JPS639573B2 - - Google Patents

Info

Publication number
JPS639573B2
JPS639573B2 JP13477382A JP13477382A JPS639573B2 JP S639573 B2 JPS639573 B2 JP S639573B2 JP 13477382 A JP13477382 A JP 13477382A JP 13477382 A JP13477382 A JP 13477382A JP S639573 B2 JPS639573 B2 JP S639573B2
Authority
JP
Japan
Prior art keywords
phase
brass
dezincification corrosion
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13477382A
Other languages
Japanese (ja)
Other versions
JPS5925938A (en
Inventor
Hideo Oguchi
Masao Sasuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTO KINZOKU KOGYO KK
Original Assignee
NITSUTO KINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTO KINZOKU KOGYO KK filed Critical NITSUTO KINZOKU KOGYO KK
Priority to JP13477382A priority Critical patent/JPS5925938A/en
Publication of JPS5925938A publication Critical patent/JPS5925938A/en
Publication of JPS639573B2 publication Critical patent/JPS639573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、黄銅特有の優れた性質を有するとと
もに耐脱亜鉛腐食性と快削性とを兼ね備えた特殊
な黄銅並びにその製造法に関する。 従来、銅−亜鉛合金にPbを添加した黄銅は、
鋳造及び加工性に優れ、バルブ部品などに使われ
ているが、腐食性の水質環境あるいは温水の下で
使用すると脱亜鉛腐食を起す。 黄銅の中でα黄銅はAs、P、Sbなどを添加す
ることによつて脱亜鉛腐食を防止することができ
る。ところがα黄銅は理論上67.5%以上のCuを必
要とする。又、α黄銅はα+β黄銅に比較して溶
解温度、熱間押出加工温度が高く、したがつてエ
ネルギーコストが高い。さらにα黄銅は、機械加
工時に切屑が長くつながる傾向があり、自動盤加
工に適さない。 一方、α+β黄銅はAs、P、Sbを添加しても
脱亜鉛腐食性が十分でない。ある一定量(54.5〜
67.5%)のCuを含むα+β黄銅は熱間加工がし易
いとともに、特に61〜67.5%のCuを含むものは適
当な熱処理を施すことにより、α黄銅に変態させ
ることが可能である。したがつて、このα+β黄
銅にAs、P、Sb等を添加し、これをα化するこ
とにより、熱間加工を容易に行ない得て、しかも
脱亜鉛腐食を防止することが可能となる。しか
し、この黄銅は切削性が劣り、さらにα化するた
めの熱処理に長時間を要する。 本発明はPb入り黄銅における上記従来の欠点
を改善せんとするもので、熱間加工が容易でしか
も耐脱亜鉛腐食性と快削性を有する特殊黄銅を比
較的広いCuの組成範囲と、短い熱処理時間によ
つて提供せんとするものである。 すなわち、その第一発明は、Cu60.0〜63.0%、
Pb2.0〜3.7%、P0.02〜0.06%、残部Znよりなり、
熱処理により黄銅組織がα+β相よりなり、かつ
β相がα相で分断されていることを特徴とする耐
脱亜鉛腐食性快削黄銅である。 CuはZnよりも高価なため、その使用量を60.0
〜63.0%の範囲に押え、その他の添加元素の効果
と熱処理によつて、耐脱亜鉛腐食性および快削性
をもたせるものである。中でも、61.0〜62.0%の
範囲が最も好ましい。 Pbは被削性向上を計るために添加する。2.0%
未満では十分な被削性が得られず、反対に添加量
が多過ぎると機械的性質の低下、特に脆くなるた
めに上限は3.7%とする。中でも2.8〜3.1%が特に
好適である。 Pは耐脱亜鉛腐食性を向上させるために添加す
る。尉脱亜鉛腐食性のために添加する元素として
は他にAs、Sb、Sn等が考えられるが、毒性があ
ることや加工性、機械的性質を損なわない範囲で
の微量添加の必要性などから、本発明ではPを選
択した。Pは0.02〜0.06%の添加で、十分な耐脱
亜鉛腐食効果を示す。Pはこのような微量の添加
で耐脱亜鉛腐食性を示し、又、それ以外に結晶粒
度を小さくする効果もある。0.02%未満ではこれ
らの効果を奏しない。ただ、Pの一部は堅くて脆
いCu3P相として合金中に存在するために、多量
に添加することは好ましくない。機械的性質に大
きな変化のない範囲として、0.06%までである。
中でも0.03〜0.05%の範囲が特に好適である。 本発明の合金は不純物が極力少ない方が良い
が、製造工程上Fe、Snは不可避であるので、い
ずれも0.1%以下に抑えるのが好ましい。特にFe、
Snを含めた不可避的不純物は合計で0.2%を越え
ないことが好ましい。 本発明の合金は熱処理によつて黄銅組織のβ相
がα相で分断された状態を示す。これを図面によ
つて説明すると、第1図は本発明合金の押出材の
組織状態を示す図で、図中ハツチングで示した1
のところがβ相で、その他がα相2である。この
β相1は大部分が連続相として存在している。第
2図は本発明合金の組織を示す図で、第1図にお
ける押出材を特殊な条件により焼鈍加工したもの
であるが、連続したβ相1はα相2によつて分断
された状態となつている。 かかる第一発明の合金を製造するのに適した方
法が第二発明である。すなわち、第二発明は、
Cu60.0〜63.0%、Pb2.0〜3.7%、P0.02〜0.06%、
残部Znよりなる合金鋳塊を押出、または押出・
抽伸後350〜550℃で好ましくは1〜6時間焼鈍
し、黄銅組織がα+β相よりなり、かつβ相がα
相で分断されているようにすることを特徴とする
耐脱亜鉛腐食性快削黄銅の製造法である。 上記合金鋳塊はCuの含有量が低いので押出加
工が容易であり、押出後においてはα+β相より
なり、かつβ相が連続した状態で存在する。しか
し上記特定条件の焼鈍により、黄銅組織中のβ相
の一部が状態図に示す原理に従つてα相に変化す
るため組織中のα相の比率が増大し、その結果残
留したβ相はα相によつて分断された形となり、
α相に包み込まれ、脱亜鉛腐食が進行し難くなる
ので、脱亜鉛腐食効果が向上する。焼鈍温度が
350℃未満であるとβ相の十分な分断効果が得ら
れず、又、温度が550℃を越えるとβ相がふえて
