JPH03125117A - Manufacture of ferroelectric liquid crystal element - Google Patents

Manufacture of ferroelectric liquid crystal element

Info

Publication number
JPH03125117A
JPH03125117A JP26301089A JP26301089A JPH03125117A JP H03125117 A JPH03125117 A JP H03125117A JP 26301089 A JP26301089 A JP 26301089A JP 26301089 A JP26301089 A JP 26301089A JP H03125117 A JPH03125117 A JP H03125117A
Authority
JP
Japan
Prior art keywords
liquid crystal
injection hole
substrate
ferroelectric liquid
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26301089A
Other languages
Japanese (ja)
Inventor
Sukenobu Mizuno
祐信 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26301089A priority Critical patent/JPH03125117A/en
Publication of JPH03125117A publication Critical patent/JPH03125117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove a linear orientation flaw from an effective display area and to improve picture quality by forming a liquid crystal injection hole at or nearby a substrate corner part and setting the uniaxial orientation processing direction of an orientation control film within a range of + or -15 deg. to the bisector of the corner angle. CONSTITUTION:The linear orientation flaw is generated from the end part of the injection hole with extremely high probability, so the linear orientation flaw generated from the injection hole end perpendicularly to the uniaxial orientation direction is removed from the effective display area by limiting the orientation processing direction and the position and size of the injection hole. Namely, the direction 6 of the uniaxial orientation processing of an orienting film is set to a linear direction at + or -15 deg. to the bisector of the angle of the corner 10 of the substrate and the injection hole 2 is formed at or nearby the corner part 10 of the substrate at such a position and to such size that the straight line which passes the injection hole 2 and is perpendicular to the uniaxial orientation processing direction does not pass the effective display area of the liquid crystal element. Then, ferroelectric liquid crystal is injected through the injection hole 2. Consequently, the liquid crystal element with superior picture quality is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、デイスプレィ装置や複写機の光プリンタヘッ
ド等に応用される強誘電性液晶素子の製造方法に関し、
詳しくは、液晶分子の初期配向状態を改善することによ
り、表示ならびに駆動特性を改善した強誘電性液晶素子
の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ferroelectric liquid crystal element applied to display devices, optical printer heads of copying machines, etc.
More specifically, the present invention relates to a method for manufacturing a ferroelectric liquid crystal element with improved display and driving characteristics by improving the initial alignment state of liquid crystal molecules.

[従来の技術] 液晶分子の屈折率異方性を利用して偏光素子との組み合
わせにより透過光線を制御する型の表示素子がクラーク
(C1ark)及びラガーウオル(Lagerwal 
l)により提案されてイル(米国特許第4367924
号明細書、米国特許第4639089号公報等)。この
液晶は、一般に特定の温度域において、カイラルスメク
チックC相(Sm*C)又はH相(Sm*H)を有し、
この状態において、加えられる電界に応答して第1の光
学的安定状態と第2の光学的安定状態のいずれかを取り
、且つ電界の印加のないときはその状態を維持する性質
、すなわち双安定性を有し、また電界の変化に対する応
答も速やかであり、高速ならびに記憶型の表示素子とし
ての広い利用が期待されている。このような液晶として
は、一般に強誘電性液晶が用いられる。そして、強誘電
性液晶を用いた強誘電性液晶素子には、走査電極と信号
電極とで構成したマトリクス電極が組み込まれ、走査電
極には順次走査信号が印加され、該走査信号と同期して
信号電極には情報信号が印加される。すなわち、強誘電
性液晶素子はマルチブレクシング駆動される。このよう
な強誘電性液晶素子における強誘電性液晶分子の配向処
理方法としては、透明電極(マトリクス電極)を設けた
電極基板面に配向膜を形成し、その上にラビング、斜方
蒸着などの一軸配向処理を施す方法がとられている。
[Prior Art] A type of display element that uses the refractive index anisotropy of liquid crystal molecules to control transmitted light in combination with a polarizing element is disclosed by C1ark and Lagerwal.
l) proposed by Il (U.S. Pat. No. 4,367,924).
specification, US Pat. No. 4,639,089, etc.). This liquid crystal generally has a chiral smectic C phase (Sm*C) or H phase (Sm*H) in a specific temperature range,
In this state, the property of taking either the first optically stable state or the second optically stable state in response to an applied electric field and maintaining that state when no electric field is applied, that is, bistable. It also has a quick response to changes in electric field, and is expected to be widely used as a high-speed and memory-type display element. Ferroelectric liquid crystals are generally used as such liquid crystals. A ferroelectric liquid crystal element using ferroelectric liquid crystal incorporates a matrix electrode composed of a scanning electrode and a signal electrode, and a scanning signal is sequentially applied to the scanning electrode, and is synchronized with the scanning signal. An information signal is applied to the signal electrode. That is, the ferroelectric liquid crystal element is driven by multiplexing. As a method for aligning ferroelectric liquid crystal molecules in such a ferroelectric liquid crystal element, an alignment film is formed on the surface of an electrode substrate provided with a transparent electrode (matrix electrode), and then rubbing, oblique evaporation, etc. A method of performing uniaxial alignment treatment has been adopted.

