JPS6330827A - Production of liquid crystal device - Google Patents

Production of liquid crystal device

Info

Publication number
JPS6330827A
JPS6330827A JP61174228A JP17422886A JPS6330827A JP S6330827 A JPS6330827 A JP S6330827A JP 61174228 A JP61174228 A JP 61174228A JP 17422886 A JP17422886 A JP 17422886A JP S6330827 A JPS6330827 A JP S6330827A
Authority
JP
Japan
Prior art keywords
rubbing
liquid crystal
substrates
horizontal orientation
crystal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61174228A
Other languages
Japanese (ja)
Inventor
Shinichi Kamagami
信一 鎌上
Akio Murayama
昭夫 村山
Hitoshi Hado
羽藤 仁
Shoichi Matsumoto
正一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61174228A priority Critical patent/JPS6330827A/en
Publication of JPS6330827A publication Critical patent/JPS6330827A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133765Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers without a surface treatment

Abstract

PURPOSE:To obtain an uniform orientation power by thermally treating a horizontal orientation layer after rubbing it, thereby making the difference of depth of fine grooves on the surface of the horizontal orientation layer due to rubbing small and making the shape of the grooves smooth. CONSTITUTION:The horizontal orientation layer 5 and 6 are formed by baking a polyimide resin on substrates 1 and 2 formed electrodes 3 and 4 thereon followed by offset printing said layers 5 and 6 so as to be 700Angstrom film thickness and baking it at the film forming temp. of 180 deg.C, for 1hr, respectively. Subsequently, the horizontal orientation layers 5 and 6 are rubbed in the direction of uniaxial directions 7 and 8 by a rubbing machine followed by thermally treating for 1hr at more than the film- forming temp. for example, 300 deg.C respectively. And, the substrates 1 and 2 are disposed in such way that the rubbing directions 7 and 8 of the substrates 1 and 2 are almost parallel in the same direction with each other with a distance of 2mum. The ferroelectric liquid crystal 9 is enclosed a space between the substrates 1 and 2. Thus, reducing of the difference of the depth of the fine grooves on the surface of the horizontal orientation layer due to rubbing, smoothing of the shape of the grooves, and debarring of the grooves are executed, by providing the thermal treating step after the rubbing step.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、液晶装置の製造方法に係り、特に強誘電性液
晶を用いた場合に最適な液晶装置を製造する方法に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method of manufacturing a liquid crystal device, and particularly relates to a method of manufacturing an optimal liquid crystal device when using ferroelectric liquid crystal. .

(従来の技術) 近年、液晶装置は、腕時計、電卓等の表示装置として広
く利用されている。従来からこのような液晶装置にはネ
マチック液晶やツィステッド・ネマチック液晶が広く用
いられているが、ネマチック液晶においては、電気光学
応答時間が約50m5と遅いため、高速応答が要求され
る分野での利用は制限され、またツィステッド・ネマチ
ック液晶においては、表示容量に限界がある。
(Prior Art) In recent years, liquid crystal devices have been widely used as display devices for wristwatches, calculators, and the like. Traditionally, nematic liquid crystals and twisted nematic liquid crystals have been widely used in such liquid crystal devices, but nematic liquid crystals have a slow electro-optic response time of about 50m5, so they are not suitable for use in fields that require high-speed response. Furthermore, twisted nematic liquid crystals have a limited display capacity.

このため上記問題点を解決することのできる強誘電性液
晶を用いた液晶装置が注目されつつある。
Therefore, liquid crystal devices using ferroelectric liquid crystals that can solve the above problems are attracting attention.

(発明が解決しようとする問題点) ところで強誘電性液晶を用いた液晶装置にあいては、配
向処理が非常に困難であるという技術的問題点がある。
(Problems to be Solved by the Invention) Liquid crystal devices using ferroelectric liquid crystals have a technical problem in that alignment treatment is extremely difficult.

すなわち視性まで提唱されている配向処理法として、温
度勾配を用いてスペーサエツジからスメクチック層を成
長させる法、SiO等無機物の斜方蒸着法、シェアリン
グ法、ラビング法等があるが、実用的見地からするとラ
ビング法が最も優れている。
In other words, as orientation processing methods that have been proposed for improving visibility, there are a method of growing a smectic layer from a spacer edge using a temperature gradient, an oblique evaporation method of inorganic materials such as SiO, a shearing method, a rubbing method, etc., but from a practical point of view From this perspective, the rubbing method is the best.

ところが上記ラビング法により配向処理が施された配向
層表面は、実用上可能な範囲内においてラビング圧等の
ラビング条件を厳しく制御した場合においても、微細な
段差、溝の形状のばらつきおよびパリ等を生じ、配向力
にばらつきを与えている。
However, the surface of the alignment layer that has been subjected to the alignment treatment using the above-mentioned rubbing method has problems such as minute steps, variations in the shape of the grooves, and cracks even when the rubbing conditions such as rubbing pressure are strictly controlled within the practically possible range. This causes variations in the alignment force.

従来のネマチック液晶やツィステッド・ネマチック液晶
を用いた液晶装置においては、上記した配向力のばらつ
きによるコントラスト等への影響は微小なものであった
が、強誘電性液晶を用いた液晶装置においては、上記し
た配向力のばらつきにより分子配向中に欠陥線が多数発
生し、コントラストが低下するという問題がある。
In liquid crystal devices using conventional nematic liquid crystals or twisted nematic liquid crystals, the influence of the above-mentioned variations in alignment force on contrast, etc. was minimal, but in liquid crystal devices using ferroelectric liquid crystals, Due to the above-mentioned variation in the alignment force, many defective lines occur during molecular alignment, resulting in a problem of reduced contrast.

ざらに強誘電性液晶を用いた大表示容]の液晶装置にお
いては、上記したコントラストの低下が著しく、実用化
の妨げとなっている。
In a liquid crystal device with a large display capacity using a roughly ferroelectric liquid crystal, the above-mentioned decrease in contrast is significant, and this is an obstacle to practical use.

本発明は上記事情に鑑みて01案されたもので、均一な
配向力を得ることができ、コントラストが良く、表示品
位の高い液晶装置の製造方法を提供することを目的とし
ている。
The present invention was proposed in 2001 in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a liquid crystal device that can obtain uniform alignment force, has good contrast, and has high display quality.

[発明の構成] (問題点を解決するための手段) すなわら本発明の液晶装置の製造方法は、2枚の基板上
に有機物からなる水平配向層を形成する配向層形成工程
と、前記各基板上に形成された水平配向層をラビングす
るラビング工程と、このラビングされた各基板の水平配
向層を加熱処理する加熱処理工程と、これら基板を水平
配向層が対向し所定の間隙を有するように配置させる組
立工程と、前記間隙に液晶を封入させる液晶封入工程と
からなることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In other words, the method for manufacturing a liquid crystal device of the present invention includes an alignment layer forming step of forming a horizontal alignment layer made of an organic material on two substrates, and A rubbing step of rubbing the horizontal alignment layer formed on each substrate, a heat treatment step of heating the rubbed horizontal alignment layer of each substrate, and a horizontal alignment layer facing these substrates with a predetermined gap between them. The method is characterized by comprising an assembly step of arranging the liquid crystal as shown in FIG.

(作 用) 本発明の液晶装置の製造方法において、ラビング工程後
、加熱処理工程を設けることにより、ラビングされた有
は物からなる水平配向層の分子が加熱処理中に熱運動し
この水平配向層表面形状が変化する。そしてこの変化は
、ラビングによる水平配向層表面の微細な溝の深さの差
を小さくし、溝の形状を滑かにし、パリを取除くもので
おる。
(Function) In the method for manufacturing a liquid crystal device of the present invention, by providing a heat treatment step after the rubbing step, the molecules of the rubbed horizontal alignment layer made of material move thermally during the heat treatment, resulting in horizontal alignment. The layer surface shape changes. This change reduces the difference in the depth of fine grooves on the surface of the horizontal alignment layer caused by rubbing, smoothes the shape of the grooves, and removes pars.

このため、配向力が均一になり欠陥線の発生を防止する
ことができるようになる。
Therefore, the alignment force becomes uniform and it becomes possible to prevent the generation of defective lines.