くるので耐食性が劣るようになる。 以下、実施例並びに比較例を挙げて本発明をさ
らに詳細に説明する。 表1に合金成分、熱処理条件および試験結果を
示す。
The present invention relates to a special brass that has excellent properties peculiar to brass and also has dezincification corrosion resistance and free machinability, and a method for producing the same. Conventionally, brass is made by adding Pb to a copper-zinc alloy.
It has excellent casting and processability and is used for valve parts, etc., but dezincification corrosion occurs when used in corrosive water environments or under hot water. Among brasses, alpha brass can be prevented from dezincification corrosion by adding As, P, Sb, etc. However, α-brass theoretically requires 67.5% or more of Cu. Furthermore, alpha brass has a higher melting temperature and hot extrusion temperature than alpha+beta brass, and therefore has higher energy costs. Furthermore, α-brass has a tendency for chips to remain long during machining, making it unsuitable for automatic lathe processing. On the other hand, α+β brass does not have sufficient dezincification corrosion resistance even if As, P, and Sb are added. A certain amount (54.5 ~
α+β brass containing 67.5% Cu is easy to hot-work, and especially those containing 61 to 67.5% Cu can be transformed into α brass by applying appropriate heat treatment. Therefore, by adding As, P, Sb, etc. to this α+β brass to alphanize it, hot working can be easily performed and dezincification corrosion can be prevented. However, this brass has poor machinability and requires a long time to undergo heat treatment to become alpha. The present invention aims to improve the above-mentioned conventional drawbacks of Pb-containing brass, and aims to create a special brass that is easy to hot work, has dezincification corrosion resistance, and free machinability. This is determined by the heat treatment time. That is, the first invention is Cu60.0~63.0%,
Consists of Pb2.0~3.7%, P0.02~0.06%, balance Zn,
This is dezincification corrosion-resistant free-cutting brass characterized by a brass structure that is made up of α+β phases due to heat treatment, and the β phase is separated by the α phase. Since Cu is more expensive than Zn, its usage is reduced to 60.0%.
~63.0%, and the effects of other additive elements and heat treatment provide dezincification corrosion resistance and free machinability. Among these, a range of 61.0 to 62.0% is most preferable. Pb is added to improve machinability. 2.0%
If the amount is less than 3.7%, sufficient machinability will not be obtained, and if it is added too much, the mechanical properties will deteriorate, especially brittleness, so the upper limit is set at 3.7%. Among these, 2.8 to 3.1% is particularly suitable. P is added to improve dezincification corrosion resistance. As, Sb, Sn, etc. may be added as other elements to improve dezincification and corrosion resistance, but due to their toxicity and the need to add trace amounts within a range that does not impair processability or mechanical properties, etc. , P is selected in the present invention. When P is added in an amount of 