JPS6396265A - Method and device for forming thin insulating film - Google Patents

Method and device for forming thin insulating film

Info

Publication number
JPS6396265A
JPS6396265A JP24261086A JP24261086A JPS6396265A JP S6396265 A JPS6396265 A JP S6396265A JP 24261086 A JP24261086 A JP 24261086A JP 24261086 A JP24261086 A JP 24261086A JP S6396265 A JPS6396265 A JP S6396265A
Authority
JP
Japan
Prior art keywords
substrate
source
gas
electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24261086A
Other languages
Japanese (ja)
Other versions
JP2504426B2 (en
Inventor
Tsutomu Ikeda
池田 孜
Hiroshi Hirai
洋 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61242610A priority Critical patent/JP2504426B2/en
Publication of JPS6396265A publication Critical patent/JPS6396265A/en
Application granted granted Critical
Publication of JP2504426B2 publication Critical patent/JP2504426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly form an insulating film having high purity and excellent adhesiveness, by installing a thermoelectron releasing source between a substrate and evaporating source in a vacuum vessel in which a specific pressure is maintained and adequately controlling the high-frequency electric power and negative voltage to be impressed to the substrate. CONSTITUTION:An atmospheric gas is introduced from a gas introducing pipe 9 into the vacuum vessel 1 and the inside of the vessel is evacuated through a gas discharge port 13 and is kept under 10<-2>Torr. The high-frequency voltage is then impressed by an RF power source 11 to the substrate 3 heated adequately by a heater 4 to discharge electricity so that the metal vapor from a metal evaporating source 2 and the gas are ionized. A bias voltage is further impressed to the substrate 3 to concentrate said ions onto the surface and to form the insulating film. The thermoelectron releasing source 7 and the electrode 5 impressed with a positive potential are disposed between the substrate 3 and evaporating source 2 of the above-mentioned device to accelerate the above- mentioned ionization. The high-frequency electric power to be thrown to the substrate 3 is controlled to >=1W/cm<2> and the negative voltage by the high-frequency self bias to <=1kV, by which the good discharge state is maintained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基板上に絶縁性薄膜を形成する方法並びに形成
装置に関し、詳細には純度が高い絶縁性薄膜を均一に且
つ密着性の良い状態で形成する方法並びに形成装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and a forming apparatus for forming an insulating thin film on a substrate, and more specifically, to a method and a forming apparatus for forming an insulating thin film on a substrate, and in particular, to form a highly pure insulating thin film uniformly and with good adhesion. The present invention relates to a forming method and a forming apparatus.

[従来の技術] 立方晶窒化硼素(Cubic Boron N1tri
de 、以下CBNという)に代表される絶縁性物質は
、電気絶縁性及び熱伝導性が優れていることからICの
ヒートシンクやパッシベーション膜として有用であり、
また極めて硬質で耐摩耗性及び耐熱性が優れていること
から金属やセラミックス製工作機械の基材表面に対する
コーテイング材としての利用価値も高く、殊に難削材用
切削工具鋼基材や高速切削工具鋼基材の各表面コーテイ
ング材として注目を集めている。
[Prior art] Cubic boron nitride (Cubic Boron N1tri)
Insulating materials represented by CBN (hereinafter referred to as CBN) are useful as heat sinks and passivation films for ICs due to their excellent electrical insulation and thermal conductivity.
In addition, because it is extremely hard and has excellent wear resistance and heat resistance, it is also useful as a coating material for the base material surface of metal and ceramic machine tools, especially for cutting tool steel base materials for difficult-to-cut materials and high-speed cutting. It is attracting attention as a surface coating material for tool steel base materials.

上記絶縁性物質のコーティング方法即ち絶縁性の薄膜の
形成方法としては、例えば熱CVD法。
As a method for coating the above-mentioned insulating substance, that is, a method for forming an insulating thin film, for example, a thermal CVD method is used.

