JPS6398632A - Liquid crystal electrooptical device - Google Patents

Liquid crystal electrooptical device

Info

Publication number
JPS6398632A
JPS6398632A JP24512586A JP24512586A JPS6398632A JP S6398632 A JPS6398632 A JP S6398632A JP 24512586 A JP24512586 A JP 24512586A JP 24512586 A JP24512586 A JP 24512586A JP S6398632 A JPS6398632 A JP S6398632A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical device
slant
substrate
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24512586A
Other languages
Japanese (ja)
Other versions
JPH07104515B2 (en
Inventor
Akira Mase
晃 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61245125A priority Critical patent/JPH07104515B2/en
Publication of JPS6398632A publication Critical patent/JPS6398632A/en
Publication of JPH07104515B2 publication Critical patent/JPH07104515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a liquid crystal electrooptical device having good and uniform orientation characteristics by aligning major axes of chiral smectic liquid crystal molecules to a direction which is approximately parallel to the slant faces provided in plural numbers on one surface of a substrate being perpendicular to the direction of the edge of the slant faces. CONSTITUTION:Coating liquid for forming silicon oxide film is coated to ca. 0.5mum thickness on a glass substrate 1 provided with transparent electroconductive film 2. Then, a mold prepd. to have a slant face having 10 deg.(theta) slant angle and 1mum pitch (W) of the slant faces is allowed to contact with the coated film interposing a parting material to transfer thus the unevenness of the surface. Two substrates having thus transferred unevenness are superposed on each other arranging both surfaces having the transferred unevenness to the inside, edges of the slant faces parallel to each other, and both slant surface being parallel to each other. The outside periphery of the superposed substrates are sealed and chiral smectic liquid crystals are injected while preserving the isotropic state. By this method, it has been able to realize the orientation state of uniform and defectless liquid crystals in a large area using smectic C phase in a display device utilizing liquid crystal electrooptical effect using chiral smectic liquid crystals.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は液晶材料の持つ電気光学特性を利用して2つの
状態を示す液晶電気光学装置のうち特に光学活性なカイ
ラルスメクチック液晶を用いた物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a liquid crystal electro-optical device that utilizes the electro-optic properties of a liquid crystal material to exhibit two states, particularly one using an optically active chiral smectic liquid crystal. .

〔従来技術〕[Prior art]

従来より、液晶は様々な、電気光学的応用製品に使用さ
れており、特に携帯用電気製品の表示部として薄型で、
消費電力が非常に小さいという特徴を持つため、巾広く
使用されている。これらに使用される液晶材料としては
、ネマチック、コレステリンクスメクチック相を呈する
物を用い、その材料のもつ、誘電性配列効果に基づいて
その表示等を行っている。
Liquid crystals have traditionally been used in a variety of electro-optical applications, especially as thin displays in portable electronic products.
It is widely used because of its extremely low power consumption. The liquid crystal materials used in these applications are those exhibiting a nematic or cholesterin smectic phase, and displays are performed based on the dielectric alignment effect of the material.

この場合は、液晶材料自身が持つ誘電異方性によって、
外部より印加された電場により液晶の分子長軸の方向が
平均的に一方向に並ぶという現象を利用して表示等を行
っている。しかしこの場合外部より印加する電場により
、液晶材料の分子長軸が一方向にそろう時間すなわち電
気光学的な応答速度は、かなり遅く、数十から数百ms
のオーダであった。
In this case, due to the dielectric anisotropy of the liquid crystal material itself,
Displays are performed using the phenomenon that the long axes of liquid crystal molecules are aligned in one direction on average due to an externally applied electric field. However, in this case, due to the externally applied electric field, the time for the long molecular axes of the liquid crystal material to align in one direction, that is, the electro-optical response speed, is quite slow, ranging from several tens to several hundreds of milliseconds.
The order was

このことは、特に表示素子を構成する際に非常に大きな
欠点となりうる。つまり大面積のマトリクス構造の場合
表示する画素の数が非常に多くなると、その応答速度が
遅いがゆえに液晶表示駆動方法に数多くの工夫が必要と
なる。そうなると動画表示ができない、画素間のクロス
トークが発生する等多くの問題が発生していた。
This can be a very big drawback, especially when constructing a display element. In other words, in the case of a large-area matrix structure, if the number of pixels to be displayed becomes very large, the response speed will be slow, and many improvements will need to be made to the liquid crystal display driving method. This caused many problems, such as the inability to display video and the occurrence of crosstalk between pixels.

