JPS639505B2 - - Google Patents

Info

Publication number
JPS639505B2
JPS639505B2 JP56084607A JP8460781A JPS639505B2 JP S639505 B2 JPS639505 B2 JP S639505B2 JP 56084607 A JP56084607 A JP 56084607A JP 8460781 A JP8460781 A JP 8460781A JP S639505 B2 JPS639505 B2 JP S639505B2
Authority
JP
Japan
Prior art keywords
group
compound
aromatic
graphite
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56084607A
Other languages
Japanese (ja)
Other versions
JPS57200351A (en
Inventor
Shinsuke Fukuoka
Masazumi Chono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56084607A priority Critical patent/JPS57200351A/en
Publication of JPS57200351A publication Critical patent/JPS57200351A/en
Publication of JPS639505B2 publication Critical patent/JPS639505B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族ウレタンの新規な製造方法に
関するものである。 芳香族ウレタン類は、カルバメート系農薬とし
て重要な物質であり、最近ではホスゲンを使用し
ない芳香族イソシアナート類の製造用原料として
着目され、大巾な需要が期待されている物質であ
る。 このような芳香族ウレタンの製造に関しては、
いくつかの提案があるが、代表的な方法として次
の2つの製造法が知られている。その1つは、芳
香族ニトロ化合物をアルコールの存在下に、一酸
化炭素を用いて還元的にウレタン化する方法であ
り、例えばニトロベンゼンの場合には、次の反応
式() によつて、芳香族ウレタンが得られる。 この式からわかるように、ニトロベンゼン1モ
ルについて一酸化炭素は3モル必要であり、その
うちの2モルは目的物の形成に直接関与しない無
価値な炭酸ガスとなつて系外に消え、僅か1モル
のみが実質的に有効に利用されるにすぎない。し
かも、この反応を連続的に行なうには、導入する
一酸化炭素と生成炭酸ガスとを分離しなければな
らないので、その処理が厄介であつて、工業的に
著しく不利である。 また、他の方法は、芳香族アミノ化合物を酸素
や有機ニトロ化合物などの酸化剤の存在下に、一
酸化炭素及びアルコールと反応させ、酸化的にウ
レタン化する方法である。(例えば、特開昭54−
24854号公報、特開昭54−84550号公報、特開昭55
−7227号公報、特開昭55−120551号公報、特開昭
55−124750号公報。)この方法は、前者の方法に
比べて一酸化炭素が有効に利用される点で好まし
いが、酸化剤として酸素を用いる場合は、一酸化
炭素の爆発限界が広いので、工業的に採用するに
は危険性が大きく実施困難である。また、有機ニ
トロ化合物を酸化剤として用いる場合には、次の
反応式() 2Ar(NH2)m+Ar′(NO2n+3m・CO+3m・ROH→2Ar(
NHCOOR)n+Ar′(NHCOOR)n+2m・H2O
() (式中、Ar・Ar′は芳香族基、mはアミノ化合物
及びニトロ化合物1分子中のアミノ基又はニトロ
基の数、Rは有機基を表わす。) の反応によりウレタンが形成され、特にニトロ基
対アミノ基の当量比が1対2のときに限つて一酸
化炭素が全て有効に利用されるが、この割合より
もニトロ基の量が多い場合、前記式()で表わ
されるようなニトロ化合物の還元的ウレタン化が
起り、一酸化炭素の有効利用率は低下する。 また、上記のウレタン化反応においては、可及
的に純度の高い一酸化炭素を用いることが必要で
あり、工業的に安価に得られる一酸化炭素と水素
が混在する合成ガスを利用するには、水素その他
の不純物を分離精製しなければならず、そのため
の実質的不利益は極めて大きい。 本発明者らは、上記のような従来提案された芳
香族ウレタンの製造法が工業的に満足されるもの
でないことにかんがみ、工業的に有利かつ容易に
製造する方法について種々検討し、白金族元素を
含む触媒の存在下において、芳香族アミノ化合物
及び芳香族ニトロ化合物を有機ヒドロキシル化合
物、水素及び一酸化炭素と反応させることによ
り、前記のような欠点がなく、しかも工業的に有
利に芳香族ウレタンを製造することを見出し、先
に提案した。(特開昭57−185253号公報。)しか
し、その方法では、助触媒として塩化銅、塩化
鉄、オキシ塩化鉄、塩化バナジウムなどの金属ハ
ロゲン化物が使用され好結果は得られているが、
これらの金属ハロゲン化物は金属材料に対する腐
食性が強く、反応容器、配管やバルブなどの金属
材料を腐食するため、反応系の装置材料に耐食性
の高価な特殊金属材料を使用しなければならない
欠点があり、さらに、反応系中に溶解したこれら
の金属ハロゲン化物を高沸点の芳香族ウレタン生
成物から分離、回収する必要があつて、そのため
の繁雑な操作と多大な費用を要することも分つ
た。 本発明者らは、このような特に助触媒の欠陥を
克服する研究を重ねた結果、これらの金属ハロゲ
ン化物をグラフアイトとの層間化合物の形態で助
触媒に使用するとき、前記欠点が好都合に解消さ
れ、極めて優れた触媒系が提供されることを見出
した。 本発明は(a)白金族金属を含む触媒、及び(b)銅
族、亜鉛族、窒素族、バナジウム族、クロム族、
マンガン族及び鉄族に属する金属元素のハロゲン
化物から選ばれた金属ハロゲン化物とグラフアイ
トとの層間化合物の少なくとも1種から成る助触
媒の存在下に、芳香族アミノ化合物及び芳香族ニ
トロ化合物を有機ヒドロキシル化合物、水素及び
