JPS6396415U - - Google Patents

Info

Publication number
JPS6396415U
JPS6396415U JP1987172089U JP17208987U JPS6396415U JP S6396415 U JPS6396415 U JP S6396415U JP 1987172089 U JP1987172089 U JP 1987172089U JP 17208987 U JP17208987 U JP 17208987U JP S6396415 U JPS6396415 U JP S6396415U
Authority
JP
Japan
Prior art keywords
demodulator
circuit
voltage
power supply
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1987172089U
Other languages
Japanese (ja)
Other versions
JPS6344731Y2 (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS6396415U publication Critical patent/JPS6396415U/ja
Application granted granted Critical
Publication of JPS6344731Y2 publication Critical patent/JPS6344731Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0082Transmitting or indicating the displacement of capsules by electric, electromechanical, magnetic, or electromechanical means
    • G01L9/0086Transmitting or indicating the displacement of capsules by electric, electromechanical, magnetic, or electromechanical means using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means

Description

【図面の簡単な説明】[Brief explanation of drawings]

第1a図は容量変換器と4―ダイオード復調回
路との組合せ回路の原理的構成を示す図、第1図
は本考案による補償回路網を備えた容量変換器と
4―ダイオード復調回路との組合せ回路のブロツ
ク図、第2図は4―ダイオード復調器に比例出力
補償および温度補償を与えた第1図に示す容量変
換器と4―ダイオード復調器との組合せ回路の詳
細ブロツク図、第3図は水晶容量変換器に温度補
償および線形性補償を与えた第1図に示す容量変
換器と4―ダイオード復調器との組合せ回路の詳
細ブロツク図、第4図は第2図に示したブロツク
図の詳細回路図、第5図は第3図に示したブロツ
ク図の詳細回路図、第6図は第7図の線6に沿つ
てみた水晶容量変化型圧力変換器の断面図、第7
図は不作動状態の水晶容量変化型圧力変換器の断
面図、第8図はたわんだ状態の水晶容量変化型圧
力変換器の断面図、第9図は比例出力変換のグラ
フを示す図、第10図は異なつた電流レベルにお
ける信号ダイオード端子電圧の温度変化を示す図
、第11図ないし第16図は第5図の回路の各点
における作用関係を示す図である。 10……周波数発生器、12……4―ダイオー
ドブリツジ回路、14……出力回路、16……補
償回路網、18……容量変換器、20……比例出
力オフセツト回路、22……線形増幅器、24…
…比例出力補償回路、26……温度補償回路、2
8……ローパスフイルタ、30……帰還回路、3
2……変換器温度補償回路、34……変換器線形
性補償回路、36……水晶容量変換器、60,6
2……円板、64……環状フリツト、66,68
,70,72……プレート。
FIG. 1a is a diagram showing the principle configuration of a combination circuit of a capacitive converter and a 4-diode demodulation circuit, and FIG. A block diagram of the circuit, Fig. 2 is a detailed block diagram of the combined circuit of the capacitive converter and 4-diode demodulator shown in Fig. 1, in which a 4-diode demodulator is provided with proportional output compensation and temperature compensation, and Fig. 3 is a block diagram of the circuit. 1 is a detailed block diagram of the combination circuit of the capacitive converter and 4-diode demodulator shown in FIG. 1, which provides temperature compensation and linearity compensation for the crystal capacitive converter, and FIG. 4 is the block diagram shown in FIG. 2. 5 is a detailed circuit diagram of the block diagram shown in FIG. 3, FIG. 6 is a sectional view of the crystal capacitive pressure transducer taken along line 6 in FIG. 7, and FIG.
Figure 8 is a sectional view of the quartz capacitive pressure transducer in an inoperative state, Figure 8 is a sectional view of the quartz capacitive pressure transducer in a deflected state, Figure 9 is a diagram showing a graph of proportional output conversion, FIG. 10 is a diagram showing the temperature change of the signal diode terminal voltage at different current levels, and FIGS. 11 to 16 are diagrams showing the operational relationship at each point of the circuit of FIG. 5. 10... Frequency generator, 12... 4-diode bridge circuit, 14... Output circuit, 16... Compensation network, 18... Capacitance converter, 20... Proportional output offset circuit, 22... Linear amplifier , 24...
...Proportional output compensation circuit, 26...Temperature compensation circuit, 2
8...Low pass filter, 30...Feedback circuit, 3
2...Converter temperature compensation circuit, 34...Converter linearity compensation circuit, 36...Crystal capacitance converter, 60,6
2... Disk, 64... Annular frit, 66, 68
,70,72... plate.