また加熱処理工程を組立工程後に行なうと、たとえば基
板間を封止するための接着剤を用いた部分の密封性が悪
くなる、基板と接着剤との熱膨張率の差異により基板間
の挟持圧が不均一になる、加熱中に発生するガスの影響
による配向ムラが生じる等の問題があるため、加熱処理
工程はラビング工程と組立工程との間に行なうのが良い
Furthermore, if the heat treatment process is performed after the assembly process, for example, the sealing performance of the part where adhesive is used to seal between the substrates will deteriorate, and the clamping pressure between the substrates will be reduced due to the difference in thermal expansion coefficient between the substrates and the adhesive. Since there are problems such as uneven orientation due to the influence of gas generated during heating, etc., the heat treatment process is preferably performed between the rubbing process and the assembly process.

また加熱処理工程は、加熱温度がioo’c〜350°
Cが良い。すなわち、100℃以下の加熱温度では1〜
2時間程度の実用的加熱時間においては上記した効果を
得ることができない。また350℃以上の加熱温度では
水平配向層が熱分解し配向力の消失等の悪影響が現れる
ことがおる。
In addition, in the heat treatment process, the heating temperature is from ioo'c to 350°.
C is good. That is, at a heating temperature of 100°C or less, 1 to
The above effects cannot be obtained in a practical heating time of about 2 hours. Further, at a heating temperature of 350° C. or higher, the horizontal alignment layer may thermally decompose, resulting in adverse effects such as loss of alignment force.

(実施例) 以下、本発明の実施例の詳細を図面に基づいて説明する
(Example) Hereinafter, details of an example of the present invention will be described based on the drawings.

実施例1 第1図は本発明方法により製造される液晶装置の一例を
示す図でおる。
Example 1 FIG. 1 is a diagram showing an example of a liquid crystal device manufactured by the method of the present invention.

同図に示す液晶装置は以下に示す方法により製造される
The liquid crystal device shown in the figure is manufactured by the method shown below.

すなわち透明ガラスからなる2枚の基板1.2のそれぞ
れ一方の面にネサ膜で形成された電極3.4を形成する
。電極3.4を形成した基板1.2上にポリイミド樹脂
を焼成後、この膜厚が700人になるようにオフセット
印刷し、成膜温度180°Cで1時間焼成して水平配向
層5.6を形成する。
That is, electrodes 3.4 made of Nesa film are formed on one surface of each of two substrates 1.2 made of transparent glass. After baking the polyimide resin on the substrate 1.2 on which the electrode 3.4 was formed, offset printing was performed so that the film thickness was 700 mm, and baking was performed at a film forming temperature of 180° C. for 1 hour to form the horizontal alignment layer 5. form 6.

しかる後これら水平配向層5.6上をそれぞれラビング
マシンにより一軸方向7.8にラビングする。この後、
水平配向層5.6を上記成膜温度以上のたとえば300
℃で1時間加熱処理する。そして、基板1.2をラビン
グ方向7.8がほぼ平行かつ同一方向で水平配向層5.
6が対向するようにして2μmの間隙をもって配置し、
これら基板1.2間の間隙にDOBAMBG (4−c
lecyloxybenzylidene  4’ −
amino(2−methylbutyl) cinn
amate)系混合組成物からなる強誘電性液晶9を封
入する。
Thereafter, each of the horizontal alignment layers 5.6 is rubbed in a uniaxial direction 7.8 using a rubbing machine. After this,
The horizontal alignment layer 5.6 is formed at a temperature higher than the above film formation temperature, for example, 300℃.
Heat treatment at ℃ for 1 hour. Then, the substrate 1.2 is rubbed with the horizontal alignment layer 5.8 in substantially parallel and the same direction.
6 are arranged facing each other with a gap of 2 μm,
DOBAMBG (4-c
lecyloxybenzylidene 4'-
amino(2-methylbutyl) cinn
A ferroelectric liquid crystal 9 made of a mixed composition of amate type is sealed.

次に第2図に示すように、水平配向層5のラビング方向
7から偏光軸12aを約22°ずらして偏向板12を基
板1上に、また偏光板12の偏光軸12aに偏光軸11
aが直交するように偏光板11を基板2上に貼着するこ
とによりなされる。
Next, as shown in FIG. 2, the polarizing plate 12 is placed on the substrate 1 with the polarizing axis 12a shifted by about 22 degrees from the rubbing direction 7 of the horizontal alignment layer 5, and the polarizing axis 11 is aligned with the polarizing axis 12a of the polarizing plate 12.
This is done by attaching the polarizing plate 11 onto the substrate 2 so that a is perpendicular to the polarizing plate 11.