プラズマCVD法、RFスパッタリング法、イオンブレ
ーティング法等がある。このうちイオンブレーティング
法はイオンの運動エネルギーを利用したボンバードメン
ト方式であるから、他の手法に比べると低温度操業であ
りながら基材との密着性に優れた膜を能率良く得ること
ができる方法であり、実用的にも高く評価されている。
Examples include plasma CVD method, RF sputtering method, and ion blating method. Among these methods, the ion blating method is a bombardment method that uses the kinetic energy of ions, so it can efficiently obtain a film with excellent adhesion to the substrate even though it operates at a lower temperature than other methods. This method is highly praised for its practical use.

ところでイオンブレーティング法によって基板上に絶縁
性薄膜を形成する場合の問題としては、導電性薄膜を形
成する場合とは異なり、基板上に蓄積し始めた絶縁性物
質が正イオンの衝突を受けて正に帯電してしまい、基板
に負電圧を印加してもそれ以上は正イオンの衝突が起こ
らない現象(チャージアップ現象)が発生することが挙
げられる。そこでこれを防止する為基板に高周波(RF
)電圧を印加して帯電を防止すると共に、正イオンに比
べて質量の小さい電子が基板近くに集まる現象を利用し
てイオンブレーティングを行なっている。
By the way, the problem when forming an insulating thin film on a substrate using the ion blating method is that, unlike when forming a conductive thin film, the insulating material that has begun to accumulate on the substrate is bombarded by positive ions. One example of this is a phenomenon in which the substrate becomes positively charged and no more collisions of positive ions occur even if a negative voltage is applied to the substrate (charge-up phenomenon). Therefore, in order to prevent this, high frequency (RF) is applied to the board.
) In addition to applying a voltage to prevent charging, ion blating is performed by utilizing the phenomenon that electrons, which have a smaller mass than positive ions, gather near the substrate.

しかるに従来のRFバイアスイオンブレーティングによ
る成膜では、10−2Torr以下のガス圧下で放電を
維持しようとすれば自己バイアスによる負電圧がIKV
以上の大電圧となって、その為スパッタ効果が優先し成
膜し難くなるという欠点がある。またイオンボンバード
量が低い為基板のイオン電流値が低くなり硬質の絶縁膜
を形成することが困難になる。
However, in film formation using conventional RF bias ion blating, if a discharge is to be maintained under a gas pressure of 10-2 Torr or less, the negative voltage due to self-bias will exceed IKV.
There is a drawback that the voltage is as high as the above, and therefore the sputtering effect takes priority and it becomes difficult to form a film. Furthermore, since the amount of ion bombardment is low, the ion current value of the substrate is low, making it difficult to form a hard insulating film.

そこで現在提案されている実用的RFバイアスイオンブ
レーティング法及び装置においては、反応性ガス等のガ
ス導入ノズルに正電位を印加しくノズルバイアス方式)
、これによる放電を利用してイオン生成量の増大をはか
り、成膜性の向上並びに生成膜の硬質化をはかっている
。第3図及び第4図は夫々利用らの提案に係るイオンブ
レーティング装置を示す概略説明図であり、高絶縁性の
CBN膜を形成することに成功した旨報告されている。
Therefore, in the currently proposed practical RF bias ion blating method and device, a positive potential is applied to the nozzle for introducing a gas such as a reactive gas (nozzle bias method).
The resulting discharge is used to increase the amount of ions produced, thereby improving film formability and hardening the produced film. FIGS. 3 and 4 are schematic explanatory diagrams showing the ion blating apparatus proposed by the authors, and it has been reported that they succeeded in forming a highly insulating CBN film.