これらの問題を解決するものの1つとして、クラーク(
usP4367924)は、スメクチック相の液晶を用
いた新しい表示方式を提案している。
One solution to these problems is Clark (
USP4367924) proposes a new display method using smectic phase liquid crystal.

以下これについて少々の説明を行う。This will be briefly explained below.

このスメクチック液晶とは、棒状の液晶分子が第2図に
示すように、層状構造をしており、それぞれの分子はこ
の層の面に対して垂直またはある角度ψをなして傾いて
いるかの状態をなしている。
This smectic liquid crystal has a layered structure of rod-shaped liquid crystal molecules as shown in Figure 2, and each molecule is perpendicular to the plane of this layer or tilted at a certain angle ψ. is doing.

そしていずれの場合にもその構成液晶分子は、互いに平
行に配列している。
In either case, the constituent liquid crystal molecules are arranged parallel to each other.

この液晶では分子層に垂直な方向の光速度は、それに平
行な方向の光速度よりも速く、いわゆる分子軸方向の光
速度が速いという光学的にプラスの複屈折性を示すもの
である。
This liquid crystal exhibits optically positive birefringence, in which the speed of light in the direction perpendicular to the molecular layer is faster than the speed of light in the direction parallel to it, that is, the speed of light in the so-called molecular axis direction is faster.

クラークらは、このスメクチック液晶のうち光学活性な
キラルスメクチック液晶のうち、C相。
Among these smectic liquid crystals, Clark et al. discovered the C phase among the optically active chiral smectic liquid crystals.

H相等強誘電性を示す液晶を用いて新規な表示方式を提
案している。
We are proposing a new display method using liquid crystals that exhibit ferroelectric properties such as H-phase.

例えば第2図のようにカイラルスメクチックC相を示す
強誘電性液晶は、一般に、電気双極子密度、Pを有して
おり、このPの方向は液晶分子長軸の方向Nに垂直であ
りかつスメクチック層の層面に対し平行な向きでこれは
C相のみだけではなく他の相においても同様である。こ
れらの強誘電性液晶における電気双極子の存在により、
これらの液晶は、外部より印加される電界の方向によっ
て、その分子の傾く方向を変化させる。
For example, a ferroelectric liquid crystal exhibiting a chiral smectic C phase as shown in Figure 2 generally has an electric dipole density, P, and the direction of this P is perpendicular to the direction N of the long axis of the liquid crystal molecules. The direction is parallel to the layer plane of the smectic layer, and this is true not only for the C phase but also for other phases. Due to the presence of electric dipoles in these ferroelectric liquid crystals,
These liquid crystals change the direction in which their molecules tilt depending on the direction of an externally applied electric field.

すなわち、今外部より液晶に対して第2図から記載され
た紙面に対して手前より奥に十Eの電界を印加した場合
その傾きがψとすると−Eの電界を印加した場合は−ψ
の角度で傾くこのψと−ψの2状態により、表示を行う
もので、この外部から印加する電界の向きによって、液
晶分子が一ψ、ψの2状態へ変化する応答速度は、従来
の誘電異方性により、外部の電場の有無により応答する
場合に比べて、非常に速く、数から数百μsecのオー
ダであった。
In other words, if an electric field of 10 E is applied from the outside to the liquid crystal from the front to the back of the paper shown in Figure 2, and the slope is ψ, if an electric field of -E is applied, -ψ
Display is performed using these two states, ψ and -ψ, which are tilted at an angle of Due to the anisotropy, the response time was much faster, on the order of several to several hundred microseconds, compared to the case where the response was based on the presence or absence of an external electric field.