第2図は従来の一軸配向処理方向と液晶注入口位置を示
す模式図である。同図に示すように、軸配向処理方向に
対し、液晶注入方向が平行又は略平行となるように液晶
注入口位置を設ける事が最も欠陥の少ないモノドメイン
を実現できるとされている。
FIG. 2 is a schematic diagram showing the direction of conventional uniaxial alignment processing and the position of the liquid crystal injection port. As shown in the figure, it is said that a monodomain with the fewest defects can be realized by arranging the liquid crystal injection port so that the liquid crystal injection direction is parallel or substantially parallel to the axial alignment processing direction.

[発明が解決しようとする課題] しかしながら、一軸配向処理方向が基板端面に対して平
行な場合には、次のような欠点が存在する。
[Problems to be Solved by the Invention] However, when the uniaxial alignment treatment direction is parallel to the end surface of the substrate, the following drawbacks exist.

■液晶素子を前述のようなマルチブレクシング駆動を行
なフた時、印加パルスに同期して面積が変化するドメイ
ンが発生する。
(2) When a liquid crystal element is subjected to multiplexing driving as described above, a domain whose area changes in synchronization with the applied pulse is generated.

■マトリクス構造の液晶セルで上下の基板いづれかに電
極がない領域(画素間)に前述の第1の光学安定状態な
液晶分子と第2の光学安定状態な液晶分子が混在し、画
質が低下する。
■In the matrix-structured liquid crystal cell, the above-mentioned liquid crystal molecules in the first optically stable state and liquid crystal molecules in the second optically stable state coexist in the area (between pixels) where there is no electrode on either the upper or lower substrate, resulting in a decrease in image quality. .

■前述の第1の光学安定状態の液晶分子が第2の光学安
定な状態に転じたり、第2の光学安定状態の液晶分子が
第1の光学安定な状態に転じたりする事により、画質が
低下する。
■The image quality is improved by the above-mentioned liquid crystal molecules in the first optically stable state changing to the second optically stable state, and liquid crystal molecules in the second optically stable state changing to the first optically stable state. descend.

そこでこれらの欠点を改善するためには、一軸配向処理
を、その角度が基板端面に対し、一定の角度をなすよう
に行なえば良いことがわかっている。
Therefore, in order to improve these drawbacks, it has been found that the uniaxial alignment process can be performed so that the angle thereof forms a constant angle with respect to the end surface of the substrate.

しかじながら、このとき、前述したように一軸配向処理
方向に平行又は略平行に液晶を注入した場合、強誘電性
液晶素子では新たな問題が発生する。すなわち、カイラ
ルスメクチックC層を有する強誘電性液晶は、一軸配向
処理方向と垂直な方向に層を形成するため、その層に平
行に直線的な配向欠陥が生ずるのである。
However, at this time, if the liquid crystal is injected parallel or substantially parallel to the uniaxial alignment treatment direction as described above, a new problem occurs in the ferroelectric liquid crystal element. That is, since a ferroelectric liquid crystal having a chiral smectic C layer forms a layer in a direction perpendicular to the uniaxial alignment treatment direction, linear alignment defects occur in parallel to the layer.

従って、本発明の目的は上述した事情に鑑み、高誘電性
液晶素子の製造方法において、上述の直線的な配向欠陥
が生じないように改善し、その特性を充分に発揮させ得
る液晶素子を製造できるようにすることである。
Therefore, in view of the above-mentioned circumstances, it is an object of the present invention to improve the method of manufacturing a highly dielectric liquid crystal element so that the above-mentioned linear alignment defects do not occur, and to manufacture a liquid crystal element that can fully exhibit its characteristics. The goal is to make it possible.

[課題を解決するための手段] 上記目的を達成するため本発明では、透明電極と、少な
くとも一方に配向膜とを形成した一対の基板を対向配置
して周囲を接着し、その内部に強誘電性液晶を注入する
強誘電性液晶素子の製造方法において、配向膜の一軸配
向処理の方向は、該基板のコーナがなす角の2等分線に
対し±15の範囲の角度をなすような直線の方向とし、
かつ、注入孔を通り一軸配向処理方向に垂直な直線が液
晶素子の有効表示エリア内を通過しない位置および大き
さで注入孔を基板のコーナ部又はその近傍に設け、この
注入孔を介して強誘電性液晶を注入するようにしている
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a pair of substrates each having a transparent electrode and an alignment film formed on at least one of them are placed facing each other, their peripheries are bonded, and a ferroelectric layer is formed inside the pair of substrates. In the method of manufacturing a ferroelectric liquid crystal device in which a ferroelectric liquid crystal is injected, the direction of the uniaxial alignment treatment of the alignment film is a straight line that makes an angle of ±15 with respect to the bisector of the angle formed by the corner of the substrate. In the direction of
In addition, the injection hole is provided at or near a corner of the substrate at a position and size such that a straight line passing through the injection hole perpendicular to the uniaxial alignment treatment direction does not pass through the effective display area of the liquid crystal element, and the injection hole is It is injected with dielectric liquid crystal.

この本発明は、直線的な配向欠陥は注入孔の端部から発
生する確率が極めて高いという本発明者らの研究結果に
基づいてなされたものである。
The present invention was made based on the research results of the present inventors that the probability that linear orientation defects occur from the end of the injection hole is extremely high.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、本発明の強誘電性液晶素子の製造方法を例示
する説明図である。同図に示すように、本発明の強誘電
性液晶素子の製造方法においては、ストライブ状の透明
電極5を形成し、さらに透明電極5上に基板コーナ角の
2等分線7に対し±15″の範囲11内にある矢印6で
示される方向の一軸配向処理が施された配向(制御)膜
を形成した一対のガラス基板1を、その間にスペーサを
介在せしめ、かつ一対の透明電極5が交差してマトリク
ス状の画素を形成するように対向させて配置し、基板1
周辺部を接着剤層4を介して固着することによって液晶
セル3を構成する。そして、液晶セル3に強誘電性液晶
を注入する工程においては、注入孔2を2等分線7の起
点である基板コーナ10又はその近傍において、該注入
口を通り、一軸配向処理方向6に垂直な直線8が有効表
示エリア境界線9より内側を通過しないような位置およ
び大きざで設ける。
FIG. 1 is an explanatory diagram illustrating a method for manufacturing a ferroelectric liquid crystal element according to the present invention. As shown in the figure, in the method of manufacturing a ferroelectric liquid crystal device of the present invention, a striped transparent electrode 5 is formed, and furthermore, a stripe-like transparent electrode 5 is formed on the transparent electrode 5, and a width of ± A pair of glass substrates 1 each having an alignment (control) film formed thereon that has been subjected to a uniaxial alignment process in the direction indicated by the arrow 6 within a range 15'' of 15'', with a spacer interposed therebetween, and a pair of transparent electrodes 5. The substrate 1
A liquid crystal cell 3 is constructed by fixing the peripheral portion through an adhesive layer 4. In the step of injecting the ferroelectric liquid crystal into the liquid crystal cell 3, the injection hole 2 is placed at or near the substrate corner 10, which is the starting point of the bisector 7, and the injection hole 2 is passed through the injection hole in the uniaxial alignment treatment direction 6. It is provided at a position and with a size such that the vertical straight line 8 does not pass inside the effective display area boundary line 9.

そして、例えば液晶セル3を真空容器に収容し、排気し
て真空下において加熱しながら液晶セルの注入孔に液晶
を接触させ、次いで、液晶セルを大気圧にもどして加圧
することによりセル内外の圧力差により液晶の注入を行
う。ここで、加熱は液晶の粘性を低くして注入速度を速
めるために行うものである。
For example, the liquid crystal cell 3 is housed in a vacuum container, the liquid crystal is brought into contact with the injection hole of the liquid crystal cell while being evacuated and heated under a vacuum, and then the liquid crystal cell is returned to atmospheric pressure and pressurized, so that the inner and outer parts of the cell are Liquid crystal is injected using a pressure difference. Here, heating is performed to lower the viscosity of the liquid crystal and increase the injection speed.

また、強誘電性液晶は等方相(液体)まで昇温しでセル
に注入し、注入後降温しでSm*C相にする。
Further, the ferroelectric liquid crystal is heated to an isotropic phase (liquid) and then injected into the cell, and after injection, the temperature is lowered to change it to the Sm*C phase.

使用される強誘電性液晶は特に限定されず、通常使用さ
れている広範囲のものを使用することができる。
The ferroelectric liquid crystal used is not particularly limited, and a wide variety of commonly used ferroelectric liquid crystals can be used.

また、配向制御膜は基板上に被覆した高分子物質の被膜
をテレン布等によりラビング処理するか、または斜方蒸
着等により一軸配向処理を施すことにより形成すること
ができる。
Further, the alignment control film can be formed by rubbing a polymer film coated on a substrate with a terene cloth or the like, or by subjecting it to a uniaxial alignment process by oblique vapor deposition or the like.

[作用] 本発明は、前述したように一軸配向処理方向を基板端面
に対し一定の角度をもった方向に施した時、一軸配向処
理方向と垂直な方向に発生する直線的な配向欠陥が注入
孔の端部から発生することに着目してなされたものであ
り、本発明においては、配向処理方向と注入孔の位置お
よび大きさを上記のように限定して製造するようにした
ため、注入孔端から一軸配向処理方向に垂直に発生する
直線的な配向欠陥は有効表示エリア内から除外される。
[Function] As described above, in the present invention, when the uniaxial alignment process is performed in a direction with a certain angle to the end surface of the substrate, linear alignment defects that occur in a direction perpendicular to the uniaxial alignment process direction are injected. This was done by focusing on the fact that the injection hole is generated from the end of the hole, and in the present invention, since the orientation treatment direction and the position and size of the injection hole are limited as described above, the injection hole Linear alignment defects that occur perpendicularly to the uniaxial alignment processing direction from the edge are excluded from the effective display area.

このようにして製造された細説電性液晶素子は、高速応
答性、高密度画素と大面積を有する表示素子あるいは高
速度のシャッタースピードを有する光学シャッター等の
光学変調素子として好適に用いらねる。
The electroconductive liquid crystal device manufactured in this way can be suitably used as a display device having high-speed response, high density pixels and a large area, or an optical modulation device such as an optical shutter having a high shutter speed. .

(1) (2) 液」d(u 處遣ユLL性L [実施例] 以下、実施例を示し本発明をさらに具体的に説明する。(1) (2) liquid'd(u Cheer up LL sex L [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

尚、本実施例において強誘電性液晶材料としては、以下
の2成分の液晶を使用した。
In this example, the following two-component liquid crystal was used as the ferroelectric liquid crystal material.

第1図に示すような構成の液晶セルを使用して実験を行
った。
Experiments were conducted using a liquid crystal cell having the configuration shown in FIG.

液晶セルは、断面図に見ると層構造をなしており、ガラ
ス基板/透明電極/ポリイミド膜/液晶/ポリイミド膜
/透明電fi/ガラス基板の構成からなる。透明電極は
インジウム−ティン−オキサイドを1000人の層厚で
形成し、100μmピッチで幅80μmのストライプ状
透明電極をフォトエッチングにより形成した。上下基板
では、そのストライブ状透明電極を直交させ、マトリク
ス電極群からなるマトリクス構造にした。
A liquid crystal cell has a layered structure when viewed in a cross-sectional view, and consists of a glass substrate/transparent electrode/polyimide film/liquid crystal/polyimide film/transparent electrode fi/glass substrate. The transparent electrodes were made of indium tin oxide with a thickness of 1000 layers, and striped transparent electrodes having a width of 80 μm and a pitch of 100 μm were formed by photo-etching. On the upper and lower substrates, the striped transparent electrodes were crossed at right angles to form a matrix structure consisting of matrix electrode groups.

ポリイミド配向膜はポリイミド形成液(日立化成工業(
株)製、PIQ)を700人の層厚で形成し、焼成後、
テレン布によりラビング処理した。ラビング方向は第1
図に記載した基板コーナ角の2等分線に平行な方向とし
た。
Polyimide alignment film is made from polyimide forming liquid (Hitachi Chemical Co., Ltd.
Co., Ltd., PIQ) with a thickness of 700 layers, and after firing,
It was rubbed with a terrane cloth. The rubbing direction is the first
The direction was parallel to the bisector of the corner angle of the substrate shown in the figure.

液晶の層厚は2.0μmでほぼ均一に保たれるように、
2.0μmのアルミナスペーサーを基板上に散布して、
2枚の基板の接着剤により貼り合わせ、1枚の基板の、
ラビング方向を決定した基板コーナ角の2等分線の起点
である基板コーナ部に2個の注入孔を設けた。ただし、
注入孔の最も有効表示エリアに近い端部を通るラビング
方向に垂直な直線が、有効表示エリアを通過しないよう
に、注入孔を有効表示エリアから充分遠ざけた。
The liquid crystal layer thickness was kept almost uniform at 2.0 μm.
Spread 2.0μm alumina spacers on the substrate,
Two substrates are bonded together with adhesive, one substrate is
Two injection holes were provided at the corner of the substrate, which is the starting point of the bisector of the corner angle of the substrate that determined the rubbing direction. however,
The injection hole was moved sufficiently away from the effective display area so that a straight line perpendicular to the rubbing direction passing through the end of the injection hole closest to the effective display area did not pass through the effective display area.

液晶の注入は、液晶セルを真空容器に収容し、前記2成
分液晶が等労相になる温度(約75℃)まで昇温し、か
つ液晶セル内を脱気するため、排気してセルの雰囲気を
真空下にし、この状態で液晶を前記液晶セルの注入孔に
接触させることにより行なった。その後、液晶セルの雰
囲気を大気圧にもどしてセル内外に生じた圧力差により
注入を促進させた。
In order to inject the liquid crystal, the liquid crystal cell is placed in a vacuum container, the temperature is raised to the temperature (approximately 75°C) at which the two-component liquid crystal reaches the isokinetic phase, and the inside of the liquid crystal cell is evacuated to remove the atmosphere. The test was carried out by placing the cell under vacuum and, in this state, bringing the liquid crystal into contact with the injection hole of the liquid crystal cell. Thereafter, the atmosphere in the liquid crystal cell was returned to atmospheric pressure, and the pressure difference created inside and outside the cell facilitated injection.

液晶の注入が完了すると、注入孔を封止し、その後、直
交ニコル下で目視観察した。その結果、注入孔端から発
生する直線的な配向欠陥がラビング方向と垂直な方向に
発生しているのが観察された。しかしながら、有効表示
エリア内には発生しておらず、有効表示エリア内に限り
良質なモノドメインが得られていることが判明した。ま
た適宜電極にパルス電界を加え、安定状態間の転穆を行
ったが、1m5ecで18Vの電圧でスイッチングが良
好に行われ、コントラスト比は1:8であった。
When the injection of liquid crystal was completed, the injection hole was sealed and then visually observed under crossed Nicols. As a result, it was observed that linear alignment defects were generated from the end of the injection hole in a direction perpendicular to the rubbing direction. However, it was found that the monodomains did not occur within the effective display area, and that high-quality monodomains were obtained only within the effective display area. Further, a pulsed electric field was applied to the electrode as appropriate to perform translocation between stable states, and the switching was performed well at a voltage of 18 V at 1 m5 ec, and the contrast ratio was 1:8.

裏枚■ユ 実施例1における注入孔の位置を1枚の基板の短手端部
に設けた以外は、セル構成と作成工程を同様にして液晶
素子を製造した。
A liquid crystal device was manufactured using the same cell configuration and manufacturing process except that the injection hole in Example 1 was placed at the short end of one substrate.

このセルを直交ニコル下で目視観察すると、実施例1の
場合と同様に注入孔端から発生する直線的な配向欠陥が
ラビング方向と垂直方向に発生しており、しかも有効エ
リア内を大きく通過しているのが観察された。
When this cell was visually observed under crossed nicols, it was found that, as in Example 1, a linear alignment defect occurred from the injection hole end in a direction perpendicular to the rubbing direction, and moreover, it largely passed through the effective area. It was observed that

また、このセルを直交ニコルの顕微鏡下で観察すると、
モノドメインは得られておらず、明部と暗部が連続的に
変化するテクスチャーが随所に観察された。
Also, when this cell is observed under a crossed Nicols microscope,
No monodomain was obtained, and a texture with continuously changing bright and dark areas was observed everywhere.

ル1日Iス 実施例1における注入孔位置を有効表示エリアに近づけ
、ラビング方向に垂直な直線が有効表示エリアを通過す
るように設定した以外は、セル構成と作成工程を実施例
1と同様にして液晶素子を製造した。
The cell configuration and production process were the same as in Example 1, except that the injection hole position in Example 1 was set closer to the effective display area, and the straight line perpendicular to the rubbing direction was set to pass through the effective display area. A liquid crystal device was manufactured.

このセルを直交ニコル下で目視観察すると、実施例1と
同様に注入孔端から発生する直線的な配向欠陥がラビン
グ方向と垂直方向に発生しており、しかも有効エリア内
をわずかではあるが通過しているのが観察された。
When this cell was visually observed under crossed nicols, it was found that, as in Example 1, a linear alignment defect occurred from the end of the injection hole in a direction perpendicular to the rubbing direction, and moreover, it passed through the effective area, albeit slightly. was observed doing so.

[発明の効果] 以上説明した様に、本発明の強誘電性液晶素子の製造方
法によれば、液晶注入孔を基板コーナ部又はその近傍に
設け、配向制御膜の一軸配向処理方向を上記コーナ角の
2等分線に対し±15″の範囲内の角をなすような方向
で施し、かつ、注入孔を通り一軸配向処理方向に垂直な
直線が液晶素子の有効表示エリア内を通過しない位置と
大きさで注入孔を設けるようにしたため、直線的な配向
欠陥を有効表示エリア内より除外し、有効表示エリア内
に良質なモノドメインを有し、画質の向上した液晶素子
を製造することができる。
[Effects of the Invention] As explained above, according to the method for manufacturing a ferroelectric liquid crystal element of the present invention, the liquid crystal injection hole is provided at or near the corner of the substrate, and the direction of the uniaxial alignment treatment of the alignment control film is set at the corner. A position where the treatment is performed in a direction that forms an angle within the range of ±15'' with respect to the bisector of the corner, and where a straight line passing through the injection hole and perpendicular to the uniaxial alignment treatment direction does not pass within the effective display area of the liquid crystal element. Since the injection hole is formed with a size of , linear alignment defects are excluded from the effective display area, and a liquid crystal element with high quality monodomains within the effective display area and improved image quality can be manufactured. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法により製造された強誘電性液晶
素子の1例を示す説明図、そして第2図は、従来例に係
る強誘電性液晶素子における一軸配向処理方向と液晶注
入口位置を模式的に示す模式図である。 :基板、 :注入孔、 :液晶セル、 :接着層、 :透明電極、 ニー軸配向処理方向、 基板コーナ角の2等分線、 :注入孔を通り一軸配向処理方向6に垂直な直線、 :有効表示エリア境界線、 二基板コーナ。
FIG. 1 is an explanatory diagram showing one example of a ferroelectric liquid crystal device manufactured by the method of the present invention, and FIG. 2 is an explanatory diagram showing an example of a uniaxial alignment treatment direction and a liquid crystal injection port in a ferroelectric liquid crystal device according to a conventional example. It is a schematic diagram which shows a position typically. :Substrate, :Injection hole, :Liquid crystal cell, :Adhesive layer, :Transparent electrode, Knee-axis alignment processing direction, Bisector of the substrate corner angle, :A straight line passing through the injection hole and perpendicular to the uniaxial alignment processing direction 6, : Effective display area boundary line, corner of two boards.

Claims (2)

【特許請求の範囲】[Claims] (1)透明電極と、少なくとも一方に配向膜とを形成し
た一対の基板を対向配置して周囲を接着し、その内部に
強誘電性液晶を注入する強誘電性液晶素子の製造方法に
おいて、配向膜の一軸配向処理の方向は、該基板のコー
ナがなす角の2等分線に対し±15°の範囲の角度をな
すような直線の方向とし、かつ、注入孔を通り一軸配向
処理方向に垂直な直線が液晶素子の有効表示エリア内を
通過しない位置および大きさで注入孔を基板のコーナ部
又はその近傍に設け、この注入孔を介して強誘電性液晶
を注入することを特徴とする強誘電性液晶素子の製造方
法。
(1) In a method for manufacturing a ferroelectric liquid crystal element, in which a pair of substrates each having a transparent electrode and an alignment film formed on at least one of them are placed facing each other, their peripheries are bonded, and ferroelectric liquid crystal is injected into the substrate, the alignment The direction of the uniaxial orientation treatment of the film is a straight line that makes an angle within the range of ±15° with respect to the bisector of the angle formed by the corner of the substrate, and the direction of the uniaxial orientation treatment is a straight line that passes through the injection hole. An injection hole is provided at or near a corner of the substrate at a position and size such that a vertical straight line does not pass through the effective display area of the liquid crystal element, and the ferroelectric liquid crystal is injected through this injection hole. A method for manufacturing a ferroelectric liquid crystal element.
(2)一軸配向処理がラビング処理である請求項1記載
の強誘電性液晶素子の製造方法。(3)一軸配向処理が
斜方蒸着により形成された膜である請求項1記載の強誘
電性液晶素子の製造方法。
(2) The method for manufacturing a ferroelectric liquid crystal element according to claim 1, wherein the uniaxial alignment treatment is a rubbing treatment. (3) The method for manufacturing a ferroelectric liquid crystal device according to claim 1, wherein the uniaxially aligned film is formed by oblique evaporation.
JP26301089A 1989-10-11 1989-10-11 Manufacture of ferroelectric liquid crystal element Pending JPH03125117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26301089A JPH03125117A (en) 1989-10-11 1989-10-11 Manufacture of ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26301089A JPH03125117A (en) 1989-10-11 1989-10-11 Manufacture of ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPH03125117A true JPH03125117A (en) 1991-05-28

Family

ID=17383638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26301089A Pending JPH03125117A (en) 1989-10-11 1989-10-11 Manufacture of ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPH03125117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504911A2 (en) * 1991-03-22 1992-09-23 Canon Kabushiki Kaisha Liquid crystal device
EP0525673A2 (en) * 1991-07-25 1993-02-03 Canon Kabushiki Kaisha Liquid crystal device
CN105116622A (en) * 2015-09-02 2015-12-02 昆山龙腾光电有限公司 Alignment angle detection apparatus and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504911A2 (en) * 1991-03-22 1992-09-23 Canon Kabushiki Kaisha Liquid crystal device
EP0525673A2 (en) * 1991-07-25 1993-02-03 Canon Kabushiki Kaisha Liquid crystal device
US5323253A (en) * 1991-07-25 1994-06-21 Canon Kabushiki Kaisha Liquid crystal device
US5936601A (en) * 1991-07-25 1999-08-10 Canon Kabushiki Kaisha Chevron-type liquid crystal device having effective display and pattern display regions
CN105116622A (en) * 2015-09-02 2015-12-02 昆山龙腾光电有限公司 Alignment angle detection apparatus and detection method

Similar Documents

Publication Publication Date Title
US5793459A (en) Liquid crystal display of horizontal field type
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JP3267989B2 (en) Method for manufacturing liquid crystal alignment film
US5946064A (en) Alignment layer, method for forming alignment layer and LCD having the same
JPH03125117A (en) Manufacture of ferroelectric liquid crystal element
JPH10197870A (en) Liquid crystal display element and its production
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JP2815415B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JPS62247327A (en) Production of ferroelectric liquid crystal element
KR100433412B1 (en) Method of producing FLCD
JPH10123529A (en) Production for ferroelectric liquid crystal display device
JPS62247326A (en) Production of ferroelectric liquid crystal element
JPH04225325A (en) Production of liquid crystal molecule oriented body
KR100462383B1 (en) Liquid Crystal Display Device and Liquid Crystal Alignment Method
JPS6398632A (en) Liquid crystal electrooptical device
JPH03100520A (en) Ferroelectric liquid crystal element
JP4171667B2 (en) Reflective liquid crystal display element and method for manufacturing the same
JPH0331821A (en) Liquid crystal electrooptical device
JP3083016B2 (en) Liquid crystal alignment treatment method and liquid crystal element manufacturing method
JPH01186915A (en) Ferroelectric liquid crystal element
KR19980023053A (en) Method of manufacturing alignment layer of liquid crystal display device
JPH04124611A (en) Optical modulating element
JPH01254916A (en) Liquid crystal display device
JPH05241155A (en) Rubbing cloth for orienting liquid crystal molecule and production of liquid crystal display element
JPH06289359A (en) Production of liquid crystal display device