尚イオンブレーティングにおけるイオン化方法には、例
えば直流グロー放電法(Mattox法)、RF励起法
、多陰極法、ホロカソード(l(CD)放電法、直流ア
ーク放電法(プローブ法)、多陰極とバイアスプローブ
の組合せ法等、種々の方法があり、第3図及び第4図の
例ではいずれも活性化ノズル法が利用されている。即ち
上記2方法は反応性ガス(例えばN2)の活性化方法と
していずれもN2ガス導入ノズルに直流正電位を印加し
ており、第3図例ではるつぼに入ったBをHCD溶解す
る時にHCD銃から放出される熱電子を利用して、また
第4図例のBを電子ビーム溶解する場合には別途取付け
たエミッタから放出される熱電子を利用して、夫々ガス
導入ノズル先端にN2ガス放電を生ぜしめN2を活性化
している。
Ionization methods in ion brating include, for example, DC glow discharge method (Mattox method), RF excitation method, multi-cathode method, holocathode (CD) discharge method, DC arc discharge method (probe method), multi-cathode and bias method. There are various methods such as a combination of probes, and the examples shown in Figures 3 and 4 both use the activation nozzle method.In other words, the above two methods are methods for activating a reactive gas (for example, N2). In each case, a DC positive potential is applied to the N2 gas introduction nozzle, and in the example shown in Figure 3, thermionic electrons emitted from the HCD gun are used when B in the crucible is melted by HCD, and in the example shown in Figure 4. When B is melted with an electron beam, thermoelectrons emitted from separately attached emitters are used to generate N2 gas discharge at the tip of each gas introduction nozzle and activate N2.

[発明が解決しようとする問題点] しかるに上記ノズルバイアス方式においては、小面積の
ガス導入ノズルに数Aオーダーの放電電流が流れる為に
ノズル金属が溶解し、遂には蒸発して膜中に混入するこ
とがあり、絶縁膜の純度低下の原因となっている。又ノ
ズルバイアス方式では、正電位のノズルとアース電位の
チャンバー間に放電が生じる為、放電状態が局部的であ
り、基板面積が大きい場合は均一成膜が困難である。又
ノズルの放電面積が小さい為、蒸発絶縁物の付着により
て全放電面が被包されてしまい放電を持続し難いという
欠点がある。
[Problems to be Solved by the Invention] However, in the above-mentioned nozzle bias method, since a discharge current on the order of several amperes flows through the small-area gas introduction nozzle, the nozzle metal melts and eventually evaporates and gets mixed into the film. This may cause a decrease in the purity of the insulating film. Further, in the nozzle bias method, since a discharge occurs between a nozzle at a positive potential and a chamber at an earth potential, the discharge state is localized, and uniform film formation is difficult when the substrate area is large. Furthermore, since the discharge area of the nozzle is small, the entire discharge surface is covered by the adhesion of evaporative insulators, making it difficult to sustain discharge.

本発明は、大面積の基板に対して純度が高く密着性の優
れた絶縁膜を均一に成膜することができる様な絶縁性薄
膜の形成方法並びに形成装置を提供しようとするもので
ある。
The present invention aims to provide a method and apparatus for forming an insulating thin film that can uniformly form an insulating film of high purity and excellent adhesion on a large-area substrate.

[間厘点を解決する為の手段] しかして上記目的を達成した本発明方法は、真空槽内を
10−” Torr以下に保持しつつ基板に高周波電力
を投入して該基板表面に絶縁性薄膜を形成するに当たり
、熱電子放出源及び正電位を印加した電極を上記基板と
蒸発源の間に設置すると共に、上記基板に投入する高周
波電力をI W / C1m2以上に、かつ高周波自己
バイアスによる負電圧をIKV以下に夫々制御する点に
要旨があり、又本発明装置は、真空槽内に基板と蒸発源
、を配置し基板に高周波電圧を印加して基板表面に絶縁
性薄膜を形成する絶縁性薄膜形成装置であって、上記基
板と蒸発源の間に熱電子放出源及び正電位を印加した電
極を設置した点に要旨を有するものである。
[Means for Solving the Problem] The method of the present invention achieves the above object by applying high-frequency power to the substrate while maintaining the inside of the vacuum chamber at 10-” Torr or less to insulate the surface of the substrate. In forming the thin film, a thermionic emission source and an electrode to which a positive potential is applied are installed between the substrate and the evaporation source, and the high frequency power input to the substrate is set to I W / C 1 m2 or more and by high frequency self-bias. The main point is to control the negative voltage to below IKV, and the device of the present invention places a substrate and an evaporation source in a vacuum chamber and applies a high frequency voltage to the substrate to form an insulating thin film on the surface of the substrate. This is an insulating thin film forming apparatus, and its gist lies in that a thermionic emission source and an electrode to which a positive potential is applied are installed between the substrate and the evaporation source.