このような自発分極による2状態を用いて表示するため
には液晶素子全体において液晶分子を一様に一軸方向に
配向させる必要がある。
In order to display using two states due to such spontaneous polarization, it is necessary to uniformly align liquid crystal molecules in the uniaxial direction in the entire liquid crystal element.

また、このカイラルスメクチック液晶は、分子間に強い
相互作用を有するので、基板表面上に液晶分子に配向規
制力を与える配向処理を施すと、基鈑表面付近だけでは
なく遠く離れた位置の分子にまでその影響が及ぶ、即ち
、液晶の配向性は基板表面上の配向処理に大きく影響さ
れることが言える。
In addition, since this chiral smectic liquid crystal has strong interactions between molecules, when an alignment treatment is applied to the substrate surface to give an alignment control force to the liquid crystal molecules, molecules not only near the substrate surface but also far away can be In other words, it can be said that the alignment of liquid crystal is greatly influenced by the alignment treatment on the substrate surface.

この基板に平行でかつ一軸性の配向を液晶に与える基板
の表面配向処理としては従来より、シェアリング法、温
度勾配法、磁場配向法、ラビング法等が用いられている
Conventionally, a shearing method, a temperature gradient method, a magnetic field orientation method, a rubbing method, etc. have been used as a surface orientation treatment for a substrate to give a liquid crystal a uniaxial orientation parallel to the substrate.

これらのうち、ラビング法が工業的にも大面積の配向が
簡単に得られるために巾広く使用されている。
Among these, the rubbing method is widely used industrially because orientation over a large area can be easily obtained.

しかしながら、このラビング法によって、大面積に均一
な配向が得られる液晶には限りがある。
However, there is a limit to the amount of liquid crystal that can be uniformly aligned over a large area by this rubbing method.

つまり液晶相の相転移の系列として、等労相−5mA−
3sC*又は等労相−N+SmA−SmC*とカイラル
スメクチックC相を示す温度領域より高温側にスメクチ
ックA相を示す領域を持つ液晶が均一で大面積の一軸配
向を良好に行うことができる。
In other words, as a series of phase transitions of the liquid crystal phase, the equal phase -5mA-
A liquid crystal having a region exhibiting a smectic A phase on the higher temperature side than a temperature region exhibiting a chiral smectic C phase and a 3sC* or isolaboratory phase -N+SmA-SmC* can be uniformly and favorably uniaxially aligned over a large area.

しかしこの系列以外の相系列を持つスメクチック液晶は
、このラビング法においては十分な配向性が得られず、
均一な大面積の一軸配向状態が得られないため液晶電気
光学装置に用いることはできなかった。一方、ラビング
法にて良好な配向性を持つ液晶が得られた場合において
も、ラビング処理により基板表面より液晶に与える一軸
配向の規制力が非常に強いため、実際に電界を外部より
印加して強誘電性液晶を反転させると、この−軸配向の
規制力のため反転の過程でちがいが現れる。
However, for smectic liquid crystals with phase series other than this series, sufficient alignment cannot be obtained by this rubbing method.
It could not be used in liquid crystal electro-optical devices because a uniform, large-area, uniaxially aligned state could not be obtained. On the other hand, even if a liquid crystal with good alignment is obtained by the rubbing method, the rubbing process exerts a very strong uniaxial alignment regulating force on the liquid crystal from the substrate surface, so it is difficult to actually apply an electric field from the outside. When a ferroelectric liquid crystal is inverted, a difference appears in the inversion process due to the regulating force of this -axis orientation.

すなわち+ψから一ψへ反転する場合と−ψから+ψへ
反転する場合とではその応答速度にちがいを生じる。ま
た液晶本来の傾き角ψより小さく液晶分子が傾くことに
なる。
In other words, there is a difference in response speed between the case of reversing from +ψ to one ψ and the case of reversing from -ψ to +ψ. Furthermore, the liquid crystal molecules are tilted smaller than the original tilt angle ψ of the liquid crystal.

