S6399546A
Authority
JP
Japan
Prior art keywords
film
wiring
substrate
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24422086A
Other languages
Japanese (ja)
Inventor
Shinpei Iijima
飯島 晋平
Shizunori Oyu
大湯 静憲
Naoki Yamamoto
直樹 山本
Tetsuya Hayashida
哲哉 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24422086A priority Critical patent/JPS6399546A/en
Publication of JPS6399546A publication Critical patent/JPS6399546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the reliability of wiring and to make it possible to form an multilayer interconnection, when a metallic wiring layer is formed on a substrate having contact holes and steps, by heating and fusing the metallic wiring layer, which is deposited and formed on the substrate. CONSTITUTION:The surface of a substrate 10 is cleaned with diluted fuoric acid and the like. Then a titanium nitride (TiN) film 70 having a thickness of 0.1 mum is deposited and formed by a sputtering method using Argon (Ar). Then, an Al film 80 having a thickness of 1mum is deposited on the TiN film 70 by a sputtering method using the same Ar. At the depositing and forming step of the Al film 80, the thickness of the Al film is very thin in contact holes 40 and 50. The thickness at a step part 60 is considerably thin. Said Al film undergoes heat treatment so that it is fused and made to flow. Then the insides of the contact holes are completely filled with the Al and the step part is eliminated. The flatness of the Al film 80 is strikingly improved. Thus wire breakdown is prevented, and the increase in electric resistance can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体高集積回路に係り、特に高密度に配置
された複数の素子を電気的に接続するのに好適な金属配
線方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to highly integrated semiconductor circuits, and particularly to a metal wiring method suitable for electrically connecting a plurality of elements arranged at high density.

〔従来の技術〕[Conventional technology]

従来、半導体装置における配線用金属薄膜として、An
膜が一般的に用いられている。また、その形成方法とし
ては、古くはヒータ加熱蒸着法、電子線加熱蒸着法など
の方法から、最近ではスパッタリング法が用いられるよ
うになってきた。これらの方法は、気相成長法と異なり
、膜形成の際に基板表面での化学反応が関与せず、An
原子が単純に降り積もることによってのみ膜形成が行な
われる。したがって、基板上にあらかじめ形成されてい
る段差部分での被覆状態が著しく悪いという特徴がある
。一方、半導体装置は、より高集積化、高密度化されて
きており、M配線膜を形成する前の基板表面の段差はま
すます複雑化し、かつ、高くなってきている。
Conventionally, An has been used as a metal thin film for wiring in semiconductor devices.
Membranes are commonly used. In addition, as a method for forming it, in the past, methods such as heater heating evaporation method and electron beam heating evaporation method have been used, but recently sputtering method has come to be used. Unlike the vapor phase growth method, these methods do not involve chemical reactions on the substrate surface during film formation, and
Film formation occurs only by the simple deposition of atoms. Therefore, there is a characteristic that the covering condition is extremely poor at the stepped portions previously formed on the substrate. On the other hand, semiconductor devices are becoming more highly integrated and densely packed, and the steps on the substrate surface before the M wiring film is formed are becoming more complex and taller.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の配線技術では、基板上の段差部での被覆性が
悪く、段差部分での膜厚が薄くなるため、配線抵抗の増
大や、著しい場合には電流密度の増大による配線自身の
断線という問題があった。上記被覆性の悪さがもたらす
問題についてさらに詳しく説明する。第2図(a)は半
導体装置を製造する場合、かならず通らなければならな
いAM配線膜形成工程前の基板の状態を断面で模式的に
示したものである。
With the conventional wiring technology mentioned above, the coverage of the stepped portions on the substrate is poor, and the film thickness is thinner at the stepped portions, resulting in increased wiring resistance and, in severe cases, disconnection of the wiring itself due to increased current density. There was a problem. The problems caused by the poor coverage will be explained in more detail. FIG. 2(a) is a cross-sectional view schematically showing the state of a substrate before the AM wiring film formation step, which must be passed through when manufacturing a semiconductor device.