[作用] 本発明においては、基板表面に絶縁性薄膜を形成するに
当たり、真空槽内に10 ”” Torr以下の雰囲気
ガス(反応性ガス、不活性ガス及びその混合ガス等)を
導入しくまたは雰囲気ガスを導入しつつ若しくは導入し
た後で10−2Torr以下に調節し)、且つ金属蒸発
源(電子ビーム蒸発源、抵抗加熱蒸発源、HCD蒸発源
等)を配置し、基板にRF電力を投入することによって
生じた放電領域で上記ガス及び金属蒸気をイオン化させ
る。このとき基板に投入する高周波電力をI W / 
cm”以上に、かつ高周波自己バイアスによる負電圧を
IKV以下に夫々制御する。しかるに単に上記電圧及び
電力値に制御しただけでは安定した放電状態を形成する
ことができず満足し得る様な薄膜形成は困難である。そ
こで本発明においては基板と金属蒸発源の間に正電位を
印加した電極を、更に該7M、極に対抗して熱電子放出
源を夫々設置し、これによってアーク放電を発生させ、
ガス及び金属蒸気のイオン化を援助している。この結果
上記RF自己バイアス電圧並びにRF電力を充足する条
件の下で良好な放電状態が得られる。
[Function] In the present invention, when forming an insulating thin film on the surface of a substrate, an atmospheric gas (reactive gas, inert gas, mixed gas thereof, etc.) of 10 '' Torr or less is introduced into the vacuum chamber, or the atmosphere is (adjust to 10-2 Torr or less while introducing gas or after introducing it), place a metal evaporation source (electron beam evaporation source, resistance heating evaporation source, HCD evaporation source, etc.), and apply RF power to the substrate. The resulting discharge region ionizes the gas and metal vapor. At this time, the high frequency power input to the board is I W /
cm" or more, and the negative voltage due to high-frequency self-bias is controlled to be less than IKV. However, simply controlling the voltage and power to the above values does not allow a stable discharge state to be formed, and it is difficult to form a satisfactory thin film. Therefore, in the present invention, an electrode to which a positive potential is applied is installed between the substrate and the metal evaporation source, and a thermionic emission source is installed opposite to the 7M electrode, thereby generating an arc discharge. let me,
Assists in the ionization of gases and metal vapors. As a result, a good discharge state can be obtained under conditions that satisfy the above-mentioned RF self-bias voltage and RF power.

即ち本発明においては、従来の如くガス導入ノズルに正
電位を印加するノズルバイアス方式と異なり、独立した
電極に正電位を印加するので放出された熱電子は広い面
積に均一に受容され、基板に対して均一な放電状態を形
成することができる。また基板の大面積化に対応して放
電電流を増加させることができる。さらに基板にRF自
己バイアス電圧を印加する為基板上に形成される絶縁膜
表面のチャージアップ現象を回避することができ、イオ
ンの加速エネルギー(イオンボンバードメント)を有効
に利用することができ、基材との密看性に優れた絶縁膜
を得ることができる。又投入RF電力を1W/cm2以
上に設置しているので弱結合生成物はスパッタエツチン
グされ、サーマルスパイク効果等によりCBN、ダイヤ
モンドなど高圧高温安定相の成膜が実現できる。しかも
本発明ではRF放電を採用しているので7囲気ガス圧ヲ
従来よりも低くすることができ、高純度の成膜を得るこ
とができる。
That is, in the present invention, unlike the conventional nozzle bias method in which a positive potential is applied to the gas introduction nozzle, a positive potential is applied to an independent electrode, so the emitted thermoelectrons are uniformly received over a wide area and are transferred to the substrate. However, a uniform discharge state can be formed. Further, the discharge current can be increased in response to an increase in the area of the substrate. Furthermore, since the RF self-bias voltage is applied to the substrate, it is possible to avoid the charge-up phenomenon on the surface of the insulating film formed on the substrate, and the acceleration energy of ions (ion bombardment) can be effectively used. It is possible to obtain an insulating film with excellent sealability with materials. Furthermore, since the input RF power is set at 1 W/cm2 or more, weakly bonded products are sputter-etched, and film formation of high-pressure, high-temperature stable phases such as CBN and diamond can be realized due to the thermal spike effect. Furthermore, since the present invention employs RF discharge, the ambient gas pressure can be lowered than in the past, and a highly pure film can be formed.