という問題が種々現れ、液晶電気光学装置として応用す
るには問題が多く解決を望まれていた。
Various problems have arisen, and many problems have been desired to be solved before they can be applied to liquid crystal electro-optical devices.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの従来のラビング法に見られた問題を
解決し、良好な均一な配向性を持つ液晶電気光学装置を
提供するものであります。
The present invention solves the problems seen in these conventional rubbing methods and provides a liquid crystal electro-optical device with good and uniform alignment.

〔発明の構成〕[Structure of the invention]

そのため本発明においては、特許請求の範囲に記載の如
く「光学活性なカイラルスメクチック液晶を使用し、外
部より印加する電界の方向により発現する電気光学特性
のちがいにより、2つの状態を示す、液晶電気光学装置
において、前記液晶電気光学装置の液晶容器を構成する
2つの基板の少なくとも一表面に前記表面に対し、θな
る角度を構成する斜面を複数個設けこの斜面にほぼ平行
で、斜面の陵線方向とは垂直な角度をなす方向に前記液
晶の持つ相系列のうち、いずれかの相においてカイラル
スメクチック液晶分子の分子長軸の方向をそろえること
を特徴とする液晶電気光学装置。」を特徴とするもので
あります。
Therefore, in the present invention, as described in the claims, ``an optically active chiral smectic liquid crystal is used, and a liquid crystal electric In the optical device, at least one surface of the two substrates constituting the liquid crystal container of the liquid crystal electro-optical device is provided with a plurality of slopes forming an angle of θ with respect to the surface, substantially parallel to the slopes, and a ridge line of the slope. A liquid crystal electro-optical device characterized by aligning the long axes of chiral smectic liquid crystal molecules in any one of the phase series of the liquid crystal in a direction that makes an angle perpendicular to the direction. It is something to do.

すなわち、液晶電気光学装置に用いる液晶容器の2つの
基板のうち少なくとも一方の基板表面上に規則正しく配
列された斜面を形成し、その斜面の方向にそって強誘電
性液晶の分子を一軸配向させたことを特徴とするもので
あります。
That is, regularly arranged slopes are formed on the surface of at least one of the two substrates of a liquid crystal container used in a liquid crystal electro-optical device, and ferroelectric liquid crystal molecules are uniaxially aligned along the direction of the slopes. It is characterized by this.

本発明は前記の如くの従来の問題点を解決するため、発
明者らが鋭意努力した結果実験的に見いだされたもので
あります。
The present invention was experimentally discovered as a result of the inventors' diligent efforts to solve the problems of the conventional technology as described above.

第1図(A)(B)に本発明による液晶電気光学装置に
用いる基板の概略図及び断面図の一例を示す。
FIGS. 1A and 1B show an example of a schematic diagram and a cross-sectional view of a substrate used in a liquid crystal electro-optical device according to the present invention.

同図(A)に示す如く、基板表面に規則正しく配列され
かつ一方向に揃った斜面を形成する。するとスメクチッ
ク液晶分子は斜面に平方で、斜面の陵線方向とは垂直な
方向にその分子長軸の方向を揃えて配向する。
As shown in FIG. 3A, slopes are formed on the surface of the substrate, regularly arranged and aligned in one direction. Then, the smectic liquid crystal molecules are aligned square to the slope, with their long axes aligned in a direction perpendicular to the ridge line of the slope.

同図(A)では説明の為に一斜面に1分子しか配列して
いないように記載しであるが実際には複数個の液晶分子
がその分子長軸の方向を概略一致させて配向している。
In Figure (A), for the sake of explanation, it is shown that only one molecule is arranged on one slope, but in reality, multiple liquid crystal molecules are oriented with their long axes roughly aligned. There is.

この時スメクチック液晶の形成するスメクチック層の層
方向と基板に形成された斜面の陵線方向とは概略一致す
るため欠陥のない一様な配向が得られるものであります
At this time, the layer direction of the smectic layer formed by the smectic liquid crystal and the ridge line direction of the slope formed on the substrate roughly match, so uniform alignment without defects can be obtained.

