JPS6396525A - Temperature detecting element - Google Patents

Temperature detecting element

Info

Publication number
JPS6396525A
JPS6396525A JP24210586A JP24210586A JPS6396525A JP S6396525 A JPS6396525 A JP S6396525A JP 24210586 A JP24210586 A JP 24210586A JP 24210586 A JP24210586 A JP 24210586A JP S6396525 A JPS6396525 A JP S6396525A
Authority
JP
Japan
Prior art keywords
temperature
sensitive magnetic
magnetic material
electrode
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24210586A
Other languages
Japanese (ja)
Other versions
JPH0812117B2 (en
Inventor
Michio Nemoto
根本 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP24210586A priority Critical patent/JPH0812117B2/en
Publication of JPS6396525A publication Critical patent/JPS6396525A/en
Publication of JPH0812117B2 publication Critical patent/JPH0812117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the mu characteristic of a low temperature side by forming a series circuit of a magnetic permeability of a thermosensible magnetic material and a resistance value of the thermosensible magnetic material itself, and correcting an impedance drop of the low temperature side. CONSTITUTION:Electrodes 31, 32 are provided on the upper and the lower faces of a thermosensible magnetic material 11, and a resistance value of the thermosensible magnetic material itself is fetched through this electrode. A coil 43 is wound round to the magnetic material 11, its terminal part 51 is connected to the electrode 31, and between the other end of this coil 43 and the electrode 32, an AC power source is impressed by an oscillating circuit OSC. According to such a constitution, an inductance by the coil 43 and a resistance of the thermosensible magnetic material 11 are connected in series, therefore, a temperature characteristic of its composite impedance drops suddenly in the vicinity of a Curie temperature, and as it falls from the Curie temperature, the impedance increases monotonously. As a result, a malfunction in a low temperature area, which has become a problem up to the present is prevented, and the working temperature range can be enlarged.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、空調機、暖房器等のヒーター等の温度検知、
あるいは自動車等の冷却水温度検知等に利用される温度
検出素子に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to temperature detection of heaters such as air conditioners and space heaters;
Alternatively, the present invention relates to a temperature detection element used for detecting the temperature of cooling water in automobiles, etc.

〈従来の技術〉 第7図に従来の温度検出素子の一例を、第9図に第7図
の温度検出素子を用いた温度検出回路のブロック図を示
す。感温磁性体1はMn−Zn系フェライト材でその形
状は円筒形状であう、絶縁被膜21がほどこされた導線
2がN回巻かれている。
<Prior Art> FIG. 7 shows an example of a conventional temperature detection element, and FIG. 9 shows a block diagram of a temperature detection circuit using the temperature detection element shown in FIG. 7. The temperature-sensitive magnetic material 1 is made of Mn--Zn ferrite material, has a cylindrical shape, and has a conductive wire 2 coated with an insulating coating 21 wound N times.

感温磁性体1の材料自体の透磁率μの温度特性は。The temperature characteristics of the magnetic permeability μ of the material itself of the temperature-sensitive magnetic material 1 are as follows.

第8図(b)に示すごとく、キュリ一温度T0の直前に
てμが最大値を示し、キュリ一温度Tcにて急激にμが
低下する特性である。
As shown in FIG. 8(b), μ shows a maximum value immediately before the Curie temperature T0, and μ rapidly decreases at the Curie temperature Tc.

〈発明が解決しようとする問題点〉 この温度Tc直前での急激な透磁率μの低下を回路的に
検出することによシ高精度の温度検知が可能であるが、
μ−T特性はキュリ一温度Tc以下の低温度へ下がるに
従ってμは単調に下がる傾向にあシ、低温側にてμが低
下する事によシ誤動作という問題点が生じていた。
<Problems to be Solved by the Invention> Highly accurate temperature detection is possible by detecting the sudden drop in magnetic permeability μ just before the temperature Tc using a circuit.
In the .mu.-T characteristic, .mu. tends to decrease monotonically as the temperature decreases below the Curie temperature Tc, and as .mu. decreases at low temperatures, a problem arises in which malfunction occurs.

