JPH0311863Y2 - - Google Patents

Info

Publication number
JPH0311863Y2
JPH0311863Y2 JP3869285U JP3869285U JPH0311863Y2 JP H0311863 Y2 JPH0311863 Y2 JP H0311863Y2 JP 3869285 U JP3869285 U JP 3869285U JP 3869285 U JP3869285 U JP 3869285U JP H0311863 Y2 JPH0311863 Y2 JP H0311863Y2
Authority
JP
Japan
Prior art keywords
excitation coil
magnetic
excitation
resistance element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3869285U
Other languages
Japanese (ja)
Other versions
JPS61156210U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3869285U priority Critical patent/JPH0311863Y2/ja
Publication of JPS61156210U publication Critical patent/JPS61156210U/ja
Application granted granted Critical
Publication of JPH0311863Y2 publication Critical patent/JPH0311863Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は例えばYIG発振器に用いる電磁石に
関するものである。
[Detailed description of the invention] "Field of industrial application" This invention relates to an electromagnet used in, for example, a YIG oscillator.

「従来技術」 YIG発振器は単結晶フェライトから成る磁性球
の共振現象を利用した発振器である。この発振器
は電磁石を具備し、電磁石によつて磁性球に与え
る磁界を変化させることによつて発振周波数を変
化させることができる。従つて励磁磁界を鋸歯状
波状に変化させることによつて周波数掃引信号を
得ることができる。このような特性から一般にス
ペクトラムアナライザの局部発振器として利用さ
れている。
``Prior art'' The YIG oscillator is an oscillator that utilizes the resonance phenomenon of magnetic spheres made of single-crystal ferrite. This oscillator is equipped with an electromagnet, and the oscillation frequency can be changed by changing the magnetic field applied to the magnetic sphere by the electromagnet. Therefore, by changing the excitation magnetic field in a sawtooth waveform, a frequency sweep signal can be obtained. Because of these characteristics, it is generally used as a local oscillator for spectrum analyzers.

第4図に従来のYIG発振器に用いられている電
磁石の構造を示す。図中301は例えばパーマロ
イのような高磁性体によつて形成されたカップ状
磁気ケースを示す。このカップ状磁気ケース30
1の軸芯に棒状の磁芯302が設けられる。磁芯
302とカップ状磁気ケース301は一般に同一
の磁性材料によつて形成される。
Figure 4 shows the structure of an electromagnet used in a conventional YIG oscillator. In the figure, 301 indicates a cup-shaped magnetic case made of a highly magnetic material such as permalloy. This cup-shaped magnetic case 30
A rod-shaped magnetic core 302 is provided at one axis. The magnetic core 302 and the cup-shaped magnetic case 301 are generally made of the same magnetic material.

カップ状磁気ケース301の開口面は同様の磁
性材料で作られた蓋303が被せられ、ビス30
4によつて封止される。棒状磁芯302には励磁
コイル305が巻装され、棒状磁芯302と蓋3
03との間に磁気空隙306が形成される。
The opening surface of the cup-shaped magnetic case 301 is covered with a lid 303 made of a similar magnetic material, and the screw 30
4. An excitation coil 305 is wound around the rod-shaped magnetic core 302, and the rod-shaped magnetic core 302 and the lid 3
03, a magnetic gap 306 is formed between the two.

磁気空隙306には磁性球307が支持され、
この磁性球307に与える磁界が励磁コイル30
5に与える励磁電流によつて変化するように制御
される。
A magnetic ball 307 is supported in the magnetic gap 306,
The magnetic field given to this magnetic ball 307 causes the excitation coil 30
It is controlled to change depending on the excitation current given to 5.

「考案が解決しようとする問題点」 第3図に示した構造において励磁コイル305
に励磁電流を流すことにより励磁コイル305に
熱が発生する。励磁コイル305の温度は室温よ
り+20℃程度高い温度となる。
"Problem that the invention attempts to solve" In the structure shown in Fig. 3, the excitation coil 305
Heat is generated in the excitation coil 305 by passing an excitation current through the excitation coil 305 . The temperature of the excitation coil 305 is approximately +20° C. higher than room temperature.