また第1図(B)に示すように、この基板表面上に形成
する斜面の形状は、のこぎり歯状が最も都合がよいが、
実質的に基板上に一方向に揃った斜面が形成されていれ
ばよい。
As shown in FIG. 1(B), the most convenient shape of the slope formed on the substrate surface is a sawtooth shape.
It is sufficient that slopes substantially aligned in one direction are formed on the substrate.

また、この寸法としては斜面の角度θが3″≦θ≦15
″であり斜面の陵線の間隔Wが0.5μm≦W≦2μm
であり斜面の段差りがD≦0.3μmを満たす時に良好
な配向状態が得られた。
Also, regarding this dimension, the angle θ of the slope is 3″≦θ≦15
'', and the interval W between the ridge lines on the slope is 0.5 μm≦W≦2 μm
A good alignment state was obtained when the level difference on the slope satisfied D≦0.3 μm.

すなわち、斜面の角度θが36未満又は15°を越えた
場合には液晶の分子長軸方向と斜面の陵線方向の垂直方
向とは一致しなくなり、そのため、スメクチック層の層
方向と斜面の陵線方向が一致せず液晶の配向に無数の欠
陥が発生する。
In other words, when the angle θ of the slope is less than 36 degrees or exceeds 15 degrees, the long axis direction of the molecules of the liquid crystal does not match the perpendicular direction of the ridge line of the slope, and therefore the layer direction of the smectic layer and the ridge of the slope do not match. The line directions do not match, resulting in countless defects in the alignment of the liquid crystal.

また、この場合基板全体において液晶の分子長軸が一方
向にそろわず、いわゆる配向していない状態となること
がわかった。
In addition, it was found that in this case, the long molecular axes of the liquid crystal are not aligned in one direction over the entire substrate, resulting in a so-called unaligned state.

次ぎに斜面の陵線の間隔Wが0.5μm未満又は2μm
を越えた場合、同様に基板全体において液晶分子の一軸
配向性が得られなく液晶電気光学装置として機能しな(
なる。
Next, the interval W between the ridge lines on the slope is less than 0.5 μm or 2 μm
If it exceeds 100%, the uniaxial alignment of liquid crystal molecules cannot be obtained over the entire substrate, and the device cannot function as a liquid crystal electro-optical device (
Become.

さらに斜面の段差りが0.3μmを越えた場合は基板表
面上での凹凸の程度が激しいため非常に多くの欠陥が発
生する。
Furthermore, if the level difference in the slope exceeds 0.3 μm, the degree of unevenness on the substrate surface is severe and a large number of defects occur.

また逆に言及すると前述のθ、W、D、の各条件を満た
すならば、のこぎり歯形状である必要はなく任意の形状
でも本発明と同様の効果を得ることが可能であります。
Conversely, as long as the above-mentioned conditions of θ, W, and D are satisfied, it is not necessary to have a sawtooth shape, and it is possible to obtain the same effect as the present invention with any shape.

以下に実施例を示す。Examples are shown below.

〔実施例〕〔Example〕

まず、基板として透明導電膜(2)を有する硝子基板(
1)を用い同基板上に、硝子基板または4電膜からのア
ルカリ金属等の溶出を防止する機能を持つ酸化珪素被膜
形成用塗布液(RnSi (OH) a−)を約0.5
μmの厚さにコーティングする。
First, a glass substrate (2) having a transparent conductive film (2) is used as a substrate.
Using 1), approximately 0.5% of a coating solution for forming a silicon oxide film (RnSi (OH) a-), which has the function of preventing the elution of alkali metals etc. from the glass substrate or 4-electrode film, is applied onto the same substrate.
Coat to a thickness of μm.

次ぎに斜面の角度θ=10°斜面の陵線の間隔W=1μ
mとして作成された金型を離形材を介して前記被膜に接
触させて凹凸形状を転写する。
Next, the angle of the slope θ = 10° The interval between the ridge lines of the slope W = 1μ
A mold prepared as M is brought into contact with the film through a release material to transfer the uneven shape.

この転写工程の前又は工程中に、塗布被膜中の溶媒を蒸
発させ得る程度の温度(例えば100 ”C)にすると
転写された凹凸がよりシャープになるため有効であった
Before or during this transfer process, it was effective to raise the temperature to a level that could evaporate the solvent in the coated film (for example, 100"C) because the transferred unevenness would become sharper.