第9図の検出回路において、第7図に示した温度センサ
ー10に発振回路O8Cにより周波数fの交流電流を印
加するが、温度センサー10の出力電圧V1対温度T特
性は、出力電圧V、が感温磁性材料のμに比例するので
、第8図(a)のごとく感温磁性体1の構成材料のμ−
丁特性とほぼ同一の傾向である。ここで、コンパレータ
ー 値をVBF、に選択して、温度T1を検出するが(T1
はキュリ一温度T。よfi 0.2〜0.5℃低めであ
る)。
In the detection circuit of FIG. 9, an oscillation circuit O8C applies an alternating current of frequency f to the temperature sensor 10 shown in FIG. 7, and the output voltage V1 versus temperature T characteristic of the temperature sensor 10 is Since it is proportional to μ of the temperature-sensitive magnetic material, as shown in FIG. 8(a), the μ- of the constituent material of the temperature-sensitive magnetic body 1 is
The tendency is almost the same as that of the Ding characteristic. Here, the comparator value is selected to be VBF, and the temperature T1 is detected (T1
is one cucumber temperature T. It is 0.2-0.5℃ lower).

材料自体のμmT%性上IVBEに相当する低温側での
温度T′が存在し T/は誤動作温度となる。
Due to the μmT% nature of the material itself, there is a temperature T' on the low temperature side that corresponds to IVBE, and T/ becomes the malfunction temperature.

第10図は第9図に示しだ検出回路の電圧一温度特性を
示し、低温側の温度T′以下においてコンパレーターC
OPからハイレベル信号が出力されてしまい誤動作して
しまうことが理解できよう。
Figure 10 shows the voltage-temperature characteristics of the detection circuit shown in Figure 9, and below the temperature T' on the low temperature side, the comparator C
It can be understood that a high level signal is output from the OP, resulting in malfunction.

温度T′での誤動作をさけるためには、従来は使用環境
温度範囲e T /以上に設定した製品仕様とせざるを
得ない。従って、広範囲での使用環境温度範囲の要求さ
れる用途(例えば自動車用等)については利用する事が
困難であるという問題点を有していた。
In order to avoid malfunctions at temperature T', conventional product specifications have to be set at or above the operating environment temperature range e T /. Therefore, there has been a problem in that it is difficult to use it for applications that require a wide usage environment temperature range (for example, for automobiles, etc.).

一方、従来の他の対策としては、温度検出素子と直列に
サーミスター素子等の温度補償用素子を追加して、低温
域での出力電圧の低下を抑制する方法があったが、サー
ミスター素子追加によるコストアンプ、及びセンサ一部
分が感温磁性体とサーミスター素子とを一体化するため
に大型化して熱応答性が低下するという性能上の問題点
がちった。
On the other hand, other conventional countermeasures include adding a temperature compensation element such as a thermistor element in series with the temperature detection element to suppress the drop in output voltage in low temperature ranges, but the thermistor element The added cost of the amplifier and the integration of the temperature-sensitive magnetic material and thermistor element into a part of the sensor increased its size, resulting in performance problems such as a decrease in thermal response.

本発明は従来の感温磁性体を用いた温度検出素子の低温
域での透磁率μの低下を補正する事を目的とし、特に感
温磁性体自身の抵抗対温度特性を利用して従来よシも部
品点数を少なくした構成にて低温側のμ特性を改善する
ことを目的とする。
The purpose of the present invention is to correct the decrease in magnetic permeability μ in a low temperature range of a temperature sensing element using a conventional temperature-sensitive magnetic material. Another objective is to improve the μ characteristics on the low temperature side with a configuration that reduces the number of parts.

く問題点を解決するだめの手段〉 あらかじめ定められた形状の感温磁性体の反対側の面に
第1及び第2の電極部分が設けられ、前記感温磁性材料
は磁界を印加するコイルが設けられ、前記コイルは前記
感温磁性体に巻回された巻線の終端が前記第1の電極に
電気的に接続きれると共に、始端が一方の電源端子とさ
れ、前記第2の電極には、リード線を接続して他方の電
源端子とした事を特徴とする温度検出素子。
Means to Solve the Problem> First and second electrode portions are provided on opposite surfaces of a temperature-sensitive magnetic material having a predetermined shape, and the temperature-sensitive magnetic material is connected to a coil for applying a magnetic field. The terminal end of the coil wound around the temperature-sensitive magnetic material is electrically connected to the first electrode, and the starting end serves as one power terminal, and the second electrode has a terminal end electrically connected to the first electrode. , a temperature sensing element characterized in that a lead wire is connected to the other power terminal.