以上の液晶装置を偏光顕微鏡により観察した結果、分子
配向中に欠陥線はほとんど認められない均一な配向力が
得られた。また電気光学特性を測定したところ、±10
■の矩形波の駆動に対してコントラストは30.1であ
った。ざらに電界を取去っても電界印加状態をそのまま
半永久的に保持するメモリ効果も明瞭に観測された。
As a result of observing the above liquid crystal device using a polarizing microscope, it was found that a uniform alignment force was obtained in which almost no defect lines were observed during molecular alignment. In addition, when we measured the electro-optical characteristics, it was found that ±10
The contrast was 30.1 for square wave driving (2). A memory effect was also clearly observed in which the applied state of the electric field remained semi-permanently even after the electric field was roughly removed.

比較例1 上記した実施例1における配向層5.6をラビング処理
後、加熱処理を施さず基板1.2を所定の間隙をもって
配置しこの間隙に液晶9を封入した。
Comparative Example 1 After rubbing the alignment layer 5.6 in Example 1 described above, the substrate 1.2 was placed with a predetermined gap without being subjected to heat treatment, and the liquid crystal 9 was sealed in this gap.

以上の液晶装置を偏光顕微鏡により観察した結果、分子
配向中に多くの欠陥線が見られた。また電気光学特性を
測定したところ、±10Vの矩形波の駆動に対してコン
トラストは9;1でめった。また電界を取去った後、配
向力が均一な状態を保持している時間は数十〜数百ms
となり、メモリ効果は著しく弱くなった。
As a result of observing the above liquid crystal device using a polarizing microscope, many defective lines were observed in the molecular orientation. Further, when electro-optical characteristics were measured, the contrast was 9:1 for driving with a ±10 V rectangular wave. Furthermore, after the electric field is removed, the alignment force remains uniform for several tens to hundreds of milliseconds.
As a result, the memory effect became significantly weaker.

実施例2 実施例1でのポリイミド樹脂をナイロン6に変え、この
ときの成膜温度を100°Cとし、ラビング後の加熱処
理条件を成膜温度以上の180°Cで1時間とした。
Example 2 The polyimide resin in Example 1 was changed to nylon 6, the film forming temperature was 100°C, and the heat treatment conditions after rubbing were 180°C, which is higher than the film forming temperature, for 1 hour.

以上の液晶装置を偏光顕微鏡により観察した結果、分子
配向中に欠陥線はほとんど認められない均一な配向力が
得られた。また電気光学特性を測定したところ、±10
Vの矩形波の駆動に対してコントラストは28.1であ
った。
As a result of observing the above liquid crystal device using a polarizing microscope, it was found that a uniform alignment force was obtained in which almost no defect lines were observed during molecular alignment. In addition, when we measured the electro-optical characteristics, it was found that ±10
The contrast was 28.1 for V square wave driving.

゛比較例2 上記した実施例2における配向層5.6をラビング処理
後、加熱処理を施さず基板1.2を所定の間隙をもって
配置しこの間隙に液晶9を封入した。
Comparative Example 2 After rubbing the alignment layer 5.6 in Example 2 described above, the substrate 1.2 was placed with a predetermined gap without being subjected to heat treatment, and the liquid crystal 9 was sealed in this gap.

以上の液晶装置を偏光顕微鏡により観察した結果、上記
した比較例1と同様分子配向中に多くの欠陥線が見られ
た。また電気光学特性を測定したところ、±IOVの矩
形波の駆動に対してコントラストは7:1であった。ま
た電界を取去った後、配向力が均一な状態を保持してい
る時間は数msとなり、メモリ効果は著しく弱くなった
As a result of observing the above liquid crystal device using a polarizing microscope, many defective lines were observed in the molecular orientation as in Comparative Example 1 described above. Further, when electro-optical characteristics were measured, the contrast was 7:1 with respect to ±IOV square wave driving. Further, after the electric field was removed, the time period during which the alignment force remained uniform was several milliseconds, and the memory effect was significantly weakened.