励磁コイル305の温度が上昇することによつ
て棒状磁芯302が熱膨張し磁気空隙306の空
隙長が変化する。磁気空隙306の空隙長が変化
することにより磁性球307に与えられる磁界が
変化し、YIG発振器の発振周波数が温度の変化に
よつて変動する欠点が生じる。例えば空隙長が
0.01ミクロン程度変化してもYIG発振器の発振周
波数は8GHzの発振周波数に対して数100Hz程度変
化する。発振周波数の変化は電源投入直後に大き
く変動し、一定時間例えば3〜4時間経過すると
発振周波数は安定する。
As the temperature of the excitation coil 305 rises, the rod-shaped magnetic core 302 thermally expands, and the gap length of the magnetic gap 306 changes. As the gap length of the magnetic air gap 306 changes, the magnetic field applied to the magnetic sphere 307 changes, resulting in a drawback that the oscillation frequency of the YIG oscillator fluctuates due to changes in temperature. For example, the void length is
Even if it changes by about 0.01 micron, the oscillation frequency of the YIG oscillator will change by about several 100 Hz compared to the 8 GHz oscillation frequency. The oscillation frequency fluctuates greatly immediately after the power is turned on, and the oscillation frequency stabilizes after a certain period of time, for example, 3 to 4 hours has passed.

従来よりこのような欠点が存在することは知ら
れている。この対策として一般にYIG発振器に自
動周波数制御回路を付設し、発振周波数が変化す
ることを防止する方法を採っている。
It has been known that such drawbacks exist. As a countermeasure to this problem, a method is generally adopted in which an automatic frequency control circuit is attached to the YIG oscillator to prevent the oscillation frequency from changing.

然し乍ら自動周波数制御回路を付設した場合コ
ストが高くなる別の面の不都合が生じる。
However, when an automatic frequency control circuit is added, another disadvantage arises in that the cost increases.

「考案の目的」 この考案は自動周波数制御回路を設けなくとも
発振周波数の変動を少なくすることができる高安
定電磁石を提供するものである。
``Purpose of the invention'' This invention provides a highly stable electromagnet that can reduce fluctuations in oscillation frequency without providing an automatic frequency control circuit.

「問題点を解決するための手段」 この考案では棒状磁芯302の温度変化を検出
するように負性抵抗素子を設け、この負性抵抗素
子を励磁コイルに並列接続することによつて棒状
磁芯302の温度上昇に追従して励磁コイルを流
れる電流を減少させるように構成したものであ
る。
"Means for solving the problem" In this invention, a negative resistance element is provided so as to detect the temperature change of the rod-shaped magnetic core 302, and this negative resistance element is connected in parallel to the excitation coil. It is configured to reduce the current flowing through the excitation coil in accordance with the rise in temperature of the core 302.

(作用) この構成によれば棒状磁芯302が熱膨張によ
つて伸張し、磁気空隙306の空隙長が狭くな
り、磁気空隙306内の磁界が強くなるように変
化した場合、負性抵抗素子の抵抗値が減少し、負
性抵抗素子を流れる電流が増加する。この結果励
磁コイルを流れる励磁電流値が減少する方向に修
正され磁界の上昇を抑制するように動作する。
(Function) According to this configuration, when the rod-shaped magnetic core 302 expands due to thermal expansion, the gap length of the magnetic gap 306 becomes narrower, and the magnetic field in the magnetic gap 306 changes to become stronger, the negative resistance element The resistance value of the negative resistance element decreases, and the current flowing through the negative resistance element increases. As a result, the value of the excitation current flowing through the excitation coil is corrected in a decreasing direction, thereby operating to suppress the rise in the magnetic field.

よつて磁芯が熱膨張によつて伸張しても磁気空
隙306内の磁界をほぼ一定値に保つことができ
る。
Therefore, even if the magnetic core expands due to thermal expansion, the magnetic field within the magnetic gap 306 can be maintained at a substantially constant value.

「実施例」 第1図にこの考案の一実施例を示す。図中第4
図と対応する部分には同一符号を付して示す。こ
の考案の特徴とする構造は棒状磁芯302に熱的
に結合した負性抵抗素子100を設け、この負性
抵抗素子100を第2図に示すように励磁コイル
305と並列に接続した点である。
``Example'' Figure 1 shows an example of this invention. 4th in the diagram
Portions corresponding to those in the figure are designated by the same reference numerals. The characteristic structure of this invention is that a negative resistance element 100 is provided thermally coupled to a rod-shaped magnetic core 302, and this negative resistance element 100 is connected in parallel with an exciting coil 305 as shown in FIG. be.

第1図及び第2図に示す例ではサーミスタのよ
うな負性抵抗素子100を棒状磁芯302に取付
け、棒状磁芯302の温度を負性抵抗素子100
に直接与える構造とした場合を示す。負性抵抗素
子100は電流調整用可変抵抗器201と直列接
続し、その直列回路を第2図に示すように励磁コ
イル305と並列接続する。尚第2図に示すRは
励磁コイル305の直流抵抗を示す。
In the example shown in FIGS. 1 and 2, a negative resistance element 100 such as a thermistor is attached to the rod-shaped magnetic core 302, and the temperature of the rod-shaped magnetic core 302 is measured by the negative resistance element 100.
The case where the structure is given directly is shown. The negative resistance element 100 is connected in series with a current adjusting variable resistor 201, and the series circuit is connected in parallel with an exciting coil 305 as shown in FIG. Note that R shown in FIG. 2 represents the DC resistance of the excitation coil 305.

200は励磁電流源を示す。ここでは鋸歯状波
状に変化する電流を発生する電流源を接続した場
合を示す。この励磁電流源200は鋸歯状に変化
する定電流I0を励磁コイル305に与えているも
のとする。
200 indicates an excitation current source. Here, a case is shown in which a current source that generates a current that changes in a sawtooth waveform is connected. It is assumed that this excitation current source 200 supplies a constant current I 0 that changes in a sawtooth shape to the excitation coil 305 .

(実施例の動作説明) この実施構造によれば励磁電流源200から与え
られる電流I0は励磁コイル305と負性抵抗素子
100に分流しI0=IL+Isの関係を保つて動作す
る。
(Explanation of operation of the embodiment) According to this implementation structure, the current I 0 given from the excitation current source 200 is divided into the excitation coil 305 and the negative resistance element 100 and operates while maintaining the relationship I 0 =I L +I s .

第3図に示すように励磁コイル305の温度T
℃が時間の経過に伴つて上昇し棒状磁芯302が
熱膨張するとき負性抵抗素子100は棒状磁芯3
02の温度上昇を感知し、その抵抗値が小さくな
る。よつて電流IS増加し、この電流IS増加した量
だけ励磁電流ILが減少し励磁磁界の上昇を抑制す
る。負性抵抗素子100に分流する電流ISは可変
抵抗器101の抵抗値を変えることによつて調整
することができる。よつて起動直後に磁気空隙3
06内の磁界が大きく変化しないように調整する
ことを容易に行うことができる。尚負性抵抗素子
100の抵抗値と励磁コイル305の直流抵抗R
の値が適当な場合は可変抵抗器201を省略する
ことができる。また可変抵抗器によつて調整を行
なつた後、その抵抗値に合致した固定抵抗器を可
変抵抗器201の代りに接続することも考えられ
る。
As shown in FIG. 3, the temperature T of the excitation coil 305
When the temperature rises over time and the rod-shaped magnetic core 302 thermally expands, the negative resistance element 100
02's temperature rise is sensed, and its resistance value decreases. Therefore, the current I S increases, and the excitation current I L decreases by the amount that the current I S increases, suppressing the increase in the excitation magnetic field. The current I S that flows into the negative resistance element 100 can be adjusted by changing the resistance value of the variable resistor 101. Therefore, immediately after startup, the magnetic gap 3
Adjustment can be easily made so that the magnetic field within 06 does not change significantly. Note that the resistance value of the negative resistance element 100 and the DC resistance R of the excitation coil 305
If the value of is appropriate, the variable resistor 201 can be omitted. It is also conceivable to perform adjustment using a variable resistor and then connect a fixed resistor matching the resistance value in place of the variable resistor 201.

また上述では負性抵抗素子100を棒状磁芯3
02に直接取付けた場合を説明したが、負性抵抗
素子100を励磁コイル305に取付け、励磁コ
イルの温度から棒状磁芯302の温度を知るよう
に構成することもできる。
In addition, in the above description, the negative resistance element 100 is
Although the case where the negative resistance element 100 is attached directly to the excitation coil 305 has been described, it is also possible to configure the negative resistance element 100 to be attached to the excitation coil 305 and to know the temperature of the rod-shaped magnetic core 302 from the temperature of the excitation coil.

「考案の効果」 上述したようにこの考案の電磁石は棒状磁芯3
02の温度T℃が上昇し、熱膨張によつて磁気空
隙306の空隙長が狭くなり磁界が強くなろうと
しても、棒状磁芯302の温度上昇により負性抵
抗素子100の抵抗値が減少し、この抵抗値の減
少により負性抵抗素子100に流れる電流ISが増
えて励磁コイル305に流れる電流が減少する。
励磁電流が減少することにより励磁磁界が弱くな
り、磁気空隙306内の磁界は一定値に保持され
る。
"Effect of the invention" As mentioned above, the electromagnet of this invention has a bar-shaped magnetic core 3
Even if the temperature T°C of 02 increases and the gap length of the magnetic gap 306 narrows due to thermal expansion and the magnetic field becomes stronger, the resistance value of the negative resistance element 100 decreases due to the temperature increase of the rod-shaped magnetic core 302. Due to this decrease in resistance value, the current I S flowing through the negative resistance element 100 increases, and the current flowing through the excitation coil 305 decreases.
As the excitation current decreases, the excitation magnetic field becomes weaker and the magnetic field within the magnetic air gap 306 is held at a constant value.

従つてこの考案によれば温度変化に対して磁気
空隙内の磁界を一定に保持することができる安定
性の高い電磁石を得ることができる。そして電磁
石を用いることよつて例えば発振周波数の変動が
少ないYIG発振器を構成することができる。
Therefore, according to this invention, it is possible to obtain a highly stable electromagnet that can maintain the magnetic field within the magnetic gap constant against temperature changes. By using an electromagnet, for example, a YIG oscillator with less fluctuation in oscillation frequency can be constructed.

【考案の詳細な説明】 第1図はこの考案の一実施例を説明するための
断面図、第2図はこの考案の電気的な接続構造を
説明するための接続図、第3図はこの考案の動作
を説明するためのグラフ、第4図は従来の電磁石
を説明するための断面図である。
[Detailed description of the invention] Fig. 1 is a sectional view for explaining an embodiment of this invention, Fig. 2 is a connection diagram for explaining the electrical connection structure of this invention, and Fig. 3 is a sectional view for explaining an embodiment of this invention. A graph for explaining the operation of the invention, and FIG. 4 is a cross-sectional view for explaining the conventional electromagnet.

100:負性抵抗素子、200:励磁電流源、
301:磁気ケース、302:棒状磁芯、30
3:蓋、306:磁気空隙。
100: Negative resistance element, 200: Excitation current source,
301: Magnetic case, 302: Rod-shaped magnetic core, 30
3: Lid, 306: Magnetic air gap.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 励磁コイルと磁気空隙を有する電磁石におい
て、励磁コイルを巻装した磁芯の温度を検出する
よう感温素子を設け、この感温素子を上記励磁コ
イルに並列接続し、上記磁芯の温度上昇に追従し
て上記励磁コイルを流れる励磁電流の値を減少さ
せるように構成した高安定電磁石。
In an electromagnet having an excitation coil and a magnetic air gap, a temperature sensing element is provided to detect the temperature of the magnetic core around which the excitation coil is wound, and this temperature sensing element is connected in parallel to the excitation coil to prevent temperature rise of the magnetic core. A highly stable electromagnet configured to follow the excitation coil and reduce the value of the excitation current flowing through the excitation coil.
JP3869285U 1985-03-18 1985-03-18 Expired JPH0311863Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3869285U JPH0311863Y2 (en) 1985-03-18 1985-03-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3869285U JPH0311863Y2 (en) 1985-03-18 1985-03-18

Publications (2)

Publication Number Publication Date
JPS61156210U JPS61156210U (en) 1986-09-27
JPH0311863Y2 true JPH0311863Y2 (en) 1991-03-20

Family

ID=30545935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3869285U Expired JPH0311863Y2 (en) 1985-03-18 1985-03-18

Country Status (1)

Country Link
JP (1) JPH0311863Y2 (en)

Also Published As

Publication number Publication date
JPS61156210U (en) 1986-09-27

Similar Documents

Publication Publication Date Title
JP3717982B2 (en) Axial position sensor
US4338814A (en) Device for measuring the mass of a flowing medium
JPH0311863Y2 (en)
JP2649934B2 (en) Control device for proportional solenoid valve
JPS623527A (en) Piezoelectric oscillator with constant temperature oven
JPH0311862Y2 (en)
JPH0314303A (en) Crystal oscillator including thermostat
US8760236B2 (en) Drift stabilization of magnetically tunable filter by temperature regulation and mechanical isolation of elctromagnet coil
US4397179A (en) Device for measuring the mass of a flowing medium
JP2655596B2 (en) Constant temperature bath control circuit
JPS5917291A (en) Semiconductor laser controller
GB2317018A (en) Low drift, temperature compensated accelerometer component
SU881709A1 (en) Temperature stabilizing device
JP2705645B2 (en) Respiratory measurement device with automatic gain control function
SU1335112A1 (en) Thermostated quartz oscillator
SU1564600A1 (en) Thermostatting device
JPS62112929A (en) Electronic range equipped with piezoelectric element sensor
JPS58222610A (en) Crystal oscillator
JPH0351709Y2 (en)
SU1462273A1 (en) Temperature regulator
Bamberg et al. Ultrasound measurements on doped PZT with diffuse phase transition
JPH0888514A (en) Temperature compensation oscillator
SU1647535A2 (en) Temperature regulator
JPH0419844Y2 (en)
SU438008A1 (en) Thermostat