く作用〉 上記構成により、感温磁性体自体の抵抗値を取シ出せる
ようにし、一方、2つの電源端子の間に交流電流を流し
て、感温磁性体の透磁率μとそれ自身の抵抗値Rとの直
列接続回路を形成して、低温側でのインピーダンス低下
を改善している。
With the above configuration, the resistance value of the temperature-sensitive magnetic material itself can be obtained, and on the other hand, by flowing an alternating current between the two power supply terminals, the magnetic permeability μ of the temperature-sensitive magnetic material and its own resistance can be determined. By forming a series connection circuit with the value R, impedance drop on the low temperature side is improved.

〈発明の実施例〉 第3図に本発明による温度検出素子に用いる感温磁性体
部分の外観図を示し、第1図は、第3図の感温磁性体を
用いた本発明による温度検出素子の一実施例を示す。感
温磁性体11は円筒あるいは環状形状であり、その上、
下面にそれぞれ電極31.32がもうけられている。電
極31.32は、一般に銀ペースト材を塗布した後熱処
理にょ多形成され、感温磁性体11とオーミックコンタ
クトを有しておシ、電極31.32間にて感温磁性体l
自体の抵抗値Rがとシ出される。感温磁性体11はMn
−Zn系フェライト材であるが、抵抗特性は半導体的な
性質を有しておシ、その抵抗値R対温度T特性は、第4
図(b)のどとくであり、温度上昇に対し単調に減少す
る傾向を示す。一般に。
<Embodiments of the Invention> Fig. 3 shows an external view of the temperature-sensitive magnetic material part used in the temperature detection element according to the present invention, and Fig. 1 shows temperature detection according to the present invention using the temperature-sensitive magnetic material shown in Fig. 3. An example of the element is shown. The temperature-sensitive magnetic body 11 has a cylindrical or annular shape, and furthermore,
Electrodes 31, 32 are provided on the lower side, respectively. The electrodes 31 and 32 are generally formed by heat treatment after applying a silver paste material, and have ohmic contact with the temperature-sensitive magnetic material 11.
Its own resistance value R is calculated. The temperature-sensitive magnetic material 11 is Mn
- Although it is a Zn-based ferrite material, its resistance characteristics are semiconductor-like, and its resistance value R vs. temperature T characteristic is the fourth
Figure (b) shows the throat, which shows a tendency to decrease monotonically as the temperature rises. in general.

常温での抵抗値は数にΩで、抵抗値の変化率は1℃当た
シ0.4%であり、はぼ通常のサーミスタ等と同程度で
ある。
The resistance value at room temperature is several Ω, and the rate of change in resistance value is 0.4% per 1°C, which is about the same as that of a normal thermistor.

第4図(a)は透磁率μ対温度T特性であり、電極31
.32をつけた事による影響はほとんど受けず従来のμ
−T−性とほぼ同じである。
FIG. 4(a) shows the magnetic permeability μ vs. temperature T characteristic, and the electrode 31
.. The addition of 32 has almost no effect on the conventional μ
- It is almost the same as T- property.

第1図の実施例は第3図の感温磁性体11に絶縁被膜4
01をほどこした導線41を巻回しコイル43を形成し
、その終端部を、電@31に電気的接合部分51によっ
て電気的に接合しいてる。
The embodiment shown in FIG. 1 has an insulating coating 4 on the temperature-sensitive magnetic body 11 shown in FIG.
01 is wound to form a coil 43, and its terminal end is electrically connected to the electric wire 31 by an electrical connection portion 51.

一方、電極32からは、接合部分52によシ導線42が
とシ出されている。接合部分51.52は通常、半田付
は等によシ形成される。外部端子411、及び422間
はコイル部分43によるインダクタンスL成分及び感温
磁性体11自体の抵抗値との直列接続となシ、その合成
インピーダンスの温度特性は第2図(a)の破線のごと
く、キュリ一温度T0近傍で急げきに低下し、Tcから
低下するにつれて単調にインピーダンスが増加する傾向
である。
On the other hand, a conductive wire 42 is extended from the electrode 32 through the joint portion 52 . The joint portions 51, 52 are typically formed by soldering or the like. There is no series connection between the external terminals 411 and 422 with the inductance L component due to the coil portion 43 and the resistance value of the temperature-sensitive magnetic body 11 itself, and the temperature characteristics of the combined impedance are as shown by the broken line in FIG. 2(a). , the impedance tends to decrease rapidly near the Curie temperature T0, and increase monotonically as it decreases from Tc.