実施例3 実施例1でのポリイミド樹脂をポリエチレンテレフタレ
ートに変え、このときの成膜温度を100°Cとし、ラ
ビング後の加熱処理条件を成IIA温度以上の180℃
で1時間とした。
Example 3 The polyimide resin in Example 1 was changed to polyethylene terephthalate, the film forming temperature at this time was 100°C, and the heat treatment conditions after rubbing were 180°C above the formation IIA temperature.
It was one hour.

以上の液晶装置を偏光顕微鏡により観察した結果、分子
配向中に欠陥線はほとんど認められない均一な配向力が
得られた。また電気光学特性を測定したところ、±10
Vの矩形波の駆動に対してコントラストは27.1であ
った。
As a result of observing the above liquid crystal device using a polarizing microscope, it was found that a uniform alignment force was obtained in which almost no defect lines were observed during molecular alignment. In addition, when we measured the electro-optical characteristics, it was found that ±10
The contrast was 27.1 for V square wave driving.

比較例3 上記した実施例1における基板1.2を所定の間隙をも
って配置する工程において、基板1.2をラビング方向
7.8がほぼ平行かつ反対方向となるように配置した。
Comparative Example 3 In the step of arranging the substrates 1.2 with a predetermined gap in Example 1 described above, the substrates 1.2 were arranged so that the rubbing directions 7.8 were substantially parallel and opposite directions.

以上の液晶装置の電気光学特性を測定したところ、±1
0の矩形波の駆動に対してコントラストが25;1と良
いものの、偏光顕微鏡により観察した結果、上記した実
施例1よりは多い欠陥線が見られた。
When we measured the electro-optical characteristics of the above liquid crystal device, it was found that ±1
Although the contrast was good at 25:1 for driving with a square wave of 0, as a result of observation with a polarizing microscope, more defect lines were observed than in Example 1 described above.

しかして基板1.2のラビング方向7.8を同一方向に
することは、液晶自体の螺旋を巻く性質と相まって液晶
内部の応力はより効果的に緩和され、分子配向中の欠陥
線の除去に有効でおる。
Therefore, by making the rubbing directions 7.8 of the substrates 1.2 in the same direction, the stress inside the liquid crystal can be more effectively relaxed, combined with the spiraling property of the liquid crystal itself, and the defect lines during molecular orientation can be removed. It's valid.

し発明の効果] 以上説明したように本発明の液晶装置の製造方法によれ
ば、水平配向層をラビング後に加熱処理することにより
ラビングによる水平配向層表面の微細な溝の深さの差を
小さくし、溝の形状を滑かにして、パリを取除くことが
できるようになるため、欠陥線の発生は微小となり、均
一な配向力を得ることができる。
[Effects of the Invention] As explained above, according to the method for manufacturing a liquid crystal device of the present invention, by heat-treating the horizontal alignment layer after rubbing, the difference in depth of fine grooves on the surface of the horizontal alignment layer due to rubbing can be reduced. However, since the shape of the groove can be made smooth and the particles can be removed, the generation of defective lines becomes minute and a uniform alignment force can be obtained.