この後基板全体を400”C程度に加熱し塗布被膜をキ
ュアして凹凸形状を有する被膜(3)を完成させた。
Thereafter, the entire substrate was heated to about 400''C to cure the applied film to complete a film (3) having an uneven shape.

本実施例の場合、硝子基板にコーティングした酸化珪素
被膜に凹凸形状を金型より転写したが、酸化珪素被膜以
外例えば、ポリイミド被膜、pv^被膜でも可能である
。さらに硝子基板自身さらには透明翼電膜自身に凹凸形
状を転写して形成してもよい。
In the case of this embodiment, the uneven shape was transferred from the mold to the silicon oxide film coated on the glass substrate, but it is also possible to use a polyimide film or a pv^ film other than the silicon oxide film. Furthermore, the uneven shape may be transferred onto the glass substrate itself or the transparent wing electric film itself.

次ぎに、この凹凸が形成された基+Ji 2枚を、凹凸
が形成されている面を内側に、斜面の陵線を平行に、斜
面どうしが平行になるように重ね合わせ外周をシールに
液晶容器を形成せしめた。
Next, stack the two pieces of base + Ji on which the unevenness was formed, with the uneven surface facing inward and the ridge lines of the slopes parallel to each other, so that the slopes are parallel to each other, and seal the outer periphery of the liquid crystal container. was formed.

次ぎに従来より公知の液晶注入法にて、カイラルスメク
チック液晶を等大和状態にて容器内に注入した。この時
注入する液晶は材料の分子構造のちがいによる配向の程
度の差は見られなかったが液晶材料の持つ相系列のちが
いによってスメクチックC相での配向に若干の差が見ら
れた。
Next, chiral smectic liquid crystal was injected into the container in an equi-potent state using a conventionally known liquid crystal injection method. Although there was no difference in the degree of orientation of the liquid crystals injected at this time due to differences in the molecular structure of the materials, slight differences in orientation in the smectic C phase were observed due to differences in the phase series of the liquid crystal materials.

すなわち、等労相−釦A相−5mC相をとる相系列より
等労相→ネマチック相→SmA相→5IIIC相をとる
相系列のほうがスメクチックC相での配向に欠陥がなく
大面積にかつ均一な配向を得ることが可能であった。
In other words, the phase sequence of iso-lao phase - button A phase - 5mC phase is better than the phase series of iso-lao phase → nematic phase → SmA phase → 5IIIC phase, which has no defects in the orientation in the smectic C phase and has a large area and uniform orientation. It was possible to obtain

本発明は本実施例の作成方法のみに限定されることなく
、その他の材料及び形状をもって本発明の同等の効果を
得ることが可能である。
The present invention is not limited to the manufacturing method of this embodiment, and it is possible to obtain the same effects as the present invention using other materials and shapes.

〔効果〕〔effect〕

本発明により、カイラルスメクチック液晶を用い液晶電
気光学効果を利用して表示等を行う装置において大面積
にかつ均一な欠陥のない液晶の配向状態をスメクチック
C相にて容易に実現することが可能となった。
According to the present invention, it is possible to easily realize a uniform, defect-free liquid crystal alignment state over a large area using a smectic C phase in a device that uses chiral smectic liquid crystal to perform display, etc. by utilizing the liquid crystal electro-optic effect. became.