第9図の検出回路を用いれば、温度検出素子の端子電圧
v2の温度特性はほぼ第2図(、)のインピーダンスの
傾向と同様となシ、従って第2図(b)のごとくなる。
If the detection circuit shown in FIG. 9 is used, the temperature characteristic of the terminal voltage v2 of the temperature detection element will be approximately the same as the impedance trend shown in FIG. 2(,), and will therefore be as shown in FIG. 2(b).

このようにして、従来、誤動作を起こしていた温度T′
に相当する端子電圧vT′はコン・ぐレータ−のしきい
値電圧vBEに比較して数倍以上の値に保たれる。従っ
て、従来問題となっていた低温域での誤動作がなくなり
、広範囲の動作温度範囲を保証できる。
In this way, the temperature T', which conventionally caused malfunctions, is
The terminal voltage vT' corresponding to is maintained at a value several times higher than the threshold voltage vBE of the converter. Therefore, malfunctions in low temperature ranges, which have been a problem in the past, are eliminated, and a wide operating temperature range can be guaranteed.

又、温度検出素子自体の大きさは、感温磁性体11のみ
に依存し、従来の外づけサーミスター素子追加等による
場合に比べて明らかに大きさはコンノククトであシ2部
品点数もサーミスター機能を感温磁性体自身が兼ねるた
め1部品点数は従来よシも少なくなり、コスト的にも従
来よシ有利である。
In addition, the size of the temperature sensing element itself depends only on the temperature-sensitive magnetic body 11, and compared to the conventional case where an external thermistor element is added, the size is clearly smaller and the number of parts is smaller than that of the thermistor. Since the temperature-sensitive magnetic body itself serves the function, the number of parts per unit is reduced compared to the conventional method, and it is also more advantageous in terms of cost than the conventional method.

第6図(a) 、 (b)は本発明による他の実施例に
用いる感温磁性体の形状であり、第5図は第6図の感温
磁性体を用いた本発明による温度検出素子の例である。
6(a) and 6(b) show the shapes of temperature-sensitive magnetic bodies used in other embodiments of the present invention, and FIG. 5 shows a temperature-sensing element according to the present invention using the temperature-sensitive magnetic body of FIG. This is an example.

感温磁性体12は円形の薄板で、その上下面のほぼ中央
部分に電極部分33及び34がもうけられている。第5
図に示されるように、絶縁波M611がほどこされたう
ずまき状の平面コイル6が電極33が設けられた面に密
着固定され。
The temperature-sensitive magnetic body 12 is a circular thin plate, and electrode portions 33 and 34 are provided approximately at the center of its upper and lower surfaces. Fifth
As shown in the figure, a spiral planar coil 6 on which an insulated wave M611 is applied is closely fixed to a surface on which an electrode 33 is provided.

その端部は絶縁被膜を剥離して電極33に電気的に接合
されている。一方、電極34にはリード線61が接続さ
れている。リード線61.62の端部間は、平面コイル
6によるインダクタンスL成分と電極33.34間の感
温磁性体1の抵抗値Rとの直列回路とみなせる。従って
、第2図(b)と同様の端子電圧対温度特性が得られ、
低温側での誤動作が防止される。
The end portion is electrically connected to the electrode 33 by peeling off the insulating coating. On the other hand, a lead wire 61 is connected to the electrode 34. The end portions of the lead wires 61 and 62 can be regarded as a series circuit of the inductance L component due to the planar coil 6 and the resistance value R of the temperature-sensitive magnetic body 1 between the electrodes 33 and 34. Therefore, a terminal voltage vs. temperature characteristic similar to that shown in FIG. 2(b) can be obtained,
Malfunctions at low temperatures are prevented.

第5図の実施例は感温磁性体12を薄型化しているため
、熱応答性にすぐれた温度検出機能が確保される。
In the embodiment shown in FIG. 5, the temperature-sensitive magnetic body 12 is made thin, so that a temperature detection function with excellent thermal responsiveness is ensured.