したがって本発明方法を用いれば、強誘電性液晶を用い
た液晶装置、さらには能動素子を用いないx−y単純マ
トリクス型で大表示各回の液晶装置を高コントラスト、
高表示品位にして製造することができる。
Therefore, if the method of the present invention is used, liquid crystal devices using ferroelectric liquid crystals, and furthermore, liquid crystal devices of the x-y simple matrix type that do not use active elements, with large display times, can be manufactured with high contrast.
It can be manufactured with high display quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る液晶装置を示す斜視図
、第2図は第1図の分解斜視図である。 1.2・・・基板 3.4・・・電 極 5.6・・・水平配向層 7.8・・・ラビング方向 9・・・・・・・・・強誘電性液晶 11.12・・・偏光板 第1図 第2図
FIG. 1 is a perspective view showing a liquid crystal device according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of FIG. 1.2... Substrate 3.4... Electrode 5.6... Horizontal alignment layer 7.8... Rubbing direction 9... Ferroelectric liquid crystal 11.12... ...Polarizing plate Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)2枚の基板上に有機物からなる水平配向層を形成
する配向層形成工程と、前記各基板上に形成された水平
配向層をラビングするラビング工程と、このラビングさ
れた各基板の水平配向層を加熱処理する加熱処理工程と
、これら基板を水平配向層が対向し所定の間隙を有する
ように配置させる組立工程と、前記間隙に液晶を封入さ
せる液晶封入工程とからなることを特徴とする液晶装置
の製造方法。
(1) An alignment layer forming step of forming a horizontal alignment layer made of an organic material on two substrates, a rubbing step of rubbing the horizontal alignment layer formed on each substrate, and a horizontal alignment of each rubbed substrate. It is characterized by comprising a heat treatment step of heating the alignment layer, an assembly step of arranging these substrates so that the horizontal alignment layers face each other with a predetermined gap, and a liquid crystal filling step of filling the gap with liquid crystal. A method for manufacturing a liquid crystal device.
(2)加熱処理工程が、100℃〜350℃の温度を少
なくとも30分以上保持するものであることを特徴とす
る特許請求の範囲第1項記載の液晶装置の製造方法。
(2) The method for manufacturing a liquid crystal device according to claim 1, wherein the heat treatment step is performed by maintaining a temperature of 100° C. to 350° C. for at least 30 minutes.
(3)組立工程は、前記2枚の基板のラビングの方向が
ほぼ平行でかつ同一方向となるように配置させるもので
あることを特徴とする特許請求の範囲第1項または第2
項記載の液晶装置の製造方法。
(3) The assembly process is characterized in that the two substrates are arranged so that the directions of rubbing of the two substrates are substantially parallel and in the same direction.
A method for manufacturing a liquid crystal device as described in Section 1.
JP61174228A 1986-07-24 1986-07-24 Production of liquid crystal device Pending JPS6330827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174228A JPS6330827A (en) 1986-07-24 1986-07-24 Production of liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174228A JPS6330827A (en) 1986-07-24 1986-07-24 Production of liquid crystal device

Publications (1)

Publication Number Publication Date
JPS6330827A true JPS6330827A (en) 1988-02-09

Family

ID=15974963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174228A Pending JPS6330827A (en) 1986-07-24 1986-07-24 Production of liquid crystal device

Country Status (1)

Country Link
JP (1) JPS6330827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287230A (en) * 1990-04-03 1991-12-17 Matsushita Electric Ind Co Ltd Production of liquid crystal panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287230A (en) * 1990-04-03 1991-12-17 Matsushita Electric Ind Co Ltd Production of liquid crystal panel

Similar Documents

Publication Publication Date Title
JP3267989B2 (en) Method for manufacturing liquid crystal alignment film
JP2530432B2 (en) Liquid crystal element
JPS61252532A (en) Ferroelectric smectic liquid crystal electrooptic device
JPS63151927A (en) Method for orienting ferroelectric liquid crystal
JPH0754381B2 (en) Liquid crystal display manufacturing method
JPH07261185A (en) Production of liquid crystal display element
JPH06289358A (en) Production of liquid crystal display device and liquid crystal display device
JPS6330827A (en) Production of liquid crystal device
JPH02208633A (en) Liquid crystal display device
JPS6240428A (en) Manufacture of liquid crystal element
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPS6398632A (en) Liquid crystal electrooptical device
JPH06332012A (en) Production of liquid crystal electrooptical device
JP2548390B2 (en) Method for manufacturing ferroelectric liquid crystal panel
JP7058534B2 (en) LCD panel
JP2537454B2 (en) Liquid crystal electro-optical device manufacturing method
JPH07119912B2 (en) Liquid crystal display manufacturing method
JPS62247327A (en) Production of ferroelectric liquid crystal element
JPH0627471A (en) Production of liquid crystal panel
JPH0331821A (en) Liquid crystal electrooptical device
JPS62111236A (en) Liquid crystal element
JPS62247326A (en) Production of ferroelectric liquid crystal element
JPH03125117A (en) Manufacture of ferroelectric liquid crystal element
JPS6017719A (en) Liquid crystal display device
JPH08179328A (en) Production of liquid crystal oriented film and production of liquid crystal element formed by using the same