JPS6398778A - Modeling method for 3-dimensional pattern - Google Patents

Modeling method for 3-dimensional pattern

Info

Publication number
JPS6398778A
JPS6398778A JP61242991A JP24299186A JPS6398778A JP S6398778 A JPS6398778 A JP S6398778A JP 61242991 A JP61242991 A JP 61242991A JP 24299186 A JP24299186 A JP 24299186A JP S6398778 A JPS6398778 A JP S6398778A
Authority
JP
Japan
Prior art keywords
data
input
calculation
modeling
phase data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61242991A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kido
城戸 勝弘
Yukio Yamaguchi
幸男 山口
Masatoshi Kanda
神田 正利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61242991A priority Critical patent/JPS6398778A/en
Publication of JPS6398778A publication Critical patent/JPS6398778A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the scale of a pattern modeling function and to shorten the arithmetic time by separating a geometrical calculation function which calculates and the intersecting lines and points between patterns needed for the pattern modeling function from an automatic recognizing function for form patterns. CONSTITUTION:The input 60 is carried out for the phase data of a final pattern and the data conflict check 63 is performed. The normal data is preserved and the abnormal data undergoes the error processing 65 for input of the next phase data. When input of said phase data is through, an indication for geometrical calculation is supplied to perform the data conflict check 73. The error processing 75 is carried out with the abnormal data and the indication data is supplied for the next calculation. While the intersecting line/point calculation 77 is carried out with the normal data. Then the stored 68 phase data is synthesized with the pattern data. The contents of indications for geometric calculation are all decided automatically by the stored 68 phase data.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は三次元図形処理システムにおいて図形の変形、
加工処理を行う装置に係り、特に図形の位相データ処理
と幾何データ処理とを独立に作動することができる方法
に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a three-dimensional graphic processing system for deforming a figure,
The present invention relates to an apparatus for processing, and in particular to a method capable of independently operating figure phase data processing and geometric data processing.

〔従来の技術〕[Conventional technology]

従来の装置は北海道大学沖野教授がr自動設計の方法論
」;昭り7月、養賢堂で例示している通り位相データ処
理と幾何データ処理とを同一装置内で同一時点で行って
いる。
The conventional device was developed by Professor Okino of Hokkaido University in ``Automatic Design Methodology''; as exemplified at Yokendo in July 1912, phase data processing and geometric data processing are performed in the same device at the same time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の三次元図形のモデリング装置は被モデリグ図形の
最終形状を生成する為の治工具図形を予め生成し、この
治工具図形と被モデリング図形との集合演算処理によっ
てこの図形モデリングを行う方式であり同装置内ではこ
の二図形間のすべての関係を調べて最終形状を決定する
パターン自動認識機構と最終形状寸法の決定を行う為の
二図形内の全図形要素間の相貫演算機構によって行なわ
れている。この場合パターン自動認識機構では非常に複
雑なまた相貫演算機構では非常にぼう大な・処理が必要
になり、モデリング装置が大規模且つモデリング処理に
関する時間も非常に大きかった。
Conventional three-dimensional figure modeling devices generate a jig and tool figure in advance to generate the final shape of the figure to be modeled, and perform this figure modeling by performing set calculations on the jig and tool figure and the figure to be modeled. The device uses an automatic pattern recognition mechanism that examines all relationships between these two shapes to determine the final shape, and a correlation calculation mechanism between all graphic elements within the two shapes to determine the final shape and dimensions. ing. In this case, the automatic pattern recognition mechanism required a very complicated process, the correlation calculation mechanism required a very large amount of processing, the modeling device was large-scale, and the time involved in the modeling process was also very large.

第2図に従来のモデリング装置によるモデリング例を示
す、第2図(A)の被モデリング図形1を第2図(B)
のようにモデリングする場合、第2図(C)に示す如く
治工具図形2を作成し図形1と図形2との位置設定を行
った後図形1から図形2と図形1とのと共通部分を取除
く処理を行う。
Figure 2 shows an example of modeling using a conventional modeling device.
When modeling as shown in Figure 2 (C), after creating jig and tool figure 2 and setting the positions of figure 1 and figure 2, the common parts of figure 2 and figure 1 are removed from figure 1. Perform the removal process.

この時モデリング装置内では図形1と図形2との相互関
係が第2図(D)に示す如く図形1が図形2を完全包含
するか、第2図(E)内接包含、第2図(F)交接、第
2図(G)外接、第2図(H)かをすべて調べ、且つ交
接・包含関係にある場合にはそれ等の相貫関係の演算を
行う。
At this time, in the modeling device, the mutual relationship between figure 1 and figure 2 is determined whether figure 1 completely includes figure 2 as shown in Fig. 2 (D), inscribed inclusion in Fig. 2 (E), or F) Intersection, Fig. 2 (G) circumscription, and Fig. 2 (H) are all checked, and if there is an intersecting/inclusive relationship, calculations are made for their interrelations.

本発明の目的はパターン自動認識機端を簡略化し図形モ
デリング装置の小形化と処理時間の短縮化が可能な三次
元図形モデリング装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a three-dimensional graphic modeling device that can simplify the automatic pattern recognition device, downsize the graphic modeling device, and shorten processing time.

〔問題点を解決するための手段〕[Means for solving problems]

第3図に本発明における図形モデリング装置の機構構成
を示す0本機端を図形モデリング機能上必要な図形相互
の相貫線、交点の計算を行う幾何計算機能と形状パター
ンの自動認識機能とに分離し、前者を幾何計算処理機構
20とし後者は処理後の図形位相データ記憶装置30に
対応させた。
Figure 3 shows the mechanical configuration of the figure modeling device according to the present invention.The machine end is equipped with a geometric calculation function that calculates mutual lines and intersections between figures necessary for the figure modeling function, and an automatic recognition function of shape patterns. The former was made to correspond to the geometric calculation processing mechanism 20, and the latter was made to correspond to the processed figure phase data storage device 30.

この際処理後の形状パターン認識のしかたは、自動認識
は行なわず装置使用者が図形入力部10を通して入力さ
れ形状パターン記憶装置30に事前に記憶しておく方式
にした。即ち形状パターンの判断は装置使用者によって
事前に指定され記憶しておく方式である。また幾何計算
処理13と位相データの入力処理16とは機能的にも処
理タイミング上も全く互いに独立な関係にある。
At this time, the method of recognizing the shape pattern after processing is such that automatic recognition is not performed, but the shape pattern is inputted by the device user through the graphic input unit 10 and stored in the shape pattern storage device 30 in advance. That is, the shape pattern is determined in advance by the user of the device and stored. Furthermore, the geometric calculation process 13 and the phase data input process 16 are completely independent from each other in terms of functionality and processing timing.

〔作用〕[Effect]

第3図に示す図形モデリング機構が装置使用者の指示に
従ってどのように作動するかを第4図に示す。
FIG. 4 shows how the graphical modeling mechanism shown in FIG. 3 operates according to instructions from the user of the device.

先ず最終図形の位相データの入力60を行い入力データ
のデータ矛盾チェック63を行い正常データは保存68
を行い、異常データはエラー処理65を行い次の位相デ
ータの入力と繰返す0位相データ入力が終了すると次に
幾何計算指示の入カフ0を行いデータ矛盾チェック73
後異常データについてはエラー処理75を行い次の計算
指示データ入力を、正常データについては相貫、交点計
算77及び先68に保存してあった位相データを図形デ
ータ内に合成79する。ここで幾何計算指示内容のすべ
ては先68で保存しである位相データから自動的に定ま
る。
First, the phase data of the final figure is input 60, the input data is checked for data inconsistency 63, and normal data is saved 68.
, error processing 65 is performed for abnormal data, input of next phase data and repeated 0 phase data input is completed, next input cuff 0 of geometric calculation instruction is performed and data contradiction check 73
For abnormal data, an error process 75 is performed to input the next calculation instruction data, and for normal data, the phase data stored in the intersection and intersection calculations 77 and the previous 68 are synthesized 79 into the graphic data. Here, all of the contents of the geometric calculation instructions are automatically determined from the phase data saved in step 68.

(実施例〕 以下本発明の実施例を第1図に、動作例を第5図に動作
手順を第4図に示す、入出力装置第1図80は装置使用
者の指令やモデリングされる図形データの入力を行なっ
たり入力された指令内容・図形データに誤りや矛盾があ
った場合にはエラ、−メッセージを出力する装置である
。入力データ解析部第1図83では入力された指令デー
タ、図形データを解析しデータ内容の正当性を評価しデ
ータ内容に誤り、矛盾が発見された場合にはエラーメツ
セージを生成し入出力装置へ送信し指令・図形データの
再入力を装置使用者に促す、正しい指令データ・図形デ
ータはデータの性質上位相データ、幾何データ毎に分類
整理され主記憶装置第1図88内に保存され同時に図形
モデリング装置第1図50に対し指令内容の実行指示が
出される。
(Embodiment) An embodiment of the present invention is shown in FIG. 1, an operation example is shown in FIG. 5, and an operation procedure is shown in FIG. 4. The input/output device 80 in FIG. This is a device that inputs data and outputs an error or - message if there is an error or contradiction in the input command content or graphic data.Input data analysis section 83 in FIG. Analyze the graphic data and evaluate the validity of the data content. If errors or contradictions are found in the data content, generate an error message and send it to the input/output device to prompt the device user to re-enter commands and graphic data. Due to the nature of the data, correct command data and graphic data are classified and organized by topological data and geometric data and stored in the main memory device 88 in FIG. It will be done.

図形モデリング装置では主記憶装置内の指令内容に従い
被モデリング図形の位相データ処理、幾何データ処理を
行う、処理された図形々状データは個々の指令処理が終
る度に主記憶装置内にたくわえられ同時に指令実行後の
図形々状の表示指令が表示処理部第1図85に対して圧
される0表示処理部85は主記憶装置88内のモデリン
グ処理された図形を線画状に変換しこの線画状データを
表示制御装置第1図90に送信される0表示制御袋fi
!90では線画状データを図形表示装置第1図95上に
表現可能なような様式、サイズに変換され、その結果が
図形表示装置t95に表示される。
The figure modeling device performs topological data processing and geometric data processing of the figure to be modeled according to the command contents in the main memory.The processed figure data is stored in the main memory each time the individual command processing is completed. After the instruction is executed, the graphical display command is sent to the display processing unit 85. The 0 display processing unit 85 converts the modeled graphic in the main memory 88 into a line drawing. 0 display control bag fi which sends the data to the display control device Fig. 1 90
! At 90, the line drawing data is converted into a format and size that can be expressed on the graphic display device t95, and the result is displayed on the graphic display device t95.

第5図は本装置で図形のモデリングを行う場合の一方式
を示したものであり、第41!!はその時の処理手順を
示したものである。第5図(A)に示す図形1を第5図
(B)に示す図形になるようにモデリングする場合の例
を示す。
FIG. 5 shows one method for modeling figures using this device, and the 41st! ! shows the processing procedure at that time. An example of modeling the figure 1 shown in FIG. 5(A) into the figure shown in FIG. 5(B) will be shown.

先ず第5図(C)に示すように図形lの面要素第5図(
A)90がモデリング処理後とのような模様になるかを
指定する。この模様の指定を図形の特定要素に対する位
相データ付与指令といい第4図の位相データ入力60で
ある。第5図(C)の例では図形1の面要素第5図(A
)90を稜線要素第5図(C)100,101によって
3つの面第5図(C)91,92,93に分割する例を
示した。この場合第4図60位相データ入力は最低2回
即ち第5図(C)での稜線要素100及び101の追加
指示がなされる。指示データが入力される毎に1個ずつ
そのデータの矛盾、妥当性のチェックを行い第4図63
正常データは第4図68位相データの保存が第1図88
主記憶装置上になされる。不当なデータはエラー処理第
4図65後再入力指示のメツセージを生成する1位相デ
ータの付与が全て終了する迄第4図69この手順が繰返
される。
First, as shown in FIG. 5(C), the surface element of figure l is
A) Specify whether the pattern 90 will look like after modeling processing. This designation of the pattern is called a phase data application command for a specific element of a figure, and corresponds to the phase data input 60 in FIG. In the example of FIG. 5(C), the surface element of figure 1
) 90 is divided into three surfaces 91, 92, 93 in FIG. 5(C) by edge line elements 100, 101 in FIG. 5(C). In this case, the phase data input in FIG. 460 is performed at least twice, that is, the instruction to add the edge line elements 100 and 101 in FIG. 5(C) is made. Each time instruction data is input, the data is checked for inconsistency and validity one by one.
Normal data is shown in Figure 4 68. Phase data is saved as shown in Figure 1 88.
done on main memory. After error processing for invalid data (see FIG. 4 65), a message for re-input instruction is generated.This procedure is repeated (see FIG. 4 69) until all one-phase data has been added.

次に前述の位相データの付与によって生成された図形要
素第5図91.92.93の面要素、第5図100,1
01,102,103(7)稜線要素に対し幾何データ
即ち稜線の方程式9面の方程式を与える。付与の方式は
面の方程式の付与のみで実現している。第5図(C)の
場合は面92の方程式を平面から円柱に変更する指示第
4図70によってされる。指示内容の正当性評価第4図
73後その指示内容に矛盾があればエラー処理第4図7
5後正当データの再入力を促す0面92の方程式の入力
により面92と面912面92と面93との相貫・交点
計算処理第4図77によって第5図(C)の稜線101
,102の方程式、端点座標値が決定される。同様に第
5図(C)の面92と面95及び面92と而96との相
貫・交点計算処理によって稜線102,103の方程時
及び端程の座標値が決まる。このようにして求められた
幾何データと位相データとを合成第4図79してモデリ
ング後の図形形状データが生成され第1図88主記憶装
置内に保存される。幾何計算指示第4図70から第4図
79の位相データの合成処理の繰返しは第4図60で入
力されたデータの内容。
Next, the surface elements of figure elements 91, 92, 93 in FIG.
01, 102, 103 (7) Give geometric data, ie, edge line equation, nine plane equations to the edge line element. The assignment method is realized only by assigning the surface equation. In the case of FIG. 5(C), the instruction to change the equation of the surface 92 from a plane to a cylinder is performed according to FIG. 4 70. After evaluating the validity of the instruction content (Figure 4), if there is a contradiction in the instruction content, error processing is performed (Figure 4).
After inputting the equation for the 0-plane 92, which prompts you to re-enter the correct data after 5, the intersection/intersection calculation process between the plane 92 and the plane 912 and the plane 92 and the plane 93 is performed.
, 102 equations, and the coordinate values of the end points are determined. Similarly, the coordinate values of the angle and edge of the ridge lines 102 and 103 are determined by the mutual intersection/intersection calculation process between the plane 92 and the plane 95 and between the plane 92 and the plane 96 in FIG. 5(C). The geometric data and topological data obtained in this manner are synthesized (FIG. 4, 79) to generate figure shape data after modeling, which is stored in the main storage device, FIG. 1, 88. Geometric calculation instructions The repetition of the phase data synthesis process of FIG. 4 70 to FIG. 4 79 is based on the data input in FIG. 4 60.

数によって自動的に定まる。Automatically determined by the number.

このようにしてモデリングの結果は第1図85表示処理
部、第1図90表示制御装置を経て図形表示装置第1図
95に表示される。装置使用者は表示結果に応じて不足
部分があれば再モデリング。
In this way, the modeling results are displayed on the graphic display device 95 in FIG. 1 via the display processing section 85 in FIG. 1 and the display control device 90 in FIG. 1. The device user re-models any missing parts according to the displayed results.

追加モデリング指示を行う。Provide additional modeling instructions.

〔発明の効果〕〔Effect of the invention〕

本発明により図形モデリング機構の小形化と演算処理時
間の大巾削減を計ることができる。
According to the present invention, it is possible to downsize the graphic modeling mechanism and significantly reduce the calculation processing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に図形モデリング装置の全体構成と各機構・装置
間のデータフローを示す、第2図に従来のモデリング装
置によるモデリングの方式例を示す。第3図は本発明に
おける図形モデリング装置の機構構成である。第4図は
本装置に図形モデリング操作を作用させた例である。第
5図は本装置で図形のモデリングを行う場合の方式例を
示した。 1・・・図形全体、91・・・図形1を構成する要素の
1つである面要素、92,93,95,96・・・図形
1を構成する要素の1つである面要素、100・・・図
形1を構成する要素の1つである稜線要素、101.1
02・・・図形1を構成する要素の1つである稜線要素
FIG. 1 shows the overall configuration of a graphic modeling device and the data flow between each mechanism and device, and FIG. 2 shows an example of a modeling method using a conventional modeling device. FIG. 3 shows the mechanical configuration of the graphic modeling device according to the present invention. FIG. 4 is an example in which a graphic modeling operation is applied to this device. FIG. 5 shows an example of a method for modeling figures using this device. 1... Entire figure, 91... Plane element which is one of the elements constituting figure 1, 92, 93, 95, 96... Plane element which is one of the elements constituting figure 1, 100 ...edge element, 101.1, which is one of the elements constituting figure 1
02...A ridge line element that is one of the elements constituting the figure 1.

Claims (1)

【特許請求の範囲】[Claims] 1、三次元図形モデリング装置において、図形の位相デ
ータ処理部と幾何データ処理部を完全分離、独立化し、
その各々を任意の時点で使用でき且つ「位相データ処理
部」においては生成図形の形状パターンを装置使用者が
指定することが可能な三次元図形モデリング方法。
1. In a three-dimensional figure modeling device, the figure topological data processing section and the geometric data processing section are completely separated and made independent.
A three-dimensional figure modeling method in which each of them can be used at any time and the device user can specify the shape pattern of the generated figure in the "topological data processing section".
JP61242991A 1986-10-15 1986-10-15 Modeling method for 3-dimensional pattern Pending JPS6398778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242991A JPS6398778A (en) 1986-10-15 1986-10-15 Modeling method for 3-dimensional pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242991A JPS6398778A (en) 1986-10-15 1986-10-15 Modeling method for 3-dimensional pattern

Publications (1)

Publication Number Publication Date
JPS6398778A true JPS6398778A (en) 1988-04-30

Family

ID=17097268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242991A Pending JPS6398778A (en) 1986-10-15 1986-10-15 Modeling method for 3-dimensional pattern

Country Status (1)

Country Link
JP (1) JPS6398778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242754A (en) * 1998-02-24 1999-09-07 Hidetoshi Wakamatsu Three-dimensional design according to stereoscopic vision shape input and part formation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242754A (en) * 1998-02-24 1999-09-07 Hidetoshi Wakamatsu Three-dimensional design according to stereoscopic vision shape input and part formation system

Similar Documents

Publication Publication Date Title
JPS63223869A (en) Program producing method
JP3742493B2 (en) Robot offline simulation system
JPS6398778A (en) Modeling method for 3-dimensional pattern
JP2692668B2 (en) Contact analysis method and system using finite element method
JPS62251905A (en) Interactive graphic input system
Tost et al. Boolean operations for 3D simulation of CNC machining of drilling tools
JPS6272071A (en) Method and device for generating and supporting coordinate lattice
Erdos et al. Parametric tool correction algorithm for 5-axis machining
JPH0250507B2 (en)
JPH04309187A (en) Mapping method for stereoscopic model
Zhang et al. Architecture for a novel STEP-NC-compliant CNC system
JPH1078979A (en) Method for generating solid body from two-dimensional cad drawing and recording medium recording solid body generation program
JP3126335B2 (en) Sheet metal model development method in sheet metal CAD / CAM system
JPH05225290A (en) Shape correction system by three dimensional parametric function
JP3147391B2 (en) Method and apparatus for setting curved surface in three-dimensional boundary fitting mesh division
JPS62107378A (en) Drawing data managing system
JP3823596B2 (en) Data compression method for motion simulation
JPH03175504A (en) Cad/cam device
Krause Cad-induced changes in design work
JPS63158614A (en) Nc work simulation method
JP2922532B2 (en) Command execution device for 3D shape processing device
JPH1185240A (en) Robot programming method, device therefor and recording medium recorded with generating program
JPH0350681A (en) Method and device for supporting generation of coordinate grid
CN114445530A (en) Shape modification method, device and storage medium
JPH0320874A (en) Automatic design system for hiproof