上記効果に加えて本発明では前述の如<RF自己バイア
スによる負電圧をIKv以下の小電圧に抑えている為ス
パッタ速度より成膜速度を高くすることができ、高速成
膜が達成される。
In addition to the above effects, the present invention suppresses the negative voltage due to the RF self-bias to a small voltage below IKv as described above, so that the film formation rate can be higher than the sputtering rate, and high-speed film formation can be achieved.

[実施例コ 第1図は本発明方法を実施する為の本発明イオンブレー
ティング装置を示す断面説明図であって、1は真空容器
、2は金属蒸発源、3は基板、5は電極、7は熱電子放
出源を夫々示す。
[Example 1] Fig. 1 is a cross-sectional explanatory view showing an ion blating apparatus of the present invention for carrying out the method of the present invention, in which 1 is a vacuum vessel, 2 is a metal evaporation source, 3 is a substrate, 5 is an electrode, 7 indicates thermionic emission sources, respectively.

真空容器1には、雰囲気ガス導入パイプ9及び真空ポン
プ(図示せず)に接続された排気口13を設けると共に
、その内部には基板3と金属蒸発源2を上下方向に対向
配置してなり、且つ基板3と金属蒸発源2の中間高さ位
置には熱電子放出源7と電極5を左右方向に対向させて
設けている。
The vacuum container 1 is provided with an atmospheric gas introduction pipe 9 and an exhaust port 13 connected to a vacuum pump (not shown), and inside thereof, a substrate 3 and a metal evaporation source 2 are arranged vertically facing each other. , and a thermionic emission source 7 and an electrode 5 are provided at an intermediate height position between the substrate 3 and the metal evaporation source 2 so as to face each other in the left-right direction.

基板3は図では平板状に示されているが、例えば工具表
面に絶縁性被膜を形成しようとする場合には当該工具が
これに相当し、これに対してRF整合回路10を介した
RF電源11と自己バイアス制御回路12が並列的に接
続されると共に、基板3の裏面側近傍には基板3を所定
の温度まで加熱する為のヒーター4が設置されている。
Although the substrate 3 is shown as a flat plate in the figure, the tool corresponds to this when, for example, an insulating film is to be formed on the surface of a tool. 11 and a self-bias control circuit 12 are connected in parallel, and a heater 4 is installed near the back side of the substrate 3 to heat the substrate 3 to a predetermined temperature.

熱電子放出源7は電極5との間に放電状態を形成する為
の熱電子供給源であり、交流電源8が接続され、又電極
5は熱電子放出源と対向する面をMO板で形成し、その
内部に水冷構造を施した板状体であり、これに直流電源
6が接続され、正電位が印加されている。金属蒸発源2
はるつぼ2a内に蒸発用金属であるBを収納すると共に
電子ビーム銃15を併設し、電子ビームの照射により金
属蒸気を発生させる。尚電極5等より下方で金属蒸発源
2より上方にはシャッター14が開閉自在に設置されて
金属の蒸発を制御している。
The thermionic emission source 7 is a thermionic supply source for forming a discharge state between the electrode 5 and is connected to an AC power source 8, and the surface of the electrode 5 facing the thermionic emission source is formed of an MO plate. However, it is a plate-shaped body with a water-cooled structure inside, and a DC power source 6 is connected to this, and a positive potential is applied thereto. Metal evaporation source 2
B, which is a metal for evaporation, is stored in the crucible 2a, and an electron beam gun 15 is also provided, and metal vapor is generated by irradiation with an electron beam. A shutter 14 is provided below the electrode 5 and above the metal evaporation source 2 so as to be openable and closable to control the evaporation of the metal.