Si基板100上に形成した薄く絶縁膜10の上の所定
領域上に所定形状の導体層1を形成し、さらに全面上に
絶縁膜2を被着し、絶縁膜2に導体層」と他の導体層と
を接続するための開口、いわゆるコンタクトホール3を
設けた状態を示す。このように半導体装置の製造工程で
は、コンタクトホール3や段差4が必ず存在する。この
状態で、全面上に例えばスバr、5.ング法により配線
用A1層5を形成すると、第2図(b)に示したように
コンタクトホール3の内部および段差4の底部では膜厚
が著しく薄くなる。このM層5をエツチングしてAα配
線層とし、さらにこの上に絶縁膜を介して同様な方法に
よりAfl配線層を多層に積層する場合には、第2図(
c)に示したようにさらに致命的な問題を生じる。すな
わち、1層目のAn配線5を形成した後、絶縁膜6を被
着堆積し、1層目と2層目の配線層を接続するための開
口を絶縁膜6に形成し、その上にさらに2層目のAQ配
線層7を形成すると1段差4の部分ではAn配線層7の
連続性が、しばしば図示のように断たれ、断線するとい
う問題が生じる。この原因は、段差部4に1層目のM層
を形成した段階で、段差部の被覆形状がい=3− わゆるオーバーハング状態になることにある。
A conductor layer 1 having a predetermined shape is formed on a predetermined region on a thin insulating film 10 formed on a Si substrate 100, an insulating film 2 is further deposited on the entire surface, and a conductor layer 1 is formed on the insulating film 2. A state in which an opening for connection with a conductor layer, a so-called contact hole 3, is provided is shown. In this manner, contact holes 3 and steps 4 always exist in the manufacturing process of semiconductor devices. In this state, for example, Suba r, 5. When the wiring A1 layer 5 is formed by the method of forming the wiring layer 5, the thickness becomes extremely thin inside the contact hole 3 and at the bottom of the step 4, as shown in FIG. 2(b). When this M layer 5 is etched to form an Aα wiring layer and further Afl wiring layers are laminated in multiple layers by the same method with an insulating film interposed thereon, as shown in FIG.
A more fatal problem occurs as shown in c). That is, after forming the first layer of An wiring 5, an insulating film 6 is deposited, an opening for connecting the first and second wiring layers is formed in the insulating film 6, and an opening is formed on the insulating film 6 to connect the first and second wiring layers. Further, when the second AQ wiring layer 7 is formed, the continuity of the An wiring layer 7 is often broken at the one step difference 4 as shown in the figure, causing a problem of disconnection. The reason for this is that when the first M layer is formed on the stepped portion 4, the covering shape of the stepped portion becomes a so-called overhang state.

本発明の目的は、配線用金属層をコンタクトホールや段
差のある基板上に形成する場合、コンタクトホール内は
金属層で完全に充填し、段差部では金属層の被覆性を改
善して表面を平坦化し、配線の信頼性を向上させるとと
もに多層配線を可能とすることにある。
An object of the present invention is to completely fill the inside of the contact hole with the metal layer when forming a metal layer for wiring on a substrate with a contact hole or a step, and to improve the coverage of the metal layer at the step to cover the surface. The purpose is to flatten the wiring, improve the reliability of the wiring, and enable multilayer wiring.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、基板上に被着形成した配線用金属層を加熱
溶融することによって達成される。
The above object is achieved by heating and melting a wiring metal layer deposited on a substrate.

〔作用〕[Effect]

配線用金属層、例えば配線用部層をその融点以上の温度
で加熱することにより1Mは自ら溶融し、液体となる。
By heating a wiring metal layer, for example, a wiring part layer, at a temperature higher than its melting point, 1M melts by itself and becomes a liquid.

液体となったAnは、液体特有の表面張力によって自ら
の表面を平坦化するように流動するので凹部を充填し1
表面の平坦化が可能となる。
The liquid An flows to flatten its own surface due to the surface tension unique to liquids, so it fills the recesses.
The surface can be flattened.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図および第3図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 3.

第3図(a)は金属配線を形成する直前の基板の状態を
示した断面図である。
FIG. 3(a) is a cross-sectional view showing the state of the substrate immediately before metal wiring is formed.

Si基板100上に熱酸化により厚さ20nmのSin
A 20 nm thick Si film is deposited on the Si substrate 100 by thermal oxidation.
.

膜10を形成した後、モノシラン(SiH4)を原料ガ
スとする気相成長法(CVD法)により厚さ500nm
の多結晶Si層20を被着、堆積した。ついで、875
℃、30分を条件とする熱拡散法により多結晶Si層2
0に不純物としてリンを導入した。表面に形成されたリ
ンガラスを除去した後、ホトリソグラフィーとドライエ
ツチング法を用いて多結晶Si層20の所定の領域をエ
ツチング、除去した。
After forming the film 10, it is grown to a thickness of 500 nm by a vapor phase growth method (CVD method) using monosilane (SiH4) as a raw material gas.
A polycrystalline Si layer 20 was deposited. Then, 875
The polycrystalline Si layer 2 was formed by a thermal diffusion method at ℃ for 30 minutes.
Phosphorus was introduced as an impurity into 0. After removing the phosphorus glass formed on the surface, a predetermined region of the polycrystalline Si layer 20 was etched and removed using photolithography and dry etching.

このエツチングのマスクに用いたホトレジスト膜を除去
した後、全面上にCVD法により厚さ600nmの5i
n2膜30を被着形成した。つぎに、ホトリソグラフィ
ーとドライエツチング法により、多結晶Si層20とS
i基板100に通じるコンタクトホール40と50を5
i02IlIに形成した。コンタクトホール40は多結
晶Si層20と金属配線との導通を、またコンタクトホ
ール50はSi基板100と金属配線との導通を得るた
めのものである。また、5un2膜30には上記コンタ
クトホールの他に段差60がその表面に必ず存在してい
る。半導体装置の製造プロセスでは、このようなコンタ
クトホールと段差が混在する状態を避けて通ることがで
きない。
After removing the photoresist film used as a mask for this etching, a 5i film with a thickness of 600 nm was etched on the entire surface by CVD.
An N2 film 30 was deposited. Next, the polycrystalline Si layer 20 and S
The contact holes 40 and 50 leading to the i-board 100 are
i02IlI was formed. The contact hole 40 is for providing electrical continuity between the polycrystalline Si layer 20 and the metal wiring, and the contact hole 50 is for providing electrical continuity between the Si substrate 100 and the metal wiring. Further, in addition to the above-mentioned contact hole, a step 60 always exists on the surface of the 5un2 film 30. In the manufacturing process of semiconductor devices, it is impossible to avoid such a situation in which contact holes and steps coexist.

第3図(b)は図(a)に示した基板上に配線用金属膜
を形成した直後の状態を示した断面図である。
FIG. 3(b) is a cross-sectional view showing a state immediately after a wiring metal film is formed on the substrate shown in FIG. 3(a).

基板表面を希釈フッ酸等により清浄化した後、アルゴン
(A r )を用いたスパッタリング法により厚さ0.
17anの窒化チタン(TiN)膜70を被着形成した
。その条件はArとN2の混合ガスを圧力0.13Pa
に維持して、電極間に印加する電力密度をIOW/cm
”に設定した。Tiからなる一方の電極に対向する位置
に基板を設置した。ついで、同じ<Arを用いたスパッ
タリング法により厚さ1//InのAa(1重量%のS
iを含有させた)膜80をTiN膜7膜上0上着形成し
た。その条件はA、rの圧力0.13Pa、電力密度3
 W / cm”みに設定した。なお、TiN膜70は
最膜80と多結晶Si層20およびSi基板100との
熱的反応を抑止するための障壁層として設けたものであ
る。このAn膜80の被着形成段階では、コンタクトホ
ール40および50内におけるAfl膜厚は極めて薄く
なっており、また、段差60の部分においてもかなり薄
くなっていた。これらの事実は、走査型電子顕微鏡によ
る観察を通して容易に確認することができた。
After cleaning the substrate surface with diluted hydrofluoric acid or the like, it is sputtered to a thickness of 0.0 mm using a sputtering method using argon (Ar).
A 17 ann titanium nitride (TiN) film 70 was deposited. The conditions are a mixed gas of Ar and N2 at a pressure of 0.13 Pa.
The power density applied between the electrodes is maintained at IOW/cm
A substrate was set at a position facing one electrode made of Ti. Then, by the same sputtering method using <Ar, Aa (1% by weight S
A film 80 (containing i) was formed on top of the TiN film 7. The conditions are A, r pressure 0.13 Pa, power density 3
The TiN film 70 was provided as a barrier layer to suppress thermal reactions between the outermost film 80, the polycrystalline Si layer 20, and the Si substrate 100. At the deposition stage 80, the Afl film thickness in the contact holes 40 and 50 was extremely thin, and it was also considerably thinner at the step 60. These facts were confirmed by observation using a scanning electron microscope. could be easily confirmed through.

第1図は上記のようなAa膜の薄膜化部分をなくすため
に、Aa膜を熱処理して溶融流動させた後の状態を示し
た断面図である。
FIG. 1 is a sectional view showing the state of the Aa film after it has been heat-treated to melt and flow in order to eliminate the thinned portion of the Aa film as described above.

熱処理は、ランプを熱源とし、短時間で所定温度まで試
料全体が均一に昇温できる装置を用い、620℃で30
秒間行なった。この極めて簡単な熱処理を行なっただけ
で、コンタクトホール内は肚で完全に充填されると共に
段差も解消され、An膜80の平坦性も著しく改善され
、下地の凹凸に起因して生じるAn膜表面の凹凸をほぼ
完全に消滅させることができた。
The heat treatment was carried out at 620℃ for 30 minutes using a lamp as the heat source and a device that can evenly heat the entire sample to a specified temperature in a short period of time.
I did it for seconds. By simply carrying out this extremely simple heat treatment, the inside of the contact hole is completely filled with filler metal, and the level difference is also eliminated, and the flatness of the An film 80 is also significantly improved. It was possible to almost completely eliminate the unevenness of the surface.

本実施例では、620℃で熱処理を行なったが、本発明
におけるAa膜の溶融においては、熱処理温度の制御が
極めて重要である。すなわち、本実施例で用いた1重量
%Si含有Anにおいては、575℃以下では溶融させ
ることが困難であり、一方、625℃より高い温度では
晟が存在しない領域が局所的に生じるようになる。例え
ば、直系10cm+のSi基板全面に被着形成したM膜
を700℃で30秒間熱処理した場合には基板表面の約
半分の領域においてMが存在しなくなる。これは液体特
有の表面張力によってAlll内膜が縮まるためと考え
られる。
In this example, the heat treatment was performed at 620° C., but control of the heat treatment temperature is extremely important in melting the Aa film in the present invention. That is, in the 1 wt % Si-containing An used in this example, it is difficult to melt it at temperatures below 575°C, while at temperatures higher than 625°C, regions where no crystals exist locally occur. . For example, when an M film deposited on the entire surface of a Si substrate with a diameter of 10 cm+ is heat treated at 700° C. for 30 seconds, M no longer exists in about half of the substrate surface. This is thought to be because the All-I inner membrane shrinks due to the surface tension unique to liquids.

したがって、熱処理温度が高すぎても実用性に欠けるこ
とになる。
Therefore, even if the heat treatment temperature is too high, it will lack practicality.

また、Si含有Mでしばしば問題となるSi粒の成長に
よる配線抵抗の増大は、本実施例では、625℃以下の
熱処理であればSi粒の成長はほとんど認められなかっ
た。
In addition, an increase in wiring resistance due to the growth of Si grains, which is often a problem with Si-containing M, was found in this example, when heat treatment was performed at 625° C. or lower, almost no growth of Si grains was observed.

また、本実施例ではランプによる熱処理装置を用いたが
管状電気炉を用いても同様な効果を得ることはできるが
、熱処理条件の制御は多少難しくなる。要するに、加熱
温度と時間の制御が容易な熱処理を行なうことである。
Further, in this embodiment, a heat treatment apparatus using a lamp is used, but a similar effect can be obtained by using a tubular electric furnace, but controlling the heat treatment conditions becomes somewhat difficult. In short, the purpose is to perform heat treatment whose heating temperature and time can be easily controlled.

また、本実施例では、1重量%のSiを含有するMの溶
融について述べたが、Cu、Ti、Taのうちの少なく
とも1種を含むAnについても効果は同様であった。た
だ、異種元素を含有するMの融点は、その組成によって
変化するものであるが、重要なことは過剰な熱処理は極
めて実用性に欠ける結果を招くことであり、組成によっ
て定まる融点ないし融点から5℃高い温度範囲内で熱処
理することである。
Further, in this example, the melting of M containing 1% by weight of Si was described, but the same effect was obtained for An containing at least one of Cu, Ti, and Ta. However, the melting point of M containing different elements changes depending on its composition, but the important thing is that excessive heat treatment will lead to extremely impractical results. It is heat treatment within a temperature range that is higher than ℃.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体装置の製造工程において生ずる
コンタクトホール内や表面段差部分での配線の薄膜化を
防止できるので、配線の断線を防止し、電気抵抗の増大
を低減できる効果がある。
According to the present invention, it is possible to prevent thinning of wiring in contact holes and surface step portions that occur in the manufacturing process of semiconductor devices, thereby preventing disconnection of wiring and reducing increase in electrical resistance.

問題点を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining a problem.

図において、 100・・・Si基板 2.6.10.30・・・絶縁膜 1.20・・・多結晶Si膜 4.60・・・段差 5.7.80・・・An膜 40.50・・・コンタクトホール 代理人弁理士  中 村 純之助 +00−−−5ノ゛基す々        40.50
−−−コンタ2L主A(。
In the figure, 100...Si substrate 2.6.10.30...Insulating film 1.20...Polycrystalline Si film 4.60...Step difference 5.7.80...An film 40. 50...Contact Hall Representative Patent Attorney Junnosuke Nakamura +00---5 bases 40.50
---Contour 2L main A (.

Claims (1)

【特許請求の範囲】 1、同一シリコン半導体基板上に複数の所定の素子を所
定の金属配線層により相互に接続して電気回路を構成す
る半導体装置の製造方法であって、同一シリコン単結晶
基板上に複数の所定の素子を形成し、該素子を含む前記
基板上に絶縁膜を被着堆積し、該絶縁膜に前記素子上の
所定位置に通じるコンタクトホールを設け、該コンタク
トホール内から前記絶縁膜全面上に窒化チタン薄膜を形
成し、該窒化チタン薄膜全面上に配線用金属層を被着堆
積した後、該金属層を加熱溶融流動させて該金属層の表
面を平坦化し、その後、該金属層と前記窒化チタン薄膜
を所定の配線パターンに従ってエッチングして少なくと
も第1層目の配線を形成することを特徴とする半導体装
置の製造方法。 2、特許請求の範囲第1項記載の半導体装置の製造方法
において、前記金属層を構成する金属が硅素、銅、チタ
ンおよびタンタルのうちから選んだ少なくとも1種の金
属を含有するアルミニウム合金であり、該金属層の加熱
溶融温度は該金属の融点ないし該融点から5℃高い温度
範囲内であることを特徴とする半導体装置の製造方法。
[Claims] 1. A method for manufacturing a semiconductor device in which an electric circuit is constructed by interconnecting a plurality of predetermined elements using a predetermined metal wiring layer on the same silicon semiconductor substrate, the method comprising: A plurality of predetermined elements are formed on the substrate, an insulating film is deposited on the substrate including the elements, a contact hole communicating with a predetermined position on the element is provided in the insulating film, and the After forming a titanium nitride thin film on the entire surface of the insulating film and depositing a wiring metal layer on the entire surface of the titanium nitride thin film, the surface of the metal layer is flattened by heating and melting and flowing the metal layer, and then, A method of manufacturing a semiconductor device, comprising etching the metal layer and the titanium nitride thin film according to a predetermined wiring pattern to form at least a first layer of wiring. 2. In the method for manufacturing a semiconductor device according to claim 1, the metal constituting the metal layer is an aluminum alloy containing at least one metal selected from silicon, copper, titanium, and tantalum. . A method of manufacturing a semiconductor device, wherein the heating and melting temperature of the metal layer is within a range of from the melting point of the metal to a temperature 5° C. higher than the melting point.
JP24422086A 1986-10-16 1986-10-16 Manufacture of semiconductor device Pending JPS6399546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24422086A JPS6399546A (en) 1986-10-16 1986-10-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24422086A JPS6399546A (en) 1986-10-16 1986-10-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6399546A true JPS6399546A (en) 1988-04-30

Family

ID=17115530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24422086A Pending JPS6399546A (en) 1986-10-16 1986-10-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6399546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2253939A (en) * 1991-03-20 1992-09-23 Samsung Electronics Co Ltd Forming a metal layer on a semiconductor device
US5534463A (en) * 1992-01-23 1996-07-09 Samsung Electronics Co., Ltd. Method for forming a wiring layer
US5569961A (en) * 1992-12-30 1996-10-29 Samsung Electronics Co., Ltd. Semiconductor device having a multi-layer metallization structure
DE4342047B4 (en) * 1992-12-10 2004-12-09 Samsung Electronics Co., Ltd., Suwon Semiconductor component with a diffusion barrier layer arrangement and method for its production
DE4222142B4 (en) * 1991-07-08 2006-08-03 Samsung Electronics Co., Ltd., Suwon Semiconductor device with a wiring layer and method for its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869902A (en) * 1990-09-19 1999-02-09 Samsung Electronics Co., Ltd. Semiconductor device and manufacturing method thereof
GB2253939A (en) * 1991-03-20 1992-09-23 Samsung Electronics Co Ltd Forming a metal layer on a semiconductor device
DE4200809A1 (en) * 1991-03-20 1992-09-24 Samsung Electronics Co Ltd METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT
GB2253939B (en) * 1991-03-20 1995-04-12 Samsung Electronics Co Ltd Method for manufacturing a semiconductor device
DE4222142B4 (en) * 1991-07-08 2006-08-03 Samsung Electronics Co., Ltd., Suwon Semiconductor device with a wiring layer and method for its production
US5534463A (en) * 1992-01-23 1996-07-09 Samsung Electronics Co., Ltd. Method for forming a wiring layer
US5589713A (en) * 1992-01-23 1996-12-31 Samsung Electronics Co., Ltd. Semiconductor device having an improved wiring layer
DE4342047B4 (en) * 1992-12-10 2004-12-09 Samsung Electronics Co., Ltd., Suwon Semiconductor component with a diffusion barrier layer arrangement and method for its production
US5569961A (en) * 1992-12-30 1996-10-29 Samsung Electronics Co., Ltd. Semiconductor device having a multi-layer metallization structure
US5851917A (en) * 1992-12-30 1998-12-22 Samsung Electronics Co., Ltd. Method for manufacturing a multi-layer wiring structure of a semiconductor device

Similar Documents

Publication Publication Date Title
EP0055161B1 (en) Multilayer metal silicide interconnections for integrated circuits
US5015604A (en) Fabrication method using oxidation to control size of fusible link
US5985751A (en) Process for fabricating interconnection of semiconductor device
US4708904A (en) Semiconductor device and a method of manufacturing the same
US4488166A (en) Multilayer metal silicide interconnections for integrated circuits
JPH06181212A (en) Manufacture of semiconductor device
JPS6399546A (en) Manufacture of semiconductor device
JP4145354B2 (en) Method for manufacturing monolithic microwave circuit with thick conductor
JPH04280456A (en) Semiconductor device and its manufacture
JPH0417357A (en) Manufacture of semiconductor device
JPH02199838A (en) Semiconductor device and manufacture thereof
JP2621287B2 (en) Method of forming multilayer wiring layer
JPH08139190A (en) Manufacture of semiconductor device
CN109037191B (en) Trimming resistor and manufacturing method thereof
KR930001896B1 (en) Metal line structure of semiconductor apparatus and building method thereof
JP2874216B2 (en) Semiconductor device and manufacturing method thereof
JP2864624B2 (en) Contact embedded metal structure and method of manufacturing the same
JP3263481B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS62136018A (en) Manufacture of semiconductor device
JPH0714833A (en) Manufacture of semiconductor device
JPH01206623A (en) Manufacture of semiconductor device
JPS62118525A (en) Manufacture of semiconductor device
JPH1032206A (en) Formation of damascene interconnecting layer using selective chemical vapor deposition method
JPS63313838A (en) Semiconductor device and manufacture thereof
JPS60115265A (en) Semiconductor device and manufacture thereof