また従来法のラビング法のように配向膜にキズをつけて
そのキズの方向に強制的に液晶の分子を並べるために液
晶表示の際に液晶材料自身が持つ特性より劣って現れる
一方本発明は液晶を強制的に並べないため、液晶材料自
身が持つ本来の特性を十分に発揮することが可能で特に
応答速度、コントラスト比において顕著な特性の改善が
見られる。またラビングの際に発生したゴミが本発明の
構造では一切発生しないため液晶容器作成の歩留りが向
上した。
In addition, unlike the conventional rubbing method, which scratches the alignment film and forces the liquid crystal molecules to align in the direction of the scratches, the characteristics of the liquid crystal material itself appear inferior to those of the liquid crystal material itself during liquid crystal display. Since the liquid crystals are not forced to line up, it is possible to fully utilize the original characteristics of the liquid crystal material itself, and remarkable improvements in characteristics are seen, particularly in response speed and contrast ratio. Further, since the structure of the present invention does not generate any dust generated during rubbing, the yield of manufacturing liquid crystal containers has improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)(B)は本発明の液晶電気光学装置に用い
る基板の概略図と断面図を示す。 第2図はスメクチック液晶の層構造の概略図を示す。 1・・・・・・基板 2・・・・・・透明導電膜 3・・・・・・凹凸を有する配向膜 4・・・・・・液晶分子 θ・・・・・・斜面の角度 W・・・・・・斜面の陵線の間隔 D・・・・・・斜面の段差
FIGS. 1(A) and 1(B) show a schematic diagram and a cross-sectional view of a substrate used in the liquid crystal electro-optical device of the present invention. FIG. 2 shows a schematic diagram of the layer structure of a smectic liquid crystal. 1...Substrate 2...Transparent conductive film 3...Alignment film 4 with unevenness...Liquid crystal molecules θ...Angle W of slope ...... Distance between the ridge lines on the slope D ...... Steps on the slope

Claims (1)

【特許請求の範囲】 1、光学活性なカイラルスメクチック液晶を使用し、外
部より印加する電界の方向により発現する電気光学特性
のちがいにより、2つの状態を示す、液晶電気光学装置
において、前記液晶電気光学装置の液晶容器を構成する
2つの基板の少なくとも一表面に前記表面に対し、θな
る角度を構成する斜面を複数個設けこの斜面にほぼ平行
で、斜面の陵線方向とは垂直な角度をなす方向に、前記
液晶の持つ相系列のうち、いずれかの相においてカイラ
ルスメクチック液晶分子の分子長軸の方向をそろえるこ
とを特徴とする液晶電気光学装置。 2、特許請求の範囲第1項において基板材料自身が加熱
、及び力圧処理により、複数個の斜面を構成することを
特徴とする液晶電気光学装置。 3、特許請求の範囲第1項において、基板表面上に形成
された透光性導電膜材料が加圧または加圧及び加熱処理
により、複数個の斜面を構成することを特徴とする液晶
電気光学装置。 4、特許請求の範囲第1項において、基板表面上に形成
された透光性絶縁膜材料が、加圧または加圧及び加熱処
理により、複数個の斜面を構成することを特徴とする液
晶電気光学装置。 5、特許請求の範囲第1項において基板表面と斜面のな
す角度θが3°≦θ≦15°であることを特徴とする液
晶電気光学装置。
[Scope of Claims] 1. In a liquid crystal electro-optical device that uses an optically active chiral smectic liquid crystal and exhibits two states due to differences in electro-optic properties expressed depending on the direction of an externally applied electric field, the liquid crystal electro-optical device A plurality of slopes forming an angle θ with respect to the surface are provided on at least one surface of two substrates constituting a liquid crystal container of an optical device, and the angle is approximately parallel to the slope and perpendicular to the ridge direction of the slope. A liquid crystal electro-optical device characterized in that the long axes of chiral smectic liquid crystal molecules are aligned in one of the phases of the phase series of the liquid crystal. 2. A liquid crystal electro-optical device according to claim 1, characterized in that the substrate material itself forms a plurality of slopes by heating and pressure treatment. 3. The liquid crystal electro-optic according to claim 1, wherein the transparent conductive film material formed on the substrate surface forms a plurality of slopes by applying pressure or applying pressure and heat treatment. Device. 4. A liquid crystal display according to claim 1, wherein the transparent insulating film material formed on the surface of the substrate forms a plurality of slopes by applying pressure or applying pressure and heat treatment. optical equipment. 5. A liquid crystal electro-optical device according to claim 1, wherein the angle θ between the substrate surface and the slope is 3°≦θ≦15°.
JP61245125A 1986-10-15 1986-10-15 Liquid crystal electro-optical device Expired - Lifetime JPH07104515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245125A JPH07104515B2 (en) 1986-10-15 1986-10-15 Liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245125A JPH07104515B2 (en) 1986-10-15 1986-10-15 Liquid crystal electro-optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4357088A Division JP2537454B2 (en) 1992-12-21 1992-12-21 Liquid crystal electro-optical device manufacturing method

Publications (2)

Publication Number Publication Date
JPS6398632A true JPS6398632A (en) 1988-04-30
JPH07104515B2 JPH07104515B2 (en) 1995-11-13

Family

ID=17128995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245125A Expired - Lifetime JPH07104515B2 (en) 1986-10-15 1986-10-15 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JPH07104515B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133121A (en) * 1986-11-26 1988-06-04 Matsushita Electric Ind Co Ltd Liquid crystal element and its production
JPH05150244A (en) * 1991-02-20 1993-06-18 Canon Inc Ferroelectric liquid crystal element
JPH05249465A (en) * 1992-12-21 1993-09-28 Semiconductor Energy Lab Co Ltd Production of liquid crystal electrooptical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54652A (en) * 1977-06-03 1979-01-06 Hitachi Ltd Production of liquid crystal display element
JPS58100121A (en) * 1981-12-10 1983-06-14 Toshiba Corp Orienting method for liquid crystal display element
JPS6249324A (en) * 1985-08-28 1987-03-04 Toshiba Corp Production of liquid crystal display device
JPS62170938A (en) * 1986-01-22 1987-07-28 Canon Inc Liquid crystal element
JPS62192724A (en) * 1986-02-20 1987-08-24 Toshiba Corp Ferroelectric liquid crystal element and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54652A (en) * 1977-06-03 1979-01-06 Hitachi Ltd Production of liquid crystal display element
JPS58100121A (en) * 1981-12-10 1983-06-14 Toshiba Corp Orienting method for liquid crystal display element
JPS6249324A (en) * 1985-08-28 1987-03-04 Toshiba Corp Production of liquid crystal display device
JPS62170938A (en) * 1986-01-22 1987-07-28 Canon Inc Liquid crystal element
JPS62192724A (en) * 1986-02-20 1987-08-24 Toshiba Corp Ferroelectric liquid crystal element and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133121A (en) * 1986-11-26 1988-06-04 Matsushita Electric Ind Co Ltd Liquid crystal element and its production
JPH05150244A (en) * 1991-02-20 1993-06-18 Canon Inc Ferroelectric liquid crystal element
JPH05249465A (en) * 1992-12-21 1993-09-28 Semiconductor Energy Lab Co Ltd Production of liquid crystal electrooptical device

Also Published As

Publication number Publication date
JPH07104515B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPS6398632A (en) Liquid crystal electrooptical device
JP2537454B2 (en) Liquid crystal electro-optical device manufacturing method
JPS63237031A (en) Liquid crystal display element
JPH0194318A (en) Liquid crystal display element
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPS6240428A (en) Manufacture of liquid crystal element
JPS62247327A (en) Production of ferroelectric liquid crystal element
JP2548390B2 (en) Method for manufacturing ferroelectric liquid crystal panel
JPS61219931A (en) Liquid crystal display device
JPH05203933A (en) Ferroelectric liquid crystal element
JPS6330827A (en) Production of liquid crystal device
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH0518403B2 (en)
JPS63123017A (en) Liquid crystal element
JPH01253716A (en) Ferroelectric liquid crystal panel
JP2819814B2 (en) Ferroelectric liquid crystal panel
JP3058780B2 (en) Manufacturing method of liquid crystal display device
JPH07181495A (en) Ferroelectric liquid crystal element
JP2819822B2 (en) Ferroelectric liquid crystal panel
JPS63163821A (en) Ferroelectric liquid crystal display element
JPH0331821A (en) Liquid crystal electrooptical device
JPS61267028A (en) Control method for orientation of liquid crystal
JPS62170937A (en) Liquid crystal electrooptical element
JPH0627471A (en) Production of liquid crystal panel
JPS62295021A (en) Liquid crystal element and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term