〈発明の効果〉 以上本発明によれば、従来の低温域での透磁率μの低下
を部品点数の追加をなくして補償した温度検出素子を提
供でき、従来よシも広範囲の使用温度範囲を確保した低
コスト、シかも小型化の可能な信頼性の高い温度検出素
子を提供できるものである。
<Effects of the Invention> As described above, according to the present invention, it is possible to provide a temperature detection element that compensates for the decrease in magnetic permeability μ in a conventional low temperature range without adding any additional parts, and it is possible to provide a temperature detection element that can be used over a wider temperature range than before. Accordingly, it is possible to provide a highly reliable temperature detecting element that can be kept at a low cost and can also be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による温度検出素子の一実施例の斜視図
、第2図(a) 、 (b)は第1図の実施例でのイン
♂−ダンス2一温度T特性及び出力電圧v2一温度T特
性の説明図、第3図(a) 、 (b)は第1図の実施
例に用いる感温磁性体の斜視図、側面図、第4図(a)
 、 (b)は第3図における感温磁性体の透磁率μ−
温温度時特性び抵抗R一温度T特性の説明図、第5図は
本発明による温度検出素子の他の実施例の斜視図、第6
図(a) 、 (b)は第5図での感温磁性体の斜視図
及び側面図、第7図は従来の温度検出素子の一例の斜視
図、第8図(a) 、 (b)は、第7図での出力電圧
v1一温度特性及び透磁率μ−温温度時特性第9図は温
度センサーを用いた温度検出回路の一例を示し、第1O
図は従来の温度検出素子による検出回路の動作例を示す
。 1.11,12二感温磁性体、2,4,41:導体、6
:平面コイル、31,33:第1の電極。 32.34:第2の電極。 第1rIA ■・      TCL湯度ノ 第3因 (a)             (b)第4図 第5図 第6図 (a)        (b) 第7図 第9図 温度(℃)
FIG. 1 is a perspective view of an embodiment of the temperature detection element according to the present invention, and FIGS. 2(a) and 2(b) show the induction 2-temperature T characteristic and output voltage v2 in the embodiment of FIG. An explanatory diagram of T-characteristics at one temperature, Figures 3(a) and (b) are perspective views and side views of the temperature-sensitive magnetic material used in the embodiment of Figure 1, and Figure 4(a)
, (b) is the magnetic permeability μ- of the temperature-sensitive magnetic material in Figure 3.
FIG. 5 is a perspective view of another embodiment of the temperature detection element according to the present invention; FIG.
Figures (a) and (b) are a perspective view and a side view of the temperature-sensitive magnetic material in Figure 5, Figure 7 is a perspective view of an example of a conventional temperature detection element, and Figures 8 (a) and (b). In Fig. 7, the output voltage v1 - temperature characteristic and the magnetic permeability μ - temperature characteristic Fig. 9 shows an example of a temperature detection circuit using a temperature sensor.
The figure shows an example of the operation of a detection circuit using a conventional temperature detection element. 1.11, 12 Two temperature-sensitive magnetic materials, 2, 4, 41: Conductor, 6
: Planar coil, 31, 33: First electrode. 32.34: Second electrode. 1st rIA ■・ Third factor of TCL hot water temperature (a) (b) Figure 4 Figure 5 Figure 6 (a) (b) Figure 7 Figure 9 Temperature (°C)

Claims (3)