かかる構成の本発明イオンブレーティング装置を用いて
基板3上にCBN膜を形成するに当たっては、シャッタ
ー14を開放した真空容器1内を9 x 10 ”” 
Torr以下に排気した後、ガス導入ノズル9からN 
2 / A r混合ガスを導入して5×10−3Tor
rの雰囲気を形成し、電子ビームをるっぽ2a内のBに
照射してBを蒸発させる。そして交流電源8を入れて熱
電子放出源7より熱電子を放出させると共に、直流電源
6を入れて電極5に40〜50Vの正電圧を印加するこ
とにより電極5に流れる電流値を9Aに調整しつつアー
ク放電を開始する。又ヒータ4を用いて基板3を400
℃に加熱し、基板3に2W/cm2の高周波電力を投入
し成膜を行なった。尚基板自己バイアス電圧は一800
vとした。
When forming a CBN film on the substrate 3 using the ion blating apparatus of the present invention having such a configuration, the interior of the vacuum vessel 1 with the shutter 14 open is 9 x 10''.
After exhausting to below Torr, N from the gas introduction nozzle 9
Introducing 2/Ar mixed gas to 5×10-3 Tor
An atmosphere of r is formed, and an electron beam is irradiated onto B in the Ruppo 2a to evaporate the B. Then, the AC power supply 8 is turned on to cause the thermionic emission source 7 to emit thermoelectrons, and the DC power supply 6 is turned on and a positive voltage of 40 to 50V is applied to the electrode 5, thereby adjusting the current value flowing through the electrode 5 to 9A. arc discharge starts. Also, using the heater 4, the substrate 3 is
℃, high frequency power of 2 W/cm 2 was applied to the substrate 3 to form a film. The substrate self-bias voltage is -800
v.

基板上に成膜されたBH膜を赤外線吸収スペクトルにか
けると第5図に示すチャートが得られた。第5図には約
105105Oの波長域にCBNであることを示す吸収
スペクトル(Restsrahlen :残留線)が認
められた。又生成膜を電子線回折に付し、その結果を解
析したところ第1表に示す様にA37M25−1033
との一致が確認された。さらに膜組成をオージェ分光に
より分析した結果第6図に示す様に微量のC,O以外に
不純物の混入がない純度の高いBH膜であることが確認
された。
When the BH film formed on the substrate was subjected to an infrared absorption spectrum, the chart shown in FIG. 5 was obtained. In FIG. 5, an absorption spectrum (residual line) indicating CBN was observed in the wavelength range of about 105105O. In addition, the produced film was subjected to electron beam diffraction, and the results were analyzed, and as shown in Table 1, A37M25-1033
A match was confirmed. Furthermore, the film composition was analyzed by Auger spectroscopy, and as shown in FIG. 6, it was confirmed that the film was a highly pure BH film containing no impurities other than trace amounts of C and O.

第  1  表 ASTM値と比較したBHの格子間陽 性)回折線強度  W・・・弱い VS・・・非常に強い VW・・・非常に弱い 第2図は本発明の他の実施例を示す断面説明図で、装置
の構成は第1図例と略同等であるが、ガス導入ノズル9
が熱電子放出源7と一体的に構成されている点で若干構
成を異にしている。即ち本実施例ではN2等の反応性ガ
スが熱電子放出領域に直接吹込まれるのでアーク放電に
よるプラズマ形成が促進され、プラズマ密度を高めるこ
とができ、より優れた成膜性、成膜品質を得ることがで
きる。
Table 1 BH interstitial positivity compared to ASTM values) Diffraction line intensity W...Weak VS...Very strong VW...Very weak Figure 2 is a cross section showing another embodiment of the present invention In this explanatory diagram, the configuration of the device is approximately the same as the example in Figure 1, but the gas introduction nozzle 9
The structure is slightly different in that it is formed integrally with the thermionic emission source 7. That is, in this example, reactive gas such as N2 is directly injected into the thermionic emission region, so plasma formation by arc discharge is promoted, plasma density can be increased, and better film formation performance and quality can be achieved. Obtainable.

又第1.2図中に示した様に、本発明においては、熱電
子を受容する電極5面の基板に対する指向角度θが基板
に対するアーク放電を均一化する上で影響があり、該指
向角度θを0°〜45°の適正角度に調整することによ
りプラズマ状態を基板に均一に作用させることができる
Furthermore, as shown in Fig. 1.2, in the present invention, the orientation angle θ of the electrode 5 surface that receives thermionic electrons with respect to the substrate has an influence on making the arc discharge uniform with respect to the substrate. By adjusting θ to an appropriate angle of 0° to 45°, the plasma state can be applied uniformly to the substrate.

その他上記実施例では金属原料Bを電子ビーム照射によ
り蒸発させたが、加熱・蒸発方法としては電子ビームの
他、HCD放電や高周波加熱等、種々の方法を挙げるこ
とができる。尚HCD放電を利用する場合にはHCD電
極から熱電子が放出されるのでこれを熱電子放出源とし
て兼用することができ、第1.2図で示した熱電子放出
源フが不要となる。
In addition, in the above embodiment, the metal raw material B was evaporated by electron beam irradiation, but various heating and evaporation methods can be used in addition to the electron beam, such as HCD discharge and high frequency heating. When using HCD discharge, thermionic electrons are emitted from the HCD electrode, so it can also be used as a thermionic emission source, and the thermionic emission source shown in FIG. 1.2 is not required.

又本発明において成膜することのできる絶縁物質として
は、CBHの他、TiO2゜A1□03.SiC硬質カ
ーボン(ダイヤモンド、1−C)等を挙げることができ
る。
In addition to CBH, examples of insulating materials that can be formed into a film in the present invention include TiO2゜A1□03. Examples include SiC hard carbon (diamond, 1-C).

[発明の効果] 本発明は以上の様に構成されているので均一で安定した
アーク放電を達成することができ、面積の大きな基板に
対して均一に且つ高速で成膜することができる。又高純
度で且つ基板に対して密着性の高い絶縁膜を得ることが
できる。
[Effects of the Invention] Since the present invention is configured as described above, uniform and stable arc discharge can be achieved, and a film can be formed uniformly and at high speed on a large area substrate. Furthermore, an insulating film of high purity and high adhesion to the substrate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明の実施態様を示す断面説明図、第3
,4図は従来方法を説明する模式図、第5図は実施例に
より得られたCBH膜の赤外スペクトルを示すチャート
、第6図は同CBN膜のオージェ分光分析結果を示すグ
ラフである。 1・・・真空容器     2・・・金属蒸発源3・・
・基板        4・・・ヒーター5・・・電極
       6・・・直流電源7・・・熱電子放出源
   8・・・交流電源9・・・ガス導入パイプ  1
1・・・RF’を源13・・・ガス排出口    14
・・・シャッター15・・・電子ビーム銃
1 and 2 are cross-sectional explanatory diagrams showing embodiments of the present invention, and 3.
, 4 is a schematic diagram explaining the conventional method, FIG. 5 is a chart showing the infrared spectrum of the CBH film obtained in the example, and FIG. 6 is a graph showing the results of Auger spectroscopy of the same CBN film. 1... Vacuum container 2... Metal evaporation source 3...
- Substrate 4... Heater 5... Electrode 6... DC power source 7... Thermionic emission source 8... AC power source 9... Gas introduction pipe 1
1...RF' source 13...Gas exhaust port 14
...Shutter 15...Electron beam gun

Claims (3)

【特許請求の範囲】[Claims] (1)真空槽内を10^−^2Torr以下に保持しつ
つ基板に高周波電力を投入して該基板表面に絶縁性薄膜
を形成するに当たり、熱電子放出源及び正電位を印加し
た電極を上記基板と蒸発源の間に設置すると共に、上記
基板に投入する高周波電力を1W/cm^2以上に、か
つ高周波自己バイアスによる負電圧を1KV以下に夫々
制御することを特徴とする絶縁性薄膜の形成方法。
(1) When applying high frequency power to the substrate to form an insulating thin film on the substrate surface while maintaining the inside of the vacuum chamber at 10^-^2 Torr or less, the thermionic emission source and the electrode to which a positive potential was applied are An insulating thin film is installed between a substrate and an evaporation source, and is characterized in that the high frequency power input to the substrate is controlled to 1 W/cm^2 or more, and the negative voltage due to high frequency self-bias is controlled to 1 KV or less. Formation method.
(2)真空槽内に基板と蒸発源を配置し基板に高周波電
圧を印加して基板表面に絶縁性薄膜を形成する絶縁性薄
膜形成装置であって、上記基板と蒸発源の間に熱電子放
出源及び正電位を印加した電極を設置したことを特徴と
する絶縁性薄膜形成装置。
(2) An insulating thin film forming apparatus in which a substrate and an evaporation source are placed in a vacuum chamber and a high frequency voltage is applied to the substrate to form an insulating thin film on the substrate surface, in which thermionic electrons are placed between the substrate and the evaporation source. An insulating thin film forming apparatus characterized in that an emission source and an electrode to which a positive potential is applied are installed.
(3)正電位を印加した電極の電極面が基板に対して傾
斜してなる特許請求の範囲第2項記載の絶縁性薄膜形成
装置。
(3) The insulating thin film forming apparatus according to claim 2, wherein the electrode surface of the electrode to which a positive potential is applied is inclined with respect to the substrate.
JP61242610A 1986-10-13 1986-10-13 Method and apparatus for forming cBN thin film Expired - Fee Related JP2504426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242610A JP2504426B2 (en) 1986-10-13 1986-10-13 Method and apparatus for forming cBN thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242610A JP2504426B2 (en) 1986-10-13 1986-10-13 Method and apparatus for forming cBN thin film

Publications (2)

Publication Number Publication Date
JPS6396265A true JPS6396265A (en) 1988-04-27
JP2504426B2 JP2504426B2 (en) 1996-06-05

Family

ID=17091612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242610A Expired - Fee Related JP2504426B2 (en) 1986-10-13 1986-10-13 Method and apparatus for forming cBN thin film

Country Status (1)

Country Link
JP (1) JP2504426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231973A (en) * 2007-03-19 2008-10-02 Nikki Co Ltd Carburetor with acceleration pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107288A (en) * 1975-03-18 1976-09-22 Matsushita Electric Ind Co Ltd Kagobutsuhakumakuno seizohoho
JPS5375179A (en) * 1976-12-15 1978-07-04 Tsuneo Nishida Ion plating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107288A (en) * 1975-03-18 1976-09-22 Matsushita Electric Ind Co Ltd Kagobutsuhakumakuno seizohoho
JPS5375179A (en) * 1976-12-15 1978-07-04 Tsuneo Nishida Ion plating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231973A (en) * 2007-03-19 2008-10-02 Nikki Co Ltd Carburetor with acceleration pump

Also Published As

Publication number Publication date
JP2504426B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US4676194A (en) Apparatus for thin film formation
US7294852B2 (en) Transparent conductive films and processes for forming them
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
JPWO2009142223A1 (en) Sputtering target, thin film manufacturing method and display device
JPS6396265A (en) Method and device for forming thin insulating film
JPH0568541B2 (en)
JPS63286570A (en) Thin film formation device
JPH04318162A (en) Formation of cubic boron nitride film and forming device therefor
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JPS63238270A (en) Production of thin compound film
JPS61227163A (en) Production of high hardness boron nitride film
JP3330159B2 (en) Dynamic mixing device
KR20020053010A (en) Method and apparatus for forming thin film
JPH0645871B2 (en) Reactive ion plating method
JPS6247472A (en) Formation of cubic boron nitride film
JPH0590253A (en) Insulating film forming method and device
Lopatin et al. Ion-beam chemical-thermal treatment of aluminum
JP3174313B2 (en) Thin film forming equipment
JP2955667B2 (en) Method and apparatus for preparing a mixture thin film
JPH01255663A (en) Method and device for vacuum deposition
JP2004011007A (en) Film deposition method
JPH03219077A (en) Thin film forming device
JPH06145979A (en) Film forming device
JPH1072285A (en) Equipment for forming diamond-like carbon thin film and forming method therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees