JPS639906A - Magnet - Google Patents

Magnet

Info

Publication number
JPS639906A
JPS639906A JP15445586A JP15445586A JPS639906A JP S639906 A JPS639906 A JP S639906A JP 15445586 A JP15445586 A JP 15445586A JP 15445586 A JP15445586 A JP 15445586A JP S639906 A JPS639906 A JP S639906A
Authority
JP
Japan
Prior art keywords
magnet
films
earth iron
holes
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15445586A
Other languages
Japanese (ja)
Inventor
Matsuo Kishi
松雄 岸
Katsuyoshi Muraishi
村石 勝良
Kenichi Ogawa
健一 小川
Teruo Suzuki
輝夫 鈴木
Hiroshi Takashio
高塩 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP15445586A priority Critical patent/JPS639906A/en
Publication of JPS639906A publication Critical patent/JPS639906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve anticorrosion properties and chemical resistant properties which are weak points of a rare-earth iron magnet by a method wherein the rare-earth iron magnet is covered with metallic or compound films and pin-holes in the films and cavities in the magnet are sealed with resin. CONSTITUTION:The surface of a rare-earth iron magnet is covered with metallic, nonmetallic and compound films by physical vapor deposition (PVD) such as sputtering and ion plating or chemical vapor deposition (CVD) which is utilizing thermal decomposition or plasma decomposition of metal halide and pin-holes in films 2 and 3 and gaps 5 and 6 and cavities 4 in grain boundaries which are created when the magnet is sintered are sealed with resin. Therefore, after an object to be treated is degreased by organic solvent such as alcohol and trichloroethylene, the object can be cleaned in a treatment equipment by surface etching which is called ion-bombardment so that treatment and film formation can be performed without damaging the surface and internal defects and, moreover, defects such as pin-holes created when the films are formed and cavities and gaps created when the magnet is sintered can be eliminated. With this constitution, anticorrosion properties and chemical resistant properties can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、希土類鉄系磁石の表面処理に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to surface treatment of rare earth iron magnets.

(発明の概要) この発明は、希土類鉄系磁石の表面上を真空蒸着、スパ
ッタリング、イオンブレーティング等の物理蒸着(P 
V D : Physical Vapor口epO3
ition )や金属ハロゲン化合物等の熱分解やプラ
ズマによる分解を利用した化学蒸着(CV D : C
hemicalVapor Deposition)に
より、金属、非金属や化合物の皮膜により被覆し、皮膜
のピンホールや磁石焼結時に生じる粒子界の空隙、空孔
を樹脂により封止、封孔することにより希土類鉄系磁石
の耐食性、耐薬品性の向上を図るものである。
(Summary of the Invention) This invention provides physical vapor deposition (P
VD: Physical Vapor mouth epO3
chemical vapor deposition (CV D: C
Rare earth iron-based magnets are coated with a film of metal, non-metal, or compound using chemical vapor deposition, and the pinholes in the film and the voids and pores in the grain field that occur during magnet sintering are sealed with resin. The purpose is to improve corrosion resistance and chemical resistance.

(従来の技術) 従来、希土類磁石としとS+n −Co系磁石が広く用
いられていたが、製造コスト、磁気特性等の点で有利な
Nd−Fe系磁石をはじめとする希土類鉄系磁石を用い
る気運が高まってきている。
(Prior art) Conventionally, S+n-Co based magnets have been widely used as rare earth magnets, but rare earth iron based magnets such as Nd-Fe based magnets are used, which are advantageous in terms of manufacturing cost, magnetic properties, etc. Momentum is increasing.

しかし、希土類鉄系磁石はSm−co系磁石に比べ耐食
性、耐薬品性という点で劣り、変色、錆などが生じやす
く、何らかの表面処理等による保護を必要とされていた
。。
However, rare earth iron-based magnets are inferior to Sm-co-based magnets in terms of corrosion resistance and chemical resistance, and are prone to discoloration, rust, etc., and require protection through some kind of surface treatment. .

(発明が解決しようとする問題点) 希土類鉄系磁石は、耐食性、&4薬品性に乏しい。(Problem to be solved by the invention) Rare earth iron magnets are poor in corrosion resistance and chemical resistance.

したがって耐食性を向上させるだめの表面処1!I!等
を行う場合、めっき等を施すときに用いる酸、アルカリ
等の薬品を使用すると、処理工程において磁石の表面や
内部欠陥(空孔等)が侵されてしまい好ましい処理を行
うことが困難であった。また、樹脂等の有機物や高分子
化合物によるコーティングや封止、封孔も考えられてい
るが、!!?Ii性や機械的強度の゛低さから実用化が
困難であるという欠点を有している。
Therefore, the first surface treatment to improve corrosion resistance! I! When performing plating, etc., if chemicals such as acids and alkalis used for plating etc. are used, the surface and internal defects (holes, etc.) of the magnet will be attacked during the treatment process, making it difficult to perform the desired treatment. Ta. Coating, sealing, and sealing with organic materials such as resins and polymer compounds are also being considered, but! ! ? It has the disadvantage that it is difficult to put it into practical use due to its low Ii properties and low mechanical strength.

本発明は上記の欠点を解決し、耐食性、耐薬品性さらに
表面における殿械的強度に優れた高磁気特性を有する希
土類鉄系磁石を提供するものである。
The present invention solves the above-mentioned drawbacks and provides a rare earth iron magnet having high magnetic properties with excellent corrosion resistance, chemical resistance, and mechanical strength on the surface.

(問題点を解決するための手段) 上記の問題を解決するため、真空蒸着、スパッタリング
、イオンブレーティング等のPVD法やハロゲン化合物
等の分解反応によるCVD法により金属、非金属、化合
物の皮膜を形成し、樹脂により、皮膜形成時に生じるピ
ンホールや磁石焼結時に生じる空孔、空隙等の欠陥を封
止、封孔することにより耐食性、耐薬品性を向上させる
のである。
(Means for solving the problems) In order to solve the above problems, films of metals, non-metals, and compounds are formed using PVD methods such as vacuum evaporation, sputtering, and ion blasting, and CVD methods using decomposition reactions of halogen compounds. Corrosion resistance and chemical resistance are improved by sealing and sealing defects such as pinholes that occur during coating formation and voids and voids that occur during magnet sintering using resin.

(作用) PVD法やCVD法による気相めっきでは、処理物をア
ルコール、トリクロールエチレン等の有機溶剤により脱
脂した後、処理装置内でイオンボンバードとよばれる表
面エツチングによる清浄化が可能であるため、耐薬品性
に乏しい希土類鉄系磁石を処理物とする場合、酸やアル
カリ溶液による前処理を必要としないですみ、これらの
薬液により表面や内部欠陥を侵すことなく処理、成膜す
ることができる。さらに、上記の気相めりぎによる成膜
時にできるピンホールや磁石焼結時にできる空孔、空隙
等の欠陥を樹脂をコーティング、含浸させることにより
封止、封孔し上記欠点を解消することができる。
(Function) In gas phase plating using the PVD method or CVD method, it is possible to degrease the processed material with an organic solvent such as alcohol or trichlorethylene, and then clean it by surface etching called ion bombardment in the processing equipment. When processing rare earth iron magnets that have poor chemical resistance, there is no need for pretreatment with acid or alkaline solutions, and these chemicals can be used to process and form films without damaging the surface or internal defects. can. Furthermore, defects such as pinholes created during film formation by vapor phase marring and voids and voids created during magnet sintering can be sealed and sealed by coating and impregnating with resin to eliminate the above-mentioned defects. Can be done.

(実施例−1) 希土類鉄系磁石としてNd−1”6−3系の磁石用焼結
合金から成形した電子時計用ロータを用いて本発明を適
用した。
(Example 1) The present invention was applied to a rotor for an electronic watch formed from a sintered alloy for Nd-1''6-3 type magnets as a rare earth iron type magnet.

まず、ロータをトリクロールエチレンにより脱脂洗浄し
、PVD法の代表である三極直流方式の装置で反応性イ
オンブレーティングにより金属チタンと窒素ガスにより
窒化チタン皮膜をロータ表面に約3趨形成した。この際
、トリクロールエチレンによる洗浄後、成膜装置内で成
膜に先立ちアルゴンガスの放電によるイオンボンバード
によるスパッタクリーニングによりロータ表面を清浄化
しておいた。
First, the rotor was degreased and cleaned with trichlorethylene, and a titanium nitride film was formed on the rotor surface in about three directions using metallic titanium and nitrogen gas by reactive ion blating using a three-electrode direct current system, which is a typical PVD method. At this time, after cleaning with trichlorethylene, the rotor surface was cleaned by sputter cleaning using ion bombardment using argon gas discharge in the film deposition apparatus prior to film deposition.

次にイオンブレーティング装置より取り出した処理物(
窒化チタン皮膜を形成したロータ)をトリクロールエチ
レンによる超音波洗浄を行った後、ポリパラキシリレン
コーティングを行った。このポリバラキシリレンコーテ
ィング、たとえば、巴工業−のパリレンコートにより、
窒化チタン皮膜のピンホールや磁石内の空孔、空隙の封
止、封孔をした。窒化チタン皮膜形成後、パリレンコー
トに先立ち、超音波洗浄を行ったのは、窒化チタン皮膜
形成時及び形成後に付着した粉状物質を取り除くためで
あり、皮膜形成時におけるクリーン度が高ければ、これ
を行う必要はないものである。
Next, the processed material (
The rotor (on which a titanium nitride film was formed) was ultrasonically cleaned with trichlorethylene, and then coated with polyparaxylylene. With this polyvaraxylylene coating, for example, Tomoe Kogyo's parylene coating,
Pinholes in the titanium nitride film, holes and voids in the magnet were sealed and sealed. After the titanium nitride film was formed and before the parylene coating, ultrasonic cleaning was performed to remove powdery substances that adhered during and after the titanium nitride film was formed. There is no need to do this.

このように処理された磁石は第1図に示した磁石断面図
のごとく完全にその表面及び空孔、空隙を窒化チタン皮
膜とパリレンコート皮膜により被覆されているため、た
とえば、40℃X95%湿度、100時間の恒温恒湿試
験に対し、何ら変色。
As shown in the cross-sectional view of the magnet shown in Figure 1, the magnet treated in this way has its surface, pores, and voids completely covered with a titanium nitride film and a parylene coat film. , No discoloration after 100 hours constant temperature and humidity test.

錆等の欠陥を生じなかった。No defects such as rust occurred.

(実施例−2) 実施例−1と同様、ロータに窒化チタン皮膜を形成後、
封止、封孔処理として嫌気性樹脂を用いた。
(Example-2) As in Example-1, after forming a titanium nitride film on the rotor,
Anaerobic resin was used for sealing and sealing.

具体的には、嫌気性樹脂として、日本ロックタイト■製
のアクリル酸エステル系樹脂であるロックタイトを用い
た。方法としては、まず、窒化チタン皮膜を形成したロ
ータを硬化前のロックタイト中に浸漬する。次にこのロ
ータを取り出し、1Torr程度の真空中で約5分間放
置することにより、ピンホールや空孔、空隙中のロック
タイトを硬化した。この際、真空度と時間を管理するこ
とにより窒化チタン皮膜上のロックタイトを硬化するこ
とを防げ、後でアルコール等の溶剤により除去すること
ができ、ピンホールや空孔、空隙等の欠陥のみに硬化し
たロックタイト樹脂を残すことができた。第2図はこの
処理を行った磁石の断面図であり、完全に磁石表面及び
欠陥部分を被覆による保護ができ、実施例−1に述べた
ような恒温恒湿試験に対して、何ら欠陥を生じることも
なく、さらに、〇−タとカナの組合せ時においてもハク
リや脱落を生じなかった。
Specifically, as the anaerobic resin, Loctite, an acrylic ester resin manufactured by Nippon Loctite ■, was used. As a method, first, the rotor on which the titanium nitride film was formed is immersed in Loctite before hardening. Next, this rotor was taken out and left in a vacuum of about 1 Torr for about 5 minutes to harden the Loctite in the pinholes, holes, and voids. At this time, by controlling the degree of vacuum and time, it is possible to prevent the Loctite on the titanium nitride film from hardening, and it can be removed later with a solvent such as alcohol, leaving only defects such as pinholes, holes, and voids. I was able to leave the hardened Loctite resin behind. Figure 2 is a cross-sectional view of a magnet subjected to this treatment, and shows that the magnet surface and defective parts can be completely protected by coating, and no defects were observed in the constant temperature and humidity test as described in Example-1. Furthermore, there was no peeling or falling off when the O-ta and Kana were combined.

(発明の効果) 以上、実施例に述べたように本発明によれば、希土類鉄
系磁石の欠陥である耐食性、耐薬品性の悪さをカバーす
ることができ、島性能磁石である希土類鉄系磁石の用途
を拡げることができる。
(Effects of the Invention) As described above in the examples, according to the present invention, it is possible to overcome the defects of rare earth iron magnets, such as poor corrosion resistance and chemical resistance, and The uses of magnets can be expanded.

なお、実施例において希土類鉄系磁石の例としてNd−
Fe−B系磁石について記したが、他についても同様な
効果が11持され、皮膜として、窒化チタン皮膜を例に
あげたが、目的に応じて他の金属。
In addition, in the examples, Nd-
Although I have described Fe-B magnets, similar effects can be obtained with other magnets, and although a titanium nitride film has been cited as an example of the film, other metals may be used depending on the purpose.

非金属、化合物が適用できることはいうまでもない。Needless to say, non-metals and compounds can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は実施例にあげた本発明である磁石の
断面図である。 1・・・Nd−Fe−B系磁石 2・・・窒化チタン皮膜 3・・・ポリパラキシリレン皮膜 4・・・磁石の空孔 5・・・窒化チタン皮膜のピンホール 6・・・ポリバラキシリレン皮膜のピンホール7・・・
ピンホール、空孔、空隙を封止、封孔した嫌気性樹脂
FIGS. 1 and 2 are cross-sectional views of a magnet according to an embodiment of the present invention. 1... Nd-Fe-B magnet 2... Titanium nitride film 3... Polyparaxylylene film 4... Hole in magnet 5... Pinhole in titanium nitride film 6... Poly Pinhole 7 in baraxylylene film...
Anaerobic resin that seals and seals pinholes, holes, and voids

Claims (1)

【特許請求の範囲】[Claims] 希土類鉄系磁石表面上が乾式めつき法(気相めつき法)
による金属または化合物皮膜により被覆され、皮膜ピン
ホールや磁石内部の空孔を樹脂による封止、封孔してあ
ることを特徴とする磁石。
Dry plating method (vapor plating method) on the surface of rare earth iron magnets
1. A magnet characterized by being coated with a metal or compound film made of a metal or a compound film, and having film pinholes and pores inside the magnet sealed with a resin.
JP15445586A 1986-07-01 1986-07-01 Magnet Pending JPS639906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15445586A JPS639906A (en) 1986-07-01 1986-07-01 Magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15445586A JPS639906A (en) 1986-07-01 1986-07-01 Magnet

Publications (1)

Publication Number Publication Date
JPS639906A true JPS639906A (en) 1988-01-16

Family

ID=15584599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15445586A Pending JPS639906A (en) 1986-07-01 1986-07-01 Magnet

Country Status (1)

Country Link
JP (1) JPS639906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522108A (en) * 2001-06-07 2004-07-22 イスパノ・シユイザ Sliding bearing with friction film and manufacturing method thereof
JP2019015287A (en) * 2017-07-04 2019-01-31 レヴィトロニクス ゲーエムベーハー Rotor capable of magnetic levitation and rotary machine with such rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522108A (en) * 2001-06-07 2004-07-22 イスパノ・シユイザ Sliding bearing with friction film and manufacturing method thereof
JP2019015287A (en) * 2017-07-04 2019-01-31 レヴィトロニクス ゲーエムベーハー Rotor capable of magnetic levitation and rotary machine with such rotor

Similar Documents

Publication Publication Date Title
JP3330143B2 (en) Metal coating method using low temperature plasma and electrodeposition
EP0248665B1 (en) Rare earth-iron magnet and method of making same
US20120171500A1 (en) Process for surface treating magnesium alloy and article made with same
CN112662939B (en) Ultrathin permanent magnet with surface deposited coating
JPS639906A (en) Magnet
US6562289B1 (en) Method for improving the corrosion protection of permanent magnets containing rare earth metals
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
US20120062081A1 (en) Housing and method for manufacturing housing
US4966668A (en) Method for the treatment of metal objects
US20120171502A1 (en) Process for surface treating magnesium alloy and article made with same
US9909207B1 (en) Ion vapor deposition of aluminum on non-metallic materials
JP3305786B2 (en) Manufacturing method of permanent magnet with excellent corrosion resistance
CN112725751B (en) Preparation method of surface protective coating of ultrathin neodymium-iron-boron permanent magnet
JPS60174873A (en) Pretreatment of metallic substrate for vapor deposition
JPS639919A (en) Manufacture of magnet
KR20110117528A (en) Method for coating aluninum on steel
JP4691833B2 (en) Method for producing rare earth-based permanent magnet having metal-deposited coating on its surface
JPS639107A (en) Manufacture of magnet
JPH11176619A (en) Oxidation and abrasion-resistant, coated rare earth magnet
JP2001019784A (en) Electromagnetic shielding plastic material and its production
JPH0382747A (en) Formation of thin metal-surface film excellent in corrosion resistance and adhesive strength
JPS639908A (en) Magnet
JPS636811A (en) Magnet
JPS63187603A (en) Permanent magnet having improved resistance to oxidation and manufacture thereof
JP2000045062A (en) Electromagnetic preventing molding