【特許請求の範囲】[Claims] 1.あらかじめ定められた形状の感温磁性体の反対側の
面に第1及び第2の電極部分が設けられ、前記感温磁性
体には磁界を印加するコイルが設けられ、前記コイルは
前記感温磁性体に巻回された巻線の終端が前記第1の電
極に電気的に接続されると共に、始端が一方の電源端子
とされ、前記第2の電極にはリード線を接続して他方の
電源端子とした事を特徴とする温度検出素子。
1. First and second electrode portions are provided on opposite surfaces of a temperature-sensitive magnetic body having a predetermined shape, a coil for applying a magnetic field is provided to the temperature-sensitive magnetic body, and the coil is connected to the temperature-sensitive magnetic body. The terminal end of the winding wound around the magnetic material is electrically connected to the first electrode, the starting end is used as one power terminal, and a lead wire is connected to the second electrode to connect the other terminal. A temperature detection element characterized by having a power supply terminal.
2.特許請求の範囲第一項の記載の温度検出素子におい
て、前記感温磁性体は閉磁路を形成する環状あるいは矩
形状で、該感温磁性体に巻線が巻回され、前記第1及び
第2の電磁が前記感温磁性体の上、下面に施こされてい
る事を特徴とする温度検出素子。
2. In the temperature sensing element according to claim 1, the temperature-sensitive magnetic body has an annular or rectangular shape forming a closed magnetic path, a winding is wound around the temperature-sensitive magnetic body, and the first and second 2. A temperature detection element characterized in that electromagnetic waves No. 2 are applied to the upper and lower surfaces of the temperature-sensitive magnetic body.
3.特許請求の範囲第一項記載の温度検出素子において
、前記感温磁性体は薄板状であり、その上、下面に前記
第1,第2の電極がもうけられ前記薄板の一方の面に対
して、うず巻状の平面コイルが配置され、前記平面コイ
ルの終端が対応する感温磁性体平面上の第1の電極に電
気的に接続されると共に、始端が一方の電源端子とされ
、前記第2の電極にはリード線を接続して他方の電源端
子としたことを特徴とする温度検出素子。
3. In the temperature sensing element according to claim 1, the temperature-sensitive magnetic body is in the form of a thin plate, and the first and second electrodes are provided on the lower surface thereof, and the first and second electrodes are provided on the lower surface thereof, and the temperature-sensitive magnetic body is in the form of a thin plate. , a spiral planar coil is arranged, the terminal end of the planar coil is electrically connected to a first electrode on the corresponding temperature-sensitive magnetic material plane, and the starting end is set as one power terminal, A temperature detection element characterized in that a lead wire is connected to the second electrode to serve as the other power supply terminal.
JP24210586A 1986-10-14 1986-10-14 Temperature detection element Expired - Fee Related JPH0812117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24210586A JPH0812117B2 (en) 1986-10-14 1986-10-14 Temperature detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24210586A JPH0812117B2 (en) 1986-10-14 1986-10-14 Temperature detection element

Publications (2)

Publication Number Publication Date
JPS6396525A true JPS6396525A (en) 1988-04-27
JPH0812117B2 JPH0812117B2 (en) 1996-02-07

Family

ID=17084370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24210586A Expired - Fee Related JPH0812117B2 (en) 1986-10-14 1986-10-14 Temperature detection element

Country Status (1)

Country Link
JP (1) JPH0812117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194094A (en) * 2005-01-11 2006-07-27 Shimadzu Corp Vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194094A (en) * 2005-01-11 2006-07-27 Shimadzu Corp Vacuum pump
JP4710322B2 (en) * 2005-01-11 2011-06-29 株式会社島津製作所 Vacuum pump

Also Published As

Publication number Publication date
JPH0812117B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JPS63168994A (en) Temperature controller and method of controlling temperature of load
US2413021A (en) Resistance type detector
JPH09210802A (en) Surface mount temperature-detecting element
JPS6396525A (en) Temperature detecting element
JPH11273949A (en) Inductor element
KR20030081021A (en) Device for detecting temperature and circuit board having the same
JPH0548106Y2 (en)
JPS5895232A (en) Temperature detector
JPH1164116A (en) Oil temperature sensor
US10453603B2 (en) Integration of inductor and damper for power filters
CN217611054U (en) Wearable device
JP2507930Y2 (en) Non-inductive resistor
KR200254709Y1 (en) A temperature controlling apparatus of a heating device
JPH0449801Y2 (en)
JPS5850641Y2 (en) control circuit
JPS61160030A (en) Temperature sensor
JP2002311115A (en) Magnetic sensor
KR200167234Y1 (en) An axial type ntc thermistor with in the layer-built chip
JPS595922Y2 (en) Chip parts with lead wires
JPH0311863Y2 (en)
JPS5827739U (en) Device that uses high frequency discharge
JPH0419844Y2 (en)
JPH062669U (en) Capacitor for high frequency power
JP2002044952A (en) Power unit
JP2001326106A (en) Current limiting device and power supply device equipped therewith

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees