JPS6398633A - Manufacture of liquid crystal electro-optical device - Google Patents

Manufacture of liquid crystal electro-optical device

Info

Publication number
JPS6398633A
JPS6398633A JP24601086A JP24601086A JPS6398633A JP S6398633 A JPS6398633 A JP S6398633A JP 24601086 A JP24601086 A JP 24601086A JP 24601086 A JP24601086 A JP 24601086A JP S6398633 A JPS6398633 A JP S6398633A
Authority
JP
Japan
Prior art keywords
liquid crystal
orientation
phase
thin film
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24601086A
Other languages
Japanese (ja)
Inventor
Yuzuru Sato
譲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24601086A priority Critical patent/JPS6398633A/en
Publication of JPS6398633A publication Critical patent/JPS6398633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a monodomain orientation having bistable characteristic using even a ferroelectric liquid crystal having no SmA phase by cooling slowly an unoriented cell down to a SmC* phase while impressing an electric voltage which selects an orientation state having higher orientation energy out of two orientation states which can be selected by the impression of electric voltage. CONSTITUTION:A ferroelectric liquid crystal 36 having no smectic A phase is used. When polyvinyl alcohol (PVA) and polyimide (PI) is used for thin film 34 and 35 respectively, the energy of the orientation state wherein the permanent dipole 40 of the liquid crystal is directed from PVA side toward PI side as shown by the Figure (b) is the minimum and very stable energy. On the other hand, the orientation energy of the orientation state (b) is larger than that of (a) and unstable or metastable. In this state, when the liquid crystal is cooled slowly down to a chiral smectic phase (SmC* phase) while impressing a sufficiently high electric voltage from the PI side to the PVA side, molecules of liquid crystals in the SmC* phase are oriented in a manner as described by the Figure (a), and the direction of orientation coincides with the direction of rubbing.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は液晶電気光学装置の製造方法に関する〔従来の
技術〕 強誘電性液晶を使用した液晶電気光学装置における従来
の液晶配向方法としては、2枚の透明基板上にポリイミ
ドなどの薄膜を設けて一方向にラビング処理を施し、単
に等労相からスメクチラクA(8m人)相へ徐冷する方
法が用いられている、また、特にS歩人相を持たない液
晶を使用する場合は、カイラルスメクチック(SmO)
相へ徐冷していく時、さらに直流電圧を印加するという
方法が用いられている。なぜなら、強誘電性液晶の相系
列は表1のように大きく分けて4種類あり、SmA相が
存在しない場合は、SmO相へ転移した時、最初からi
g5図に示したようにひとつの層13の中での分子の方
向が2方向11.12となっている。そのため、直流電
圧を印加せずにSmC*相へ徐冷していくと、第3図の
分子の方向11.12のうちどちらがラビング方向14
と一致するかは任意であるため、その結果、第2図のよ
うなマルチドメインとなり、光学特性が悪くなる。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a method for manufacturing a liquid crystal electro-optical device [Prior Art] As a conventional method for aligning liquid crystal in a liquid crystal electro-optical device using ferroelectric liquid crystal, , a method is used in which a thin film of polyimide or the like is provided on two transparent substrates, rubbed in one direction, and then slowly cooled from the normal phase to the smectiraku A (8m) phase. When using a liquid crystal without physiognomy, use chiral smectic (SmO)
A method is used in which a DC voltage is further applied when slowly cooling the phase. This is because the phase series of ferroelectric liquid crystals can be roughly divided into four types as shown in Table 1, and if the SmA phase does not exist, when the transition to the SmO phase occurs, the i
As shown in Figure g5, the directions of molecules within one layer 13 are two directions 11 and 12. Therefore, when slowly cooling to the SmC* phase without applying a DC voltage, which of the molecular directions 11 and 12 in Figure 3 is the rubbing direction 14.
Since it is arbitrary whether they match, the result is a multi-domain structure as shown in FIG. 2, which deteriorates the optical properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の方法では、ラビング方向と一致している
分子の方向(11又は12のいずれか一方)のみが安定
となり、強誘電性液晶の大きな特徴である双安定性が失
われてしまう。そこで本発明の目的は、上記の問題を解
決して、SmA相を持たない強誘電性液晶を用いた場合
に双安定性を持ち光学特性のよい液晶電気光学装置を実
現するだめの液晶配向方法を提供することである。
However, in the conventional method, only the molecular direction (either 11 or 12) that coincides with the rubbing direction is stable, and the bistability, which is a major feature of ferroelectric liquid crystals, is lost. Therefore, an object of the present invention is to solve the above problems and to provide a liquid crystal alignment method for realizing a liquid crystal electro-optical device with bistability and good optical properties when using a ferroelectric liquid crystal that does not have an SmA phase. The goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の液晶電気光学装置の製造方法は、(a) スメ
クチック人相を持たない強誘電性液晶を使用し、 (b)2枚の透明基板のうち少くとも一方にはラビング
又は斜方蒸着によって配向処理を施し、その方向は偏光
板の偏光方向とほぼ平行又はほぼ垂直とし九 <cr  it圧印加によりて選択できる2つの液晶分
子配向状態のうち配向処理を施していない場合の配向エ
ネルギーの高い液晶分子配向状態を選択するための電圧
を印加しながらSmC*相へ徐冷することを特徴とする
The method for manufacturing a liquid crystal electro-optical device of the present invention includes (a) using a ferroelectric liquid crystal having no smectic physiognomy, and (b) using rubbing or oblique evaporation on at least one of two transparent substrates. Of the two liquid crystal molecule orientation states that can be selected by applying a pressure of 9<crit, the orientation treatment is performed and the direction is approximately parallel or approximately perpendicular to the polarization direction of the polarizing plate. It is characterized by slowly cooling to the SmC* phase while applying a voltage to select the orientation state of liquid crystal molecules.

〔実施例〕〔Example〕

(実施例1) 本実施例で用いた液晶電気光学装置の略断面図を第1図
に示す、31.52はそれぞれ上基板、下基板、33は
透明導電性薄膜、34.55は薄膜、36は強誘電性液
晶層、57.5Bは偏光板、39は液晶分子軸のxy平
面への射影、40は永久双極子、41.42はそれぞれ
薄y!、54゜35の仮想的な双極子である。スメクチ
ック層は描かれていないが、xy平平向内あり、スメク
チック層の法線(2軸)と液晶分子軸との関係は第4図
に示したようになっている。
(Example 1) A schematic cross-sectional view of the liquid crystal electro-optical device used in this example is shown in FIG. 36 is a ferroelectric liquid crystal layer, 57.5B is a polarizing plate, 39 is a projection of the liquid crystal molecular axis onto the xy plane, 40 is a permanent dipole, and 41.42 are thin y! , 54°35 is a virtual dipole. Although the smectic layer is not drawn, it exists in the xy plane, and the relationship between the normal (two axes) of the smectic layer and the liquid crystal molecule axis is as shown in FIG.

ここで薄膜34.55としてそれぞれポリビニルアルコ
ール(PTA)とポリイミド(P工)を使用した場合、
それぞれの仮想的な双極子の方向は第1図に示した方向
になりている。仮想的な双極子の方向は、電場を印加し
ていない時、各基板に接している液晶分子の永久双極子
の方向から判定した。従って、PTAとP工の組み合わ
せにおいては、第1図(b)のように液晶分子の永久双
極子が’PTA側からPI側へ向くような配向状態のエ
ネルギーが最小となり非常に安定である。一方、(b)
の配向状態の配向エネルギーはぐa)のそれよりも大き
く不安定もしくは準安定である、そこで、十分大きい電
圧を’PI側からPVA側へ印加しながらSmC相へ徐
冷していけば、SmO相における液晶分子の配向は第1
図(a)のようになりており、その配向方向はラビング
の方向と一致している。ただし、上下基板とも一方向に
ラビングを施してあり、その方向は互いに平行となりて
いる。また使用した液晶材料は、の相系列はよりo−+
li*→SmO*  である。
Here, when polyvinyl alcohol (PTA) and polyimide (P) are used as the thin film 34.55, respectively,
The direction of each virtual dipole is as shown in FIG. The direction of the virtual dipole was determined from the direction of the permanent dipole of the liquid crystal molecules in contact with each substrate when no electric field was applied. Therefore, in the combination of PTA and P, the energy of the orientation state in which the permanent dipoles of the liquid crystal molecules are directed from the PTA side to the PI side is minimum, as shown in FIG. 1(b), and the combination is extremely stable. On the other hand, (b)
The orientation energy of the orientation state of is unstable or metastable because it is larger than that of a).Therefore, if a sufficiently large voltage is applied from the PI side to the PVA side and slowly cooled to the SmC phase, the SmO phase will be formed. The orientation of liquid crystal molecules in
The orientation is as shown in Figure (a), and the orientation direction matches the rubbing direction. However, both the upper and lower substrates are rubbed in one direction, and the directions are parallel to each other. In addition, the phase series of the liquid crystal material used is more o−+
li*→SmO*.

このような方法で配向させると、第1図(a)のような
配向状態はラビングの効果で安定化され、さらに@1図
(b)のような配向状態は液晶分子の永久双極子とP工
、PTA薄膜との相互作用(極性相互作用)によりて安
定化されて双安定となる。
When oriented in this way, the alignment state shown in Figure 1 (a) is stabilized by the rubbing effect, and the alignment state shown in Figure 1 (b) is created by the permanent dipoles of liquid crystal molecules and P It is stabilized by interaction with the PTA thin film (polar interaction) and becomes bistable.

この場合(a)→(A)、(b)→(a)へ反転させる
ために必要な電圧vthはそれぞれ12−5V、12.
8Vであり、2つの配向状態の配向エネルギーの差が比
較的小さいことがわかる。安定性の対称性をα−Vth
(a嗣)/vth(b−α) で表わすことにすれば、
この場合はα=0.98である。
In this case, the voltages vth required to invert from (a) to (A) and from (b) to (a) are 12-5V and 12.
8V, and it can be seen that the difference in orientation energy between the two orientation states is relatively small. The symmetry of stability is α-Vth
If we express it as (a)/vth(b-α),
In this case, α=0.98.

これに対して、SmO相へ徐冷する時、PTA側からP
I側へ電場を印加すれば、第3図(a)の配向状態は非
常に不安定で、第3図(,6)の配向状態は、上記2つ
の効果によって強く安定化され、単安定となってしまり
た。
On the other hand, when slowly cooling to the SmO phase, P
If an electric field is applied to the I side, the orientation state in Figure 3(a) is extremely unstable, and the orientation state in Figure 3(, 6) is strongly stabilized by the above two effects, making it monostable. It has become.

(実施例2) 第2の実施例として、薄膜34.35としてそれぞれP
TA、SiOを使用し、上側基板のみ配向処理を施した
。SiO薄展の仮想的な双極子の向きはP工のそれと同
じである。本実施例で使用した液晶材料は H3 である。この場合2つの配向方向(a)(b)のうち(
b)の方の配向エネルギーが低かったので、SmC*相
へ徐冷する時、電圧をSiO→PVAの方向へ印加した
。この方法によって(a)の方も安定となり、双安定性
を得ることができた。
(Example 2) As a second example, P as the thin film 34 and 35, respectively.
TA and SiO were used, and only the upper substrate was subjected to alignment treatment. The orientation of the virtual dipole in the SiO thin film is the same as that in the P process. The liquid crystal material used in this example was H3. In this case, among the two orientation directions (a) and (b), (
Since the orientation energy of b) was lower, voltage was applied in the direction of SiO→PVA when slowly cooling to the SmC* phase. By this method, (a) also became stable and bistability could be obtained.

また、α=(L96であった。しかし第1の実施例と同
様に、電圧の向きを逆にすると単安定になりてしまった
Further, α=(L96).However, as in the first embodiment, when the direction of the voltage was reversed, it became monostable.

(実施例3) 第3の実施例として薄膜34としてP工を用い上側基板
にラビング処理を施した。薄膜35は設けなかった。透
明導電性薄膜33としては工TOを使用した。iた、使
用した液晶材料はの場合は2つの配向方向(a)(b)
のうち(a)の方が安定だりたのでSmC*相へ徐冷す
る時工TO→P工の方向へ電圧を印加することにより双
安定性を得ることができた。またα= 1.05であっ
た。
(Example 3) As a third example, P treatment was used as the thin film 34 and rubbing treatment was applied to the upper substrate. The thin film 35 was not provided. As the transparent conductive thin film 33, TO was used. In addition, the liquid crystal material used has two orientation directions (a) and (b).
Among them, (a) was more stable, so bistability could be obtained by applying a voltage in the direction of TO → P during slow cooling to the SmC* phase. Also, α=1.05.