0.02 to 0.06%, it exhibits sufficient dezincification corrosion resistance. When added in such a small amount, P exhibits dezincification corrosion resistance and also has the effect of reducing the grain size. If it is less than 0.02%, these effects will not be exhibited. However, since a part of P exists in the alloy as a hard and brittle Cu 3 P phase, it is not preferable to add a large amount. The content is up to 0.06% without major changes in mechanical properties.
Among these, a range of 0.03 to 0.05% is particularly suitable. It is better for the alloy of the present invention to have as few impurities as possible, but since Fe and Sn are unavoidable in the manufacturing process, it is preferable to suppress both to 0.1% or less. Especially Fe,
It is preferable that the total amount of unavoidable impurities including Sn does not exceed 0.2%. The alloy of the present invention exhibits a state in which the β phase of the brass structure is separated by the α phase by heat treatment. To explain this with the help of drawings, Fig. 1 shows the structure of an extruded material made of the alloy of the present invention.
However, some are in the β phase, and the others are in the α phase 2. Most of this β phase 1 exists as a continuous phase. Figure 2 is a diagram showing the structure of the alloy of the present invention, which is obtained by annealing the extruded material in Figure 1 under special conditions, where the continuous β phase 1 is separated by the α phase 2. It's summery. The second invention is a method suitable for producing the alloy of the first invention. That is, the second invention is
Cu60.0~63.0%, Pb2.0~3.7%, P0.02~0.06%,
Extrusion or extrusion of an alloy ingot consisting of the remainder Zn
After drawing, it is annealed at 350 to 550°C for preferably 1 to 6 hours, so that the brass structure consists of α + β phase, and the β phase is α
This is a method for producing free-cutting brass that is resistant to dezincification and corrosion, and is characterized in that the brass is divided into phases. The above-mentioned alloy ingot has a low Cu content, so it is easy to extrude, and after extrusion, it consists of α+β phases, and the β phase exists in a continuous state. However, due to annealing under the above specific conditions, part of the β phase in the brass structure changes to the α phase according to the principle shown in the phase diagram, so the ratio of the α phase in the structure increases, and as a result, the remaining β phase It becomes a shape divided by the α phase,
It is enveloped in the α phase, making it difficult for dezincification corrosion to proceed, thereby improving the dezincification corrosion effect. The annealing temperature is
If the temperature is less than 350°C, a sufficient effect of dividing the β phase cannot be obtained, and if the temperature exceeds 550°C, the β phase increases, resulting in poor corrosion resistance. Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples. Table 1 shows the alloy components, heat treatment conditions, and test results.

【表】【table】

【表】 表1において、合金材料No.1〜No.7は250mm径
のビレツトから20mm径の棒に640℃で押出され、
断面減少率14%で抽伸後焼鈍し、さらに14%抽伸
し、矯正仕上加工された。No.8は公知のJIS C
3604合金、No.10はJIS C 2700合金に相当するも
ので、いずれも公知の方法で押出、引抜、矯正仕
上加工された。No.9はJIS C 3771合金で押出の
ままのものである。 焼鈍は電気炉を用いて所定温度に所定時間保持
後、徐冷した。 組織は焼鈍後縦断面を顕微鏡で観察し、β相の
状態が連続状であるか分断状であるかを観察し
た。表1においてβは連続状態、β′は分断状態に
あるものを示す。 脱亜鉛試験は、各試験片を75±3℃のCuCl2
1%溶液に150時間浸漬し、その脱亜鉛深さを測
定した。脱亜鉛深さが200μ以下ならば、実用上
脱亜鉛腐食の問題を生じないので合格(〇印)と
し、200μを越えるものを不合格(×印)とした。 切削試験は一定の条件下で切削を行ない、切粉
の状態が細かく分断して切削性が優れていたもの
を合格(〇印)とし、切粉が連続したものを不合
格(×印)とした。 表1中、No.1はCu量が多くα組織であるため
切削性が劣る。No.2はPの含有量が少なく耐脱亜
鉛腐食性が十分でない。No.3は焼鈍温度が低く、
α+β組織のβ相が連続状態となるため耐脱亜鉛
腐食性が劣る。No.6は焼鈍温度が高くβ相が多く
なるため耐脱亜鉛腐食効果が小さい。No.7はCu
量が少なくβ相が多いので耐脱亜鉛腐食性が劣
る。 公知合金No.8〜No.10はいずれもα+β組織であ
り脱亜鉛腐食性がよくない。 これに対して本発明の合金No.4、No.5は、β相
がα相で分断された組織を有し、耐脱亜鉛腐食
性、切削性ともに優れている。
[Table] In Table 1, alloy materials No. 1 to No. 7 are extruded from a 250 mm diameter billet into a 20 mm diameter rod at 640°C.
After drawing with a cross-section reduction rate of 14%, it was annealed, further drawn by 14%, and straightened and finished. No.8 is the well-known JIS C
3604 alloy, No. 10, corresponds to JIS C 2700 alloy, and all were extruded, drawn, and straightened by known methods. No. 9 is a JIS C 3771 alloy as extruded. Annealing was performed by holding the sample at a predetermined temperature for a predetermined time using an electric furnace, followed by slow cooling. After annealing, the structure was examined using a microscope in a longitudinal section to determine whether the β phase was continuous or segmented. In Table 1, β indicates a continuous state and β' indicates a divided state. In the dezincing test, each specimen was immersed in a 1% CuCl 2 solution at 75±3° C. for 150 hours, and the dezincing depth was measured. If the dezincing depth was 200μ or less, it was considered acceptable (marked with an ○) since no problem of dezincification corrosion would occur in practice, and if it exceeded 200μ, it was marked as a failure (marked with an x). In the cutting test, cutting is performed under certain conditions, and if the chips are finely divided and have excellent machinability, it is considered a pass (○ mark), and if the chips are continuous, it is considered a fail (x mark). did. In Table 1, No. 1 has a large amount of Cu and has an α structure, so its machinability is poor. No. 2 has a low P content and does not have sufficient dezincification corrosion resistance. No. 3 has a low annealing temperature,
Since the β phase of the α+β structure is in a continuous state, dezincification corrosion resistance is poor. No. 6 has a high annealing temperature and a large amount of β phase, so the dezincing corrosion resistance effect is small. No.7 is Cu
Since the amount is small and the β phase is large, dezincification corrosion resistance is poor. All of the known alloys No. 8 to No. 10 have an α+β structure and have poor dezincification corrosion properties. On the other hand, alloys No. 4 and No. 5 of the present invention have a structure in which the β phase is separated by the α phase, and are excellent in both dezincification corrosion resistance and machinability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明組成合金の押出後の組織の状態
を示す図、第2図は同熱処理後の組織の状態を示
す図である。 1……β相、2……α相。
FIG. 1 is a diagram showing the state of the structure of the alloy composition of the present invention after extrusion, and FIG. 2 is a diagram showing the state of the structure after heat treatment. 1...β phase, 2...α phase.

Claims (1)

【特許請求の範囲】 1 Cu60.0〜63.0%、Pb2.0〜3.7%、P0.02〜0.06
%、残部Znよりなり、熱処理により黄銅組織が
α+β相よりなり、かつβ相がα相で分断されて
いることを特徴とする耐脱亜鉛腐食性快削黄銅。 2 Cu60.0〜63.0%、Pb2.0〜3.7%、P0.02〜0.06
%、残部Znよりなる合金鋳塊を押出、または押
出・抽伸後350〜550℃で焼鈍し、黄銅組織がα+
β相よりなり、かつβ相がα相で分断されている
ようにすることを特徴とする耐脱亜鉛腐食性快削
黄銅の製造法。
[Claims] 1 Cu60.0-63.0%, Pb2.0-3.7%, P0.02-0.06
%, with the remainder being Zn, and is characterized by having a brass structure made up of α+β phases by heat treatment, and in which the β phase is separated by the α phase. 2 Cu60.0~63.0%, Pb2.0~3.7%, P0.02~0.06
%, the balance is Zn, and the alloy ingot is extruded or annealed at 350 to 550℃ after extrusion and drawing, and the brass structure becomes α+.
A method for producing dezincification corrosion-resistant free-cutting brass comprising a β phase, the β phase being separated by an α phase.
JP13477382A 1982-08-03 1982-08-03 Free-cutting brass having resistance to dezincification corrosion and its production Granted JPS5925938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13477382A JPS5925938A (en) 1982-08-03 1982-08-03 Free-cutting brass having resistance to dezincification corrosion and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13477382A JPS5925938A (en) 1982-08-03 1982-08-03 Free-cutting brass having resistance to dezincification corrosion and its production

Publications (2)

Publication Number Publication Date
JPS5925938A JPS5925938A (en) 1984-02-10
JPS639573B2 true JPS639573B2 (en) 1988-02-29

Family

ID=15136223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13477382A Granted JPS5925938A (en) 1982-08-03 1982-08-03 Free-cutting brass having resistance to dezincification corrosion and its production

Country Status (1)

Country Link
JP (1) JPS5925938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022039A1 (en) * 1997-10-24 1999-05-06 Toto, Ltd. Brass material, brass tube and their production method
WO1999024628A1 (en) * 1997-11-11 1999-05-20 Toto Ltd. Metallic material, brass, and process for producing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505611B2 (en) * 1990-03-29 1996-06-12 住友金属鉱山株式会社 Free cutting copper alloy
TW306935B (en) * 1994-01-17 1997-06-01 Chitsu Kk
DE19722827A1 (en) * 1997-05-30 1998-12-03 Diehl Stiftung & Co Cold formable lead-containing brass for sanitary piping
JP2002069551A (en) * 2000-09-04 2002-03-08 Sumitomo Light Metal Ind Ltd Free cutting copper alloy
CN105821357B (en) * 2016-05-17 2018-04-10 安徽鑫科铜业有限公司 A kind of production technology of lead and yellow-collation copper bar material
CN114318190B (en) * 2021-12-16 2023-01-10 河海大学 Processing method for improving dezincification corrosion resistance of two-phase brass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022039A1 (en) * 1997-10-24 1999-05-06 Toto, Ltd. Brass material, brass tube and their production method
WO1999024628A1 (en) * 1997-11-11 1999-05-20 Toto Ltd. Metallic material, brass, and process for producing the same

Also Published As

Publication number Publication date
JPS5925938A (en) 1984-02-10

Similar Documents

Publication Publication Date Title
EP0688367B1 (en) Machinable copper alloys having reduced lead content
US4337089A (en) Copper-nickel-tin alloys for lead conductor materials for integrated circuits and a method for producing the same
EP0175183B1 (en) Copper alloys having an improved combination of strength and conductivity
JP3903297B2 (en) Dezincing resistant copper base alloy
JPH04231431A (en) Mechanically processable copper-containing alloy for forging
US3923558A (en) Copper base alloy
JPS5853057B2 (en) Highly conductive copper-based alloy
JPS58199835A (en) Copper alloy for electric or electronic apparatus
US4417929A (en) Special brass with dezincification corrosion resistance
JPS639573B2 (en)
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
US3703367A (en) Copper-zinc alloys
JPH0557348B2 (en)
US4233068A (en) Modified brass alloys with improved stress relaxation resistance
EP0388973B1 (en) Silver alloy foil for interconnector of solar cell
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
JPH0768595B2 (en) Corrosion resistant copper base alloy material
US3880679A (en) Method of forming zinc-aluminum alloys with good machinability
US3366477A (en) Copper base alloys
US4715910A (en) Low cost connector alloy
JP2841270B2 (en) Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy
US4205984A (en) Modified brass alloys with improved stress relaxation resistance
US3798028A (en) Zinc-aluminum alloys with good machinability
US4233069A (en) Modified brass alloys with improved stress relaxation resistance
JP2006322059A (en) Lead-free free-cutting brass alloy and its manufacturing method