Claims (1)

【実用新案登録請求の範囲】 1 物理的パラメータの値の変化に応じて容量が
変化する容量変換器と、交流搬送波電圧を供給す
る周波数発生器と、この周波数発生器から交流搬
送波電圧を受けるよう電気的に接続しかつ容量の
変化によつて前記搬送波を変調するよう前記変換
器に接続した4―ダイオード復調器とを備え、前
記復調器は前記搬送波を検出して測定した物理的
パラメータの変化を表わす出力電圧信号を発生す
るようにした容量変換器と復調器との組合せ回路
において、前記周波数発生器に電気的に接続して
復調器および変換器の補償可能な誤差によつて生
起される出力信号の振幅変化と反対方向に搬送波
電圧の振幅を変化させる補償回路網を備えること
を特徴とする容量変換器と復調器との組合せ回路
。 2 補償回路網は4―ダイオード復調器の比例出
力誤差に対する比例出力補償を与える回路を備え
ることを特徴とする実用新案登録請求の範囲第1
項記載の容量変換器と復調器との組合せ回路。 3 補償回路網は4―ダイオード復調器の温度誤
差に対する温度補償を与える回路を備えることを
特徴とする実用新案登録請求の範囲第1項または
第2項記載の容量変換器と復調器との組合せ回路
。 4 復調器はその出力にその復調器の出力電圧信
号を線形的に増幅する増幅回路を備えることを特
徴とする実用新案登録請求の範囲第1項ないし第
3項のいずれか1項に記載の容量変換器と復調器
との組合せ回路。 5 補償回路網は周波数発生器の電源電圧を発生
させる電圧フオロワ回路を備え、前記電源電圧は
入力電源電圧と補償電圧との代数的組合せとして
発生させ、前記電源電圧は前記補償電圧の変化に
応じて増減することを特徴とする実用新案登録請
求の範囲第1項ないし第4項のいずれか1項に記
載の容量変換器と復調器との組合せ回路。 6 電圧フオロワ回路は反転入力と非反転入力と
を有する差動増幅器を備え、この差動増幅器の出
力端子は基準電圧源と周波数発生器の電源接続点
との間に接続した可変インピーダンス装置の制御
端子に接続し、前記差動増幅器の非反転入力は入
力電源を受け、前記電源接続点と前記増幅器の反
転入力との間に帰還回路を接続し、前記インピー
ダンス装置は前記差動増幅器の非反転入力端子と
反転入力端子との電圧を等しくさせるよう前記増
幅器の出力によつて電源接続点の電圧を変化させ
るよう制御されることを特徴とする実用新案登録
請求の範囲第5項記載の容量変換器と復調器との
組合せ回路。 7 帰還回路は復調器のダイオードと実質的に同
じ応答特性曲線を有する第1および第2のダイオ
ードと、増幅器の反転入力およびアース間に接続
してそれらダイオードを流れる電流を調節する可
変抵抗とを備え、第1のダイオードのアノードを
電源接続点に接続し前記第1のダイオードのカソ
ードを第2のダイオードのアノードに接続し第2
のダイオードのカソードを増幅器の反転入力に接
続したことを特徴とする実用新案登録請求の範囲
第6項記載の容量変換器と復調器との組合せ回路
。 8 入力電源電圧は比較的非安定の電源に関して
比例出力電圧として取り出されることを特徴とす
る実用新案登録請求の範囲第5項記載の容量変換
器と復調器との組合せ回路。 9 容量変換器は水晶容量変化型圧力変換器とし
たことを特徴とする実用新案登録請求の範囲第1
項ないし第8項のいずれか1項に記載の容量変換
器と復調器との組合せ回路。 10 補償回路網は水晶容量交換器の温度誤差の
ための温度補償を与える手段を備えることを特徴
とする実用新案登録請求の範囲第9項記載の容量
変換器と復調器との組合せ回路。
[Claims for Utility Model Registration] 1. A capacitive converter whose capacitance changes according to changes in the value of a physical parameter, a frequency generator that supplies an AC carrier wave voltage, and a device that receives an AC carrier wave voltage from the frequency generator. a four-diode demodulator electrically connected and connected to the transducer to modulate the carrier wave by a change in capacitance, the demodulator detecting the carrier wave and changing the measured physical parameter; in a combination capacitive converter and demodulator circuit adapted to generate an output voltage signal representative of A combination circuit of a capacitive converter and a demodulator, characterized in that it comprises a compensation network that changes the amplitude of a carrier voltage in a direction opposite to the change in the amplitude of the output signal. 2. Utility model registration claim 1, characterized in that the compensation network comprises a circuit that provides proportional output compensation for the proportional output error of the 4-diode demodulator.
A combination circuit of a capacitance converter and a demodulator as described in . 3. A combination of a capacitive converter and a demodulator as set forth in claim 1 or 2 of the utility model registration claim, wherein the compensation network comprises a circuit that provides temperature compensation for temperature errors of the 4-diode demodulator. circuit. 4. The demodulator according to any one of claims 1 to 3 of claims 1 to 3, wherein the demodulator is provided with an amplifier circuit for linearly amplifying the output voltage signal of the demodulator. A combination circuit of a capacitive converter and a demodulator. 5. The compensation network comprises a voltage follower circuit for generating a power supply voltage of the frequency generator, said power supply voltage being generated as an algebraic combination of an input power supply voltage and a compensation voltage, said power supply voltage being responsive to changes in said compensation voltage. 5. A combination circuit of a capacitive converter and a demodulator according to any one of claims 1 to 4, characterized in that the circuit increases or decreases depending on the utility model registration. 6. The voltage follower circuit comprises a differential amplifier having an inverting input and a non-inverting input, and the output terminal of the differential amplifier controls a variable impedance device connected between the reference voltage source and the power supply connection point of the frequency generator. terminal, the non-inverting input of the differential amplifier receives an input power supply, a feedback circuit is connected between the power supply connection point and the inverting input of the amplifier, and the impedance device is connected to the non-inverting input of the differential amplifier. Capacitance conversion according to claim 5, characterized in that the voltage at the power supply connection point is controlled to be changed by the output of the amplifier so as to equalize the voltages at the input terminal and the inverting input terminal. A combination circuit of a converter and a demodulator. 7. The feedback circuit includes first and second diodes having substantially the same response characteristic curves as the demodulator diodes, and a variable resistor connected between the inverting input of the amplifier and ground to adjust the current flowing through the diodes. comprising: connecting an anode of a first diode to a power supply connection point; connecting a cathode of the first diode to an anode of a second diode;
7. A combination circuit of a capacitive converter and a demodulator according to claim 6, wherein the cathode of the diode is connected to an inverting input of an amplifier. 8. The combined capacitive converter and demodulator circuit according to claim 5, wherein the input power supply voltage is extracted as a proportional output voltage with respect to a relatively unstable power supply. 9 Utility model registration claim 1 characterized in that the capacitance converter is a crystal capacitance variable pressure transducer
A combination circuit of a capacitive converter and a demodulator according to any one of Items 1 to 8. 10. A combined capacitive converter and demodulator circuit according to claim 9, wherein the compensation network comprises means for providing temperature compensation for temperature errors of the crystal capacitive exchanger.
JP1987172089U 1978-02-15 1987-11-12 Expired JPS6344731Y2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87805678A 1978-02-15 1978-02-15

Publications (2)

Publication Number Publication Date
JPS6396415U true JPS6396415U (en) 1988-06-22
JPS6344731Y2 JPS6344731Y2 (en) 1988-11-21

Family

ID=25371286

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1555279A Pending JPS54115175A (en) 1978-02-15 1979-02-15 Combined circuit comprising capacitive transducer and demodulator
JP1987172089U Expired JPS6344731Y2 (en) 1978-02-15 1987-11-12

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP1555279A Pending JPS54115175A (en) 1978-02-15 1979-02-15 Combined circuit comprising capacitive transducer and demodulator

Country Status (8)

Country Link
JP (2) JPS54115175A (en)
AU (1) AU521105B2 (en)
CA (1) CA1123225A (en)
DE (1) DE2905463A1 (en)
ES (1) ES477752A1 (en)
FR (1) FR2417887B1 (en)
GB (1) GB2015162B (en)
IT (1) IT1111910B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295376A (en) * 1978-12-01 1981-10-20 Besco Industries, Inc. Force responsive transducer
US4288835A (en) * 1979-04-16 1981-09-08 The Bendix Corporation Pressure sensor
US4322977A (en) * 1980-05-27 1982-04-06 The Bendix Corporation Pressure measuring system
US4509007A (en) * 1982-09-30 1985-04-02 Ibm Corporation Differential sensor measuring apparatus and method including sensor compensator circuitry
FR2632069B1 (en) * 1988-05-30 1990-12-14 Garcia Manuel IMPEDANCE VARIATION SPEED DETECTION SENSOR OR IMPEDANCE VARIATION SPEED

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271669A (en) * 1962-12-04 1966-09-06 Rosemount Eng Co Ltd Alternating current diode loop capacitance measurement circuits
US3318153A (en) * 1962-12-04 1967-05-09 Rosemount Eng Co Ltd Diode loop capacitor comparative circuit including a pair of transformer windings coupled in phase
GB1110943A (en) * 1963-10-01 1968-04-24 Sangamo Weston Improvements in or relating to electrical bridge networks
US3646538A (en) * 1969-10-27 1972-02-29 Rosemount Eng Co Ltd Transducer circuitry for converting a capacitance signal to a dc current signal
US3648165A (en) * 1970-09-24 1972-03-07 Sun Oil Co Capacitance-measuring apparatus including means maintaining the voltage across the unknown capacitance constant
US3883812A (en) * 1971-12-20 1975-05-13 Nasa Diode-quad bridge circuit means
US3869672A (en) * 1972-05-13 1975-03-04 Int Standard Electric Corp Method and arrangements for the digital control of operating functions, radio and television receivers
DE2314754C2 (en) * 1973-03-24 1979-02-08 Hottinger Baldwin Messtechnik Gmbh, 6100 Darmstadt Electrical multi-point measuring device
JPS5144662A (en) * 1974-10-08 1976-04-16 Masakichi Kawahara
JPS5252676A (en) * 1975-10-24 1977-04-27 Yokogawa Hokushin Electric Corp Capacity-to-electricity converter

Also Published As

Publication number Publication date
IT1111910B (en) 1986-01-13
GB2015162A (en) 1979-09-05
JPS54115175A (en) 1979-09-07
CA1123225A (en) 1982-05-11
IT7920175A0 (en) 1979-02-14
AU521105B2 (en) 1982-03-18
ES477752A1 (en) 1979-10-16
FR2417887A1 (en) 1979-09-14
AU4365579A (en) 1979-08-23
GB2015162B (en) 1982-08-18
DE2905463A1 (en) 1979-08-16
FR2417887B1 (en) 1985-06-07
JPS6344731Y2 (en) 1988-11-21
DE2905463C2 (en) 1989-12-28

Similar Documents

Publication Publication Date Title
US4093915A (en) Capacitance measuring system
US5122755A (en) Capacitive position detector
JPS6237440B1 (en)
US4289035A (en) Compensated capacitive transducer demodulator circuit
JPH04212070A (en) Circuit for measuring level of input electric signal
JPS6396415U (en)
CN100498236C (en) Electromagnetic-piezo-resistance type micro mechanical resonant beam sensor
US4559507A (en) Controlled hybrid microcircuit oscillator
JPH03220806A (en) Self-exciting oscillation circuit
US4719432A (en) Oscillator for measuring temperature
JPS645243B2 (en)
JPH06324089A (en) Output-signal formation device
CN215452888U (en) Gyroscope demodulation and amplifier
JPH065635Y2 (en) Flow velocity sensor
JPS6142239Y2 (en)
JPH089618Y2 (en) Thermistor temperature conversion circuit
JPH049581Y2 (en)
JPS5830321Y2 (en) Detection circuit
JPH0535619Y2 (en)
RU2162238C1 (en) Aerological radiosonde
KR0115052Y1 (en) Transducer
JPH0120647Y2 (en)
JPH0370767B2 (en)
SU725043A1 (en) Active resistance-to-frequency converter
JPH0128324B2 (en)