(実施例4) 第4の実施例として、薄膜34として60°斜方蒸着し
たSiOを用い、薄膜35は設けなかった。以下実施例
3と同様である。本実施例においても工TO→SiOの
方向へ電圧を印加することによって双安定性を得ること
ができた。α=(L95であった。
(Example 4) As a fourth example, SiO obliquely deposited at 60° was used as the thin film 34, and the thin film 35 was not provided. The following is the same as in Example 3. In this example as well, bistability could be obtained by applying a voltage in the direction from TO to SiO. α=(L95.

以上の実施例においては簡単のために、2つの配向状態
はユニフォーム状態であるとして図示したが、実際には
ツイスト状態になっている。
In the above embodiment, for simplicity, the two orientation states are illustrated as being in a uniform state, but in reality, they are in a twisted state.

〔発明の効果〕〔Effect of the invention〕

8mA相を持たない強誘電性液晶をラビング又は斜方蒸
着によって配向させる時、配向処理を施していないセル
において電圧印加によって選ぶことができる2つの配向
状態のうち配向エネルギーの高い配向状態を選択する電
圧を印加しながらSmO”相へ徐冷するようにしたため
、SmA相を持たない強誘電性液晶を使用した場合でも
双安定性を持つモノドメイン配向を得ることができる、
また、その2つの配向状態の配向エネルギーの差を小さ
くすることができ、(a)→(b)。
When aligning a ferroelectric liquid crystal that does not have an 8 mA phase by rubbing or oblique evaporation, select the alignment state with higher alignment energy from two alignment states that can be selected by applying voltage in a cell that has not undergone alignment treatment. By slowly cooling to the SmO'' phase while applying a voltage, a monodomain alignment with bistability can be obtained even when using a ferroelectric liquid crystal that does not have an SmA phase.
Furthermore, the difference in orientation energy between the two orientation states can be reduced, (a)→(b).

Cb)→(a)へ反転するために必要な電圧の差が小さ
くなる。さらに、大面隨の素子を作成した場合、上下基
板のたわみなどによって局所的に2つの配向状態間の配
向エネルギーの大小関係が逆転して、その部分の駆動電
圧条件が変わって動作しなくなることがあるが、そのエ
ネルギー差が小さいため、このような逆転現象が起こっ
ても駆動電圧条件の変化が小さく、局所的な動作むらを
防ぐことができる。
The difference in voltage required to invert from Cb) to (a) becomes smaller. Furthermore, when creating a device with a large surface area, the magnitude relationship of the orientation energy between the two orientation states may be reversed locally due to deflection of the upper and lower substrates, and the driving voltage conditions of that area may change, causing the device to become inoperable. However, since the energy difference is small, even if such a reversal phenomenon occurs, the change in drive voltage conditions is small, and local unevenness in operation can be prevented.

【図面の簡単な説明】 第1図(a)、(A)は本発明における液晶電気光学装
置の断面図、第2図はSmA相を持たない液晶を用いて
電圧を印加せずに配向させた時に得られるマルチドメイ
ンを示す図、@3図は13mo*相における液晶分子軸
の配向を示す図、第4図は液晶分子軸、永久双極子とス
メクチック層との位置関係を示す図である。 11.12・・・液晶分子の2つの方向13・・・・・
・・・・・・・スメクチック層14・・・・・・・・・
・・・ラビング方向15・・・・・・・・・・・・液晶
分子16・・・・・・・・・・・・永久双極子31・・
・・・・・・・・・・上基板 32・・・・・・・・・・・・下基板 33・・・・・・・・・・・・週明導電性薄膜34.3
5・・・有機又は無機の薄膜 36・・・・・・・・・・・・強誘電性液晶層37.3
8・・・偏光板 39・・・・・・・・・・・・液晶分子軸のxy平面へ
の射影4o・・・・・・・・・・・・永久双極子41・
・・・・・・・・・・・薄膜34の仮想的な双極子42
・・・・・・・・・・・・薄膜35の仮想的な双極子以
上 第1而αン  第1図G) 第2図
[Brief Description of the Drawings] Figures 1(a) and (A) are cross-sectional views of a liquid crystal electro-optical device according to the present invention, and Figure 2 is a liquid crystal that does not have an SmA phase and is oriented without applying a voltage. Figure 3 shows the orientation of liquid crystal molecular axes in the 13mo* phase, and Figure 4 shows the positional relationship between liquid crystal molecular axes, permanent dipoles, and smectic layers. . 11.12... Two directions of liquid crystal molecules 13...
・・・・・・Smectic layer 14・・・・・・・・・
...Rubbing direction 15...Liquid crystal molecule 16...Permanent dipole 31...
......... Upper substrate 32... Lower substrate 33... Weekly conductive thin film 34.3
5... Organic or inorganic thin film 36... Ferroelectric liquid crystal layer 37.3
8... Polarizing plate 39... Projection of the liquid crystal molecular axis onto the xy plane 4o... Permanent dipole 41.
......Virtual dipole 42 of thin film 34
・・・・・・・・・・・・ More than the virtual dipole of the thin film 35 (Fig. 1G) Fig. 2

Claims (1)

【特許請求の範囲】 2枚の透明基板の液晶と接する面に透明導電性薄膜を設
け、少くとも一方の基板には、前記透明導電性薄膜の上
にさらに薄膜を設けた液晶電気光学装置の製造方法にお
いて、 (a)スメクチックA相を持たない強誘電性液晶を使用
し、 (b)前記2枚の透明基板のうち少くとも一方にはラビ
ング又は斜方蒸着によって配向処理を施し、その方向は
偏光板の偏光方向とほぼ平行又はほぼ垂直とし、 (c)電圧印加によって選択できる2つの液晶分子配向
状態のうち配向処理を施していない場合の配向エネルギ
ーの高い液晶分子配向状態を選択するための電圧を印加
しながらカイラルスメクチックC相へ徐冷することを特
徴とする液晶電気光学装置の製造方法。
[Scope of Claims] A liquid crystal electro-optical device, wherein a transparent conductive thin film is provided on the surfaces of two transparent substrates in contact with liquid crystal, and at least one substrate is further provided with a thin film on the transparent conductive thin film. In the manufacturing method, (a) a ferroelectric liquid crystal that does not have a smectic A phase is used; (b) at least one of the two transparent substrates is subjected to an alignment treatment by rubbing or oblique vapor deposition; is substantially parallel or substantially perpendicular to the polarization direction of the polarizing plate, and (c) to select the liquid crystal molecule alignment state with high alignment energy when no alignment treatment is performed among the two liquid crystal molecule alignment states that can be selected by applying a voltage. 1. A method for manufacturing a liquid crystal electro-optical device, which comprises slowly cooling to a chiral smectic C phase while applying a voltage of .
JP24601086A 1986-10-16 1986-10-16 Manufacture of liquid crystal electro-optical device Pending JPS6398633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24601086A JPS6398633A (en) 1986-10-16 1986-10-16 Manufacture of liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24601086A JPS6398633A (en) 1986-10-16 1986-10-16 Manufacture of liquid crystal electro-optical device

Publications (1)

Publication Number Publication Date
JPS6398633A true JPS6398633A (en) 1988-04-30

Family

ID=17142115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24601086A Pending JPS6398633A (en) 1986-10-16 1986-10-16 Manufacture of liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JPS6398633A (en)

Similar Documents

Publication Publication Date Title
JPS61272719A (en) Ferroelectric liquid crystal cell and its production
JPS61260222A (en) Liquid crystal element
JPS626223A (en) Ferroelectricity liquid crystal panel
JPH0654368B2 (en) Liquid crystal cell
JPS61165730A (en) Liquid crystal electrooptic device
JPS6398633A (en) Manufacture of liquid crystal electro-optical device
KR20050068175A (en) Liquid crystal display of in-plane-switching mode and method of fabricating the same
JPS61183624A (en) Liquid crystal display device
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPS59131911A (en) Liquid crystal electrooptic device
JP2815415B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JPS61205919A (en) Liquid crystal element
JP2548592B2 (en) Ferroelectric liquid crystal element
JPH07181495A (en) Ferroelectric liquid crystal element
JPS6132817A (en) Liquid crystal display panel and its manufacture
JPS6398632A (en) Liquid crystal electrooptical device
JPS63200124A (en) Liquid crystal element
JP3168611B2 (en) Liquid crystal display device
JPS62247326A (en) Production of ferroelectric liquid crystal element
JPS62169883A (en) Liquid crystal element
JPH04345127A (en) Liquid crystal display element
JPH01245224A (en) Liquid crystal electro-optic element
JPH03288826A (en) Liquid crystal electrooptical device
JPH07248484A (en) Liquid crystal display device
JPH07140469A (en) Liquid crystal display element and liquid crystal display device