一酸化炭素と反応させることを特徴とするウレタ
ンの製造方法を要旨とするものである。 本発明の方法に用いられる金属ハロゲン化物と
グラフアイトとの層間化合物とは、層状構造をし
ているグラフアイトの層間に金属ハロゲン化物を
侵入させたものであつてラメラ化合物(lamellar
compounds)またはインターカレーシヨン化合
物(intercalation compounds)とも呼ばれてい
るものである。これらの層間化合物においては、
金属ハロゲン化物はグラフアイトの層間に主とし
て単分子層として存在しており、さらにグラフア
イトとの間に電子の授受を行なつていると考えら
れており、もとの金属ハロゲン化物とは物理的・
化学的性質が異なつていることが知られている。
従つて担体としてのグラフアイトに金属ハロゲン
化物を吸着担持させたものとは本質的に異なる化
合物である。 このような層間化合物は、R.C.Croft[オースト
ラリアン・ジヤーナル・オブ・ケミストリー
(Australian Journal of Chemistry)、第9巻、
第184ページ、1956年]やE.Stumpp[マテリアル
ズ・サイエンス・アンド・エンジニアリング
(Materials Science and Engineering)、第31
巻、第53ページ、1977年]の方法によつて、例え
ば無水の金属ハロゲン化物とグラフアイトとの混
合物を封管中でそのまま、あるいはフツ素、塩素
または臭素で満たした封管中で加熱することによ
つて容易に製造することができる。 グラフアイト中における金属ハロゲン化物の量
は通常1〜70重量%である。 また、ある種の金属ハロゲン化物、例えば、
CuCl2、SbF5、CrCl3、FeCl3、CoCl2、NiCl2
どとグラフアイトとの層間化合物は、Alfa
Products社(Thiokol/Ventron Division)か
ら「Graphimet(登録商標名)」として市販されて
いる。 本発明において用いられる助触媒は、銅族、亜
鉛族、窒素族、バナジウム族、クロム族、マンガ
ン族及び鉄族に属する金属元素のハロゲン化物か
ら選ばれた金属ハロゲン化物とグラフアイトとの
層間化合物である。このような金属元素には、
Cu、Ag、Au、Zn、Cd、Hg、Sb、Bi、V、
Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、
Co、Niがあり、またこのような金属元素のハロ
ゲン化物としては、例えばCuCl2、AuCl3
ZnCl2、CdCl2、HgCl2、SbCl5、VCl3、NbCl5
TaCl5、CrCl3、CrO2Cl2、MoCl5、WCl6
MnCl2、ReCl4、FeCl2、FeCl3、CoCl2、NiCl2
び相当する臭化物などがあげられる。これらの中
でCuCl2、FeCl2、FeCl3、CoCl2が好ましく用い
られ、なかでもCuCl2、FeCl3が特に好ましい金
属ハロゲン化物である。 このような金属ハロゲン化物とグラフアイトと
の層間化合物は、助触媒として1種または2種以
上組合わせて用いられる。これらの助触媒の使用
量は特に制限はないが、主触媒金属1g原子に対
し、通常金属原子として0.01〜1000g原子の範囲
で好都合に用いられる。 本発明の第一の特徴はこのような固体状のグラ
フアイトの層間化合物を助触媒として用いること
にあり、また反応としての一つの大きな特徴は、
芳香族アミノ化合物と芳香族ニトロ化合物との混
合物をウレタン化する方法において、水素と一酸
化炭素を用いることにある。この両ガス成分は工
業的に安価に得られる合成ガス中に混合ガスとし
て含有され、これをそのまま使用することができ
るので工業的に極めて有利である。 さらに本発明の他の特徴は、水素を用いない場
合に比べて、芳香族アミノ化合物と芳香族ニトロ
化合物との比を自由に選択できることである。す
なわち、水素を用いない場合はニトロ基のアミノ
基に対する当量比は1/2付近に限定されるが、
本発明の方法ではこの比が1/2以上であればど
のような値であつても効果的に芳香族ウレタンを
得ることができるので操業自由度が大きい点で優
れ、また芳香族アミノ化合物と芳香族ニトロ化合
物の混合物を原料として用いる芳香族ウレタンの
製造法においては、水素を用いることにより芳香
族アミノ化合物より安価に得られる芳香族ニトロ
化合物をより多く使用できるので本発明の方法は
原料的にも有利である。 また、ニトロ基のアミノ基に対する当量比が
1/2より大きい芳香族ニトロ化合物と芳香族ア
ミノ化合物の混合物を原料とする場合、水素を用
いず一酸化炭素のみで反応を行なえば一部還元的
ウレタン化が起り、炭酸ガスが副生して一酸化炭
素が有効に利用されないが、水素と一酸化炭素の
混合ガスを用いる本発明の方法によれば炭酸ガス
の生成が少く一酸化炭素が有効に利用できる。 本発明の反応は、水素を用いない反応式()
の場合と異なり、下記反応式()に従つて進行
する。 a・Ar(NH2x+b・Ar′(NO2y+(2by−ax)・H
2+(ax+by)・CO+(ax+by)・ROH→ a・Ar(NHCOOR)x+b・Ar′(NHCOOR)y+2by・H
2O() (ここで、Ar及びAr′は芳香族基を、xは芳香族
アミノ化合物1モル中のアミノ基の数を、yは芳
香族ニトロ化合物1モル中のニトロ基の数を表わ
す。またa及びbは反応に用いた芳香族アミノ化
合物及び芳香族ニトロ化合物のそれぞれのモル量
に比例した数である。) もちろんニトロ基のアミノ基に対する当量比が
1/2以下であつても芳香族アミノ化合物が一部
残存するが本反応は円滑に進行する。 本発明の方法において原料として用いられる芳
香族アミノ化合物とは、アミノ基またはモノ置換
アミノ基が芳香環に直接結合したものであればど
のようなものでもよいが、特に芳香族第一級アミ
ンが好ましい。このような芳香族第一級アミンと
しては、アニリン、ジアミノベンゼン(各異性
体)、トリアミノベンゼン(各異性体)、テトラア
ミノベンゼン(各異性体)、アミノピリジン(各
異性体)、ジアミノピリジン(各異性体)、トリア
ミノピリジン(各異性体)、アミノナフタレン
(各異性体)、ジアミノナフタレン(各異性体)、
トリアミノナフタレン(各異性体)、テトラアミ
ノナフタレン(各異性体)及び次の一般式()
で表わされるジフエニル化合物のモノアミン、ジ
アミン、トリアミン、テトラアミンの各異性体類
があげられる。 〔Xはフエニル基の単なる結合、又は−O−、−
S−、−SO2−、−CO−、−CONH−、−COO−、
−C(R1)(R2)−、及び−N(R1)−(ここにR1
R2はH、脂肪族基及び脂環族基を表わす)から
選ばれた2価の基を表わす〕 またさらに、これらの芳香族第一級アミンにお
いて、芳香環に結合した1個又はそれ以上の水素
が他の置換基、例えばハロゲン原子、ニトロ基、
シアノ基、アルキル基、脂環族基、芳香族基、ア
ラルキル基、アルコキシ基、スルホキシド基、ス
ルホン基、カルボニル基、エステル基、アミド基
などで置換されていてもよい。 これらの芳香族アミノ化合物のなかで、特に好
ましいのはアニリン、2,4−及び2,6−ジア
ミノトルエン、クロルアニリン(各異性体)、ジ
クロルアニリン(各異性体)、4,4′−及び2,
4′−ジアミノジフエニルメタン、1,5−ジアミ
ノナフタレンである。 また、芳香族ニトロ化合物としてはニトロ基が
芳香環に直接接合したものであればどのようなも
のでもよい。このような芳香族ニトロ化合物とし
ては、例えばニトロベンゼン、ジニトロベンゼン
(各異性体)、ニトロピリジン(各異性体)、ジニ
トロピリジン(各異性体)、ニトロナフタレン
(各異性体)、ジニトロナフタレン(各異性体)及
び前記一般式()で表わされているジフエニル
化合物のモノニトロ化合物、ジニトロ化合物の各
異性体類があげられる。 またさらに、これらの芳香族ニトロ化合物にお
いて、芳香環に結合した1個またはそれ以上の水
素が他の置換基、例えばハロゲン原子、アミノ
基、シアノ基、アルキル基、脂環族基、芳香族
基、アラルキル基、アルコキシ基、スルホキシド
基、スルホン基、カルボニル基、エステル基、ア
ミド基などで置換されていてもよい。 これらの芳香族ニトロ化合物のなかで、特に好
ましいのはニトロベンゼン、ニトロトルエン(各
異性体)、ニトロアニリン(各異性体)、2,4−
及び2,6−ジニトロトルエン、ジクロルニトロ
ベンゼン(各異性体)、4,4′−及び2,4′−ジ
ニトロジフエニルメタン、1,5−ジニトロナフ
タレンである。 本発明の方法においては芳香族ニトロ化合物は
反応試剤及び酸化剤として作用し、従つて使用す
る芳香族ニトロ化合物と芳香族アミノ化合物との
両基以外の構造が異なつている場合は、少なくと
も2種類の芳香族ウレタンが得られることにな
る。1種類のみの芳香族ウレタンを製造する場合
は、芳香族ニトロ化合物は芳香族アミノ化合物と
構造的に同じものを用いればよい。 本発明に用いられる有機ヒドロキシル化合物と
は一価又は多価のアルコール類あるいは一価又は
多価のフエノール類を表わす。このようなアルコ
ール類としては、炭素数1ないし20の直鎖又は分
枝鎖の一価又は多価アルカノール又はアルケノー
ルあるいは一価又は多価のシクロアルカノール、
シクロアルケノールまたはアラルキルアルコール
がある。さらにこれらのアルコール類は不活性な
他の置換基、例えばハロゲン原子、シアノ基、ア
ルコキシ基、スルホキシド基、スルホン基、カル
ボニル基、エステル基、アミド基などを含んでい
てもよい。 このようなアルコール類としては例えば、メタ
ノール、エタノール、プロパノール(各異性体)、
ブタノール(各異性体)、ペンタノール(各異性
体)、ヘキサノール(各異性体)、ヘプタノール
(各異性体)、オクタノール(各異性体)、ノニル
アルコール(各異性体)、デシルアルコール(各
異性体)、ウンデシルアルコール(各異性体)、ラ
ウリルアルコール(各異性体)、トリデシルアル
コール(各異性体)、テトラデシルアルコール
(各異性体)、ペンタデシルアルコール(各異性
体)などの脂肪族アルコール類;シクロヘキサノ
ール、シクロヘプタノールなどのシクロアルカノ
ール類;エチレングリコールモノメチルエーテ
ル、エチレングリコールモノエチルエーテル、ジ
エチレングリコールモノメチルエーテル、ジエチ
レングリコールモノエチルエーテル、トリエチレ
ングリコールモノメチルエーテル、トリエチレン
グリコールモノエチルエーテル、プロピレングリ
コールモノメチルエーテル、プロピレングリコー
ルモノエチルエーテルなどのアルキレングリコー
ルモノアルキルエーテル類;エチレングリコー
ル、プロピレングリコール、ジエチレングリコー
ル、ジプロピレングリコール、グリセリン、ヘキ
サントリオール、トリメチロールプロパンなどの
多価アルコール類;ベンジルアルコールなどのよ
うなアラルキルアルコール類などが用いられる。 またフエノール類としては例えば、フエノー
ル、各種アルキルフエノール、各種アルコキシフ
エノール、各種ハロゲン化フエノール、ジヒドロ
キシベンゼン、4,4′−ジヒドロキシ−ジフエニ
ルメタン、ビスフエノール−A、ヒドロキシナフ
タレンなどが用いられる。 本発明の方法に使用される触媒は白金族金属を
触媒成分として含有するものであつて、そのよう
な成分としてパラジウム、ロジウム、白金、ルテ
ニウム、イリジウム、オスミウムから成る白金族
金属類を1種又はそれ以上含むものであればどの
ようなものでもよい。これらの金属類は金属状態
であつてもよいし、化合物成分であつてもよい。
また、これらの触媒成分は活性炭、グラフアイ
ト、シリカ、アルミナ、シリカ−アルミナ、シリ
カ−チタニア、チタニア、ジルコニア、硫酸バリ
ウム、炭酸カルシウム、アスベスト、ベントナイ
ト、ケイソウ土、ポリマー、イオン交換樹脂、ゼ
オライト、モレキユラーシーブ、ケイ酸マグネシ
ウム、マグネシアなどの担体に担持されたもので
あつてもよい。 金属状態の白金族金属としては、パラジウム、
ロジウム、白金、ルテニウム、イリジウム、オス
ミウムの金属類が包含され、さらにこれらの金属
黒、これらの金属イオンを含む触媒成分を前記の
ような担体に担持させた後、水素やホルムアルデ
ヒドで還元処理したものあるいはこれらの金属を
含む合金あるいは金属間化合物などが使用され
る。合金あるいは金属間化合物は、これらの白金
族金属同士のものであつてもよいし、これらの白
金族金属と他の金属、例えばセレン、テルル、硫
黄、アンチモン、ビスマス、銅、銀、金、亜鉛、
スズ、バナジウム、鉄、コバルト、ニツケル、水
銀、鉛、タリウム、クロム、モリブデン、タング
ステンなどとの合金や金属間化合物であつてもよ
い。 白金族金属を含む化合物としては、これら金属
のハロゲン化物、硫酸塩、硝酸塩、リン酸塩、ホ
ウ酸塩などの無機塩類;酢酸塩、シユウ酸塩、ギ
酸塩などの有機酸塩類;シアン化物類;水酸化物
類;酸化物類;硫化物類;ニトロ基、シアノ基、
ハロゲン、シユウ酸イオンなどのアニオンを含む
金属酸塩及びアンモニア、アミン類、ホスフイン
類、一酸化炭素、キレート配位子などを含む塩又
は錯体などの金属の錯化合物類;有機配位子又は
有機基を有する有機金属化合物類などが包含され
る。 これらの触媒種のなかでパラジウムやロジウム
を含むものが特に好ましい。このようなパラジウ
ム、ロジウムを含む触媒種としては例えば、Pd
黒;Pd−C、Pd−Al2O3、Pd−SiO2、Pd−
TiO2、Pd−ZrO2、Pd−BaSO4、Pd−CaCO3
Pd−アスベスト、Pd−ゼオライト、Pd−モレキ
ユラーシーブなどの担持パラジウム触媒類;Pd
−Pb、Pd−Se、Pd−Te、Pd−Hg、Pd−Tl、
Pd−P、Pd−Cu、Pd−Ag、Pd−Fe、Pd−Co、
Pd−Ni、Pd−Rhなどの合金又は金属間化合物
類;及びこれらの合金又は金属間化合物を前記の
ような担体に担持させたもの;PdCl2、PdBr2
PdI2、Pd(NO32、PdSo4などの無機塩類;酢酸
パラジウム、シユウ酸パラジウムなどの有機酸塩
類;Pd(CN)2;PdO;PdS;M2〔PdX′4〕、M2
〔PdX′6〕で表わされるパラジウム酸塩類(ここ
にMはアルカリ金属、アンモニウムイオンを表わ
し、X′はニトロ基、シアノ基、ハロゲンを表わ
す);〔Pd(NH34〕X′2、〔Pd(en)2〕X′2などの

ラジウムのアンミン錯体類(X′は上記の通りで、
enはエチレンジアミンを表わす);PdCl2
(PhCN)2、PdCl2(PR3 32、Pd(CO)(PR3 33
Pd(PPh34、PdCl(R3)(PPh32、Pd(C2H4
(PPh32、Pd(C3H52などの錯化合物又は有機金
属化合物類(R3はアルキル又はアリール基を表
わす);Pd(acac)2などのキレート配位子が配位
した錯化合物類;Rh黒;Pdと同様な担持ロジウ
ム触媒類;Pdと同様なRh合金又は金属間化合物
類、及びこれらを担体に担持させたもの;RhCl3
及び水和物、RhBr3及び水和物、Rh2(So43及び
水和物などの無機塩類;Rh2(OCOCH34
Rh2O3、RhO2;M2〔RhX′6〕及び水和物(M、
X′は前記の通り);〔Rh(NH35〕X′3、〔Rh
(en)3〕X′3などのロジウムのアンミン錯体類;
Rh4(CO)12、Rh6(CO)16などのロジウムカルボニ
ルクラスター類;〔RhCl(CO)22、RhCl3
(PR3 33、RhCl(PPh33、RhX′(CO)L2(X′は前
記の通り、Lは有機リン化合物及び有機ヒ素化合
物からなる配位子を表わす。)、RhH(CO)
(PPh33などの錯化合物又は有機金属化合物類を
挙げることができる。 これらの白金族金属又は化合物触媒は1種又は
2種以上用いることができる。 触媒として用いられるこれらの白金族金属含有
触媒は金属成分として、芳香族アミノ化合物及び
芳香族ニトロ化合物の合計量に対して通常0.0001
〜50モル%の範囲で、好ましくは0.001〜10モル
%の範囲で使用される。 本発明の方法において、反応をより効率的に行
なうために他の添加物を反応系に加えることもで
きる。このような添加物としては、例えば第三級
アミン類;ゼオライト類;ホウ酸アルミン酸、炭
酸、ケイ酸及び有機酸のアルカリ金属塩あるいは
アルカリ土類金属塩類が好ましい。 本発明の反応では有機ヒドロキシル化合物を過
剰に用いて溶媒を兼ねさせることが好ましいが、
反応に不活性な他の溶媒を用いることもできる。 このような不活性溶媒としては、例えばベンゼ
ン、トルエン、キシレン、メシチレンなどの芳香
族炭化水素類;クロルベンゼン、ジクロルベンゼ
ン、トリクロルベンゼン、フルオロベンゼン、ク
ロルトルエン、クロルナフタレン、ブロムナフタ
リンなどのハロゲン化芳香族炭化水素類;クロル
ヘキサン、クロルシクロヘキサン、トリクロルト
リフルオロエタン、塩化メチレン、四塩化炭素な
どのハロゲン化脂肪族炭化水素あるいはハロゲン
化脂環族炭化水素類;アセトニトリル、ベンゾニ
トリル等のニトリル類;スルホラン、メチルスル
ホラン、ジメチルスルホランなどのスルホン類;
テトラヒドロフラン、1,4−ジオキサン、1,
2−ジメトキシエタンなどのエーテル類;アセト
ン、メチルエチルケトンなどのケトン類;酢酸エ
チル、安息香酸エチルなどのエステル類などを挙
げることができる 本発明で助触媒として用いられる金属ハロゲン
化物とグラフアイトとの層間化合物は固体である
ので、装置の腐食なども少なく、反応液からの分
離、回収も例えばろ過などの簡単な方法で実施で
き、循環再使用できるので極めて有利である。 本発明の方法においては、一部ジアリール尿素
類が副生する場合があるが、これらのジアリール
尿素類は本反応の条件下で目的とする芳香族ウレ
タンに変換されるので反応系に循環することによ
つてウレタンの収率を上げることができる。 反応は一般に80〜300℃、好ましくは120〜220
℃の温度範囲で行なわれる。圧力は5〜500Kg/
cm2、好ましくは20〜300Kg/cm2の範囲で行なわれ
る。反応時間は、反応系、触媒系及びその他の反
応条件によつて異なるが通常数分〜数時間であ
る。 本発明の反応は回分式でも実施できるし、連続
的に反応成分を供給しながら、連続的に反応液を
抜出する連続方式でも実施できる。 次に、実施例により本発明をさらに詳細に説明
するが、本発明はこれらの実施例に限定されるも
のではない。 実施例 1 200mlのかきまぜ式オートクレーブ(SUS316
製)に、アニリン30mmol、ニトロベンゼン30m
mol、メタノール60ml、Pd黒0.8mgatom、約15重
量%のFeCl3を含む塩化第二鉄とグラフアイトと
の黒色粉末状の層間化合物(Graphimet FeCl3
−15)4gを入れ、系内を一酸化炭素で置換した
後、一酸化炭素130Kg/cm2及び水素10Kg/cm2を圧
入した。かきまぜながら160℃で2時間反応させ
た後、反応混合物をろ過し、ろ液を分析した結
果、アニリン7mmol、ニトロベンゼン3m
mol、N−フエニルカルバミン酸メチルが43m
mol存在していることが分つた。アニリン及びニ
トロベンゼンからのN−フエニルカルバミン酸メ
チルへの収率は72%で選択率は86%であつた。 ろ滓をそのままオートクレーブに入れ、さらに
アニリン30mmol、ニトロベンゼン30mmol及び
メタノール60mlを加え、一酸化炭素及び水素を圧
入し同様の実験をくり返した結果、アニリン及び
ニトロベンゼンからのN−フエニルカルバミン酸
メチルの収率は70%で選択率は85%で同様の成績
であつた。なお反応後の容器及びかきまぜ棒の腐
食はほとんど認められなかつた。 実施例 2 アニリン30mmol、ニトロベンゼン40mmol、
エタノール60ml、Pd黒1mgatom、約15重量%の
CuCl2を含む塩化第二銅とグラフアイトとの層間
化合物〔Graphimet(登録商標名)CuCl2−15〕
5gを実施例1と同じオートクレーブに入れ、系
内を一酸化炭素で置換した後、一酸化炭素120
Kg/cm2及び水素12Kg/cm2を圧入した。かきまぜな
がら、170℃で2時間反応させた後、反応混合物
をろ過し、ろ液を分析した結果、アニリン6m
mol、ニトロベンゼン4mmol、N−フエニルカ
ルバミン酸エチル48mmolが存在していることが
分つた。アニリン及びニトロベンゼンからのN−
フエニルカルバミン酸エチルの収率及び選択率は
それぞれ69%、80%であつた。 ろ滓をそのままオートクレーブに戻し、さらに
アニリン30mmol、ニトロベンゼン40mmol及び
エタノール60mlを加え、一酸化炭素及び水素を圧
入し同様の実験をくり返した結果、アニリン及び
ニトロベンゼンからのN−フエニルカルバミン酸
エチルの収率及び選択率はそれぞれ72%、83%
で、ほぼ同様の成績であつた。なお、反応後の容
器及びかきまぜ棒の腐食はほとんど認められなか
つた。 実施例 3 アニリン25mmol、ニトロベンゼン45mmol、
エタノール50ml、塩化パラジウム1mmol、15重
量%の塩化第二鉄を含むグラフアイトとの層間化
合物〔Graphimet(登録商標名)FeCl3−15〕5
gをオートクレーブに入れ、系内を一酸化炭素で
置換した後、一酸化炭素120Kg/cm2、水素15Kg/
cm2を圧入し、160℃で2時間反応させた。反応液
を分析した結果、アニリン8mmol、ニトロベン
ゼン2mmol、N−フエニルカルバミン酸エチル
50mmolが存在していることがわかつた。 実施例 4〜12 実施例1で用いたオートクレーブにアニリン30
mmol、ニトロベンゼン30mmol、エタノール60
mlを仕込み、下表に示す種々の触媒並びに種々の
金属ハロゲン化物とグラフアイトとの層間化合物
を助触媒として用いて、室温で一酸化炭素及び水
素をそれぞれ130Kg/cm2及び10Kg/cm2の初圧で圧
入し、実施例1と同様に反応を行つた。各実験の
結果を次表にまとめて示す。これらの各実施例に
おいては、すべて層間化合物は金属ハロゲン化物
として約5mmolを、又触媒は金属原子として1
mgatomを用いた。なお、Gはグラフアイトを意
味し、%表示は層間化合物中における金属ハロゲ
ン化物のおおよその重量%を表わす。
The present invention relates to a novel method for producing aromatic urethane. Aromatic urethanes are important substances as carbamate-based pesticides, and have recently attracted attention as raw materials for the production of aromatic isocyanates that do not use phosgene, and are expected to be in wide demand. Regarding the production of aromatic urethane,
Although there are several proposals, the following two manufacturing methods are known as representative methods. One method is to reductively urethanize an aromatic nitro compound using carbon monoxide in the presence of an alcohol. For example, in the case of nitrobenzene, the following reaction formula () An aromatic urethane is obtained. As can be seen from this formula, 3 moles of carbon monoxide are required for 1 mole of nitrobenzene, of which 2 moles become worthless carbon dioxide gas that does not directly participate in the formation of the target product and disappear from the system, leaving only 1 mole. Only the actual amount is used effectively. Moreover, in order to carry out this reaction continuously, it is necessary to separate the introduced carbon monoxide and the produced carbon dioxide gas, which makes the process complicated and extremely disadvantageous industrially. Another method is to react an aromatic amino compound with carbon monoxide and alcohol in the presence of an oxidizing agent such as oxygen or an organic nitro compound to oxidatively convert it into a urethane. (For example, JP-A-54-
Publication No. 24854, Japanese Unexamined Patent Publication No. 1984-84550, Japanese Patent Unexamined Publication No. 1983
-7227 Publication, JP-A-55-120551, JP-A-Sho
Publication No. 55-124750. ) This method is preferable to the former method in that carbon monoxide is used more effectively, but when oxygen is used as the oxidizing agent, the explosive limit of carbon monoxide is wide, so it is not suitable for industrial use. is highly dangerous and difficult to implement. In addition, when using an organic nitro compound as an oxidizing agent, the following reaction formula () 2Ar (NH 2 ) m + Ar′ (NO 2 ) n + 3 m・CO + 3 m・ROH→2Ar (
NHCOOR) n +Ar′(NHCOOR) n +2m・H 2 O
() (In the formula, Ar and Ar' are aromatic groups, m is the number of amino groups or nitro groups in one molecule of the amino compound and nitro compound, and R is an organic group.) Urethane is formed by the reaction of In particular, all of the carbon monoxide is effectively utilized only when the equivalent ratio of nitro groups to amino groups is 1:2, but when the amount of nitro groups is greater than this ratio, as expressed by the above formula (), Reductive urethanization of nitro compounds occurs, and the effective utilization rate of carbon monoxide decreases. In addition, in the above urethanization reaction, it is necessary to use carbon monoxide with the highest possible purity, and it is not possible to use synthesis gas containing a mixture of carbon monoxide and hydrogen, which can be obtained industrially at low cost. , hydrogen and other impurities must be separated and purified, and the practical disadvantage of this is extremely large. In view of the fact that the previously proposed methods for producing aromatic urethanes as described above are not industrially satisfactory, the present inventors conducted various studies on industrially advantageous and easy production methods. By reacting aromatic amino compounds and aromatic nitro compounds with organic hydroxyl compounds, hydrogen and carbon monoxide in the presence of catalysts containing the above-mentioned elements, aromatic He discovered that urethane could be manufactured and proposed it earlier. (Japanese Unexamined Patent Publication No. 57-185253.) However, in this method, metal halides such as copper chloride, iron chloride, iron oxychloride, and vanadium chloride are used as cocatalysts, and good results have been obtained.
These metal halides are highly corrosive to metal materials, corroding metal materials such as reaction vessels, piping, and valves, so they have the disadvantage of requiring the use of expensive, corrosion-resistant special metal materials for reaction system equipment. Furthermore, it has been found that it is necessary to separate and recover these metal halides dissolved in the reaction system from the high-boiling aromatic urethane product, which requires complicated operations and a large amount of cost. As a result of repeated research to overcome these defects in particular co-catalysts, the present inventors found that when these metal halides are used as co-catalysts in the form of intercalation compounds with graphite, the above-mentioned defects can be advantageously overcome. It has been found that this problem can be solved and an extremely excellent catalyst system can be provided. The present invention provides (a) a catalyst containing a platinum group metal, and (b) a catalyst containing a copper group metal, a zinc group metal, a nitrogen group metal, a vanadium group metal, a chromium group metal,
An aromatic amino compound and an aromatic nitro compound are combined into an organic compound in the presence of a cocatalyst consisting of at least one intercalation compound of graphite and a metal halide selected from halides of metal elements belonging to the manganese group and the iron group. The gist of this invention is a method for producing urethane, which is characterized by reacting with a hydroxyl compound, hydrogen, and carbon monoxide. The intercalation compound of a metal halide and graphite used in the method of the present invention is a compound in which a metal halide is infiltrated between the layers of graphite having a layered structure, and is a lamellar compound.
These compounds are also called intercalation compounds. In these intercalation compounds,
Metal halides mainly exist as a monomolecular layer between the layers of graphite, and are thought to exchange electrons with graphite, and are physically different from the original metal halides.・
It is known that they have different chemical properties.
Therefore, it is an essentially different compound from one in which a metal halide is adsorbed and supported on graphite as a carrier. Such intercalation compounds are described by RCCroft [Australian Journal of Chemistry, Vol. 9,
184, 1956] and E. Stumpp [Materials Science and Engineering, No. 31]
Vol., p. 53, 1977], for example, by heating a mixture of anhydrous metal halide and graphite either neat in a sealed tube or in a sealed tube filled with fluorine, chlorine or bromine. Therefore, it can be easily manufactured. The amount of metal halide in graphite is usually 1 to 70% by weight. Also, certain metal halides, e.g.
Intercalation compounds of graphite with CuCl 2 , SbF 5 , CrCl 3 , FeCl 3 , CoCl 2 , NiCl 2 etc. are Alfa
It is commercially available from Products Inc. (Thiokol/Ventron Division) as "Graphimet (registered trademark)". The cocatalyst used in the present invention is an interlayer compound of graphite and a metal halide selected from halides of metal elements belonging to the copper group, zinc group, nitrogen group, vanadium group, chromium group, manganese group, and iron group. It is. These metallic elements include
Cu, Ag, Au, Zn, Cd, Hg, Sb, Bi, V,
Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe,
Co, Ni, and halides of such metal elements include, for example, CuCl 2 , AuCl 3 ,
ZnCl2 , CdCl2 , HgCl2 , SbCl5 , VCl3 , NbCl5 ,
TaCl5 , CrCl3 , CrO2Cl2 , MoCl5 , WCl6 ,
Examples include MnCl 2 , ReCl 4 , FeCl 2 , FeCl 3 , CoCl 2 , NiCl 2 and corresponding bromides. Among these, CuCl 2 , FeCl 2 , FeCl 3 , and CoCl 2 are preferably used, and among them, CuCl 2 and FeCl 3 are particularly preferred metal halides. Such intercalation compounds of metal halides and graphite are used alone or in combination of two or more as cocatalysts. The amount of these co-catalysts to be used is not particularly limited, but it is usually conveniently used in the range of 0.01 to 1000 g atoms as metal atoms per 1 g atom of the main catalyst metal. The first feature of the present invention is the use of such a solid graphite intercalation compound as a cocatalyst, and one major feature of the reaction is:
A method for converting a mixture of an aromatic amino compound and an aromatic nitro compound into urethane using hydrogen and carbon monoxide. These two gas components are contained as a mixed gas in synthesis gas, which can be obtained industrially at low cost, and can be used as is, which is extremely advantageous industrially. Furthermore, another feature of the present invention is that the ratio of aromatic amino compound to aromatic nitro compound can be selected more freely than when hydrogen is not used. That is, when hydrogen is not used, the equivalent ratio of nitro group to amino group is limited to around 1/2, but
The method of the present invention is superior in that aromatic urethane can be effectively obtained at any value as long as this ratio is 1/2 or more, so it is advantageous in that it has a large degree of operational freedom. In the method for producing aromatic urethane using a mixture of aromatic nitro compounds as a raw material, the use of hydrogen allows the use of more aromatic nitro compounds, which are obtained at a lower cost than aromatic amino compounds. It is also advantageous. In addition, when using a mixture of an aromatic nitro compound and an aromatic amino compound in which the equivalent ratio of nitro group to amino group is greater than 1/2 as a raw material, if the reaction is performed with only carbon monoxide without using hydrogen, partial reduction can be achieved. When urethanization occurs, carbon dioxide gas is produced as a by-product, and carbon monoxide is not used effectively.However, according to the method of the present invention, which uses a mixed gas of hydrogen and carbon monoxide, less carbon dioxide gas is produced and carbon monoxide is effectively used. available for use. The reaction of the present invention is a reaction formula () that does not use hydrogen.
Unlike the case of , the reaction proceeds according to the following reaction formula (). a・Ar(NH 2 ) x + b・Ar′(NO 2 ) y + (2by−ax)・H
2 +(ax+by)・CO+(ax+by)・ROH→ a・Ar(NHCOOR) x +b・Ar′(NHCOOR) y +2by・H
2 O () (Here, Ar and Ar' represent aromatic groups, x represents the number of amino groups in 1 mol of aromatic amino compound, and y represents the number of nitro groups in 1 mol of aromatic nitro compound. (In addition, a and b are numbers proportional to the respective molar amounts of the aromatic amino compound and the aromatic nitro compound used in the reaction.) Of course, even if the equivalent ratio of the nitro group to the amino group is 1/2 or less, Although some aromatic amino compounds remain, the reaction proceeds smoothly. The aromatic amino compound used as a raw material in the method of the present invention may be any compound in which an amino group or a monosubstituted amino group is directly bonded to an aromatic ring, but aromatic primary amines are particularly suitable. preferable. Such aromatic primary amines include aniline, diaminobenzene (each isomer), triaminobenzene (each isomer), tetraaminobenzene (each isomer), aminopyridine (each isomer), and diaminopyridine. (each isomer), triaminopyridine (each isomer), aminonaphthalene (each isomer), diaminonaphthalene (each isomer),
Triaminonaphthalene (each isomer), tetraminonaphthalene (each isomer) and the following general formula ()
Monoamine, diamine, triamine, and tetraamine isomers of the diphenyl compound represented by: [X is a simple bond of phenyl group, -O-, -
S-, -SO2- , -CO-, -CONH-, -COO-,
-C(R 1 )(R 2 )-, and -N(R 1 )- (where R 1 ,
R 2 represents a divalent group selected from H, an aliphatic group and an alicyclic group] Furthermore, in these aromatic primary amines, one or more groups bonded to the aromatic ring hydrogen is replaced by other substituents, such as halogen atoms, nitro groups,
It may be substituted with a cyano group, an alkyl group, an alicyclic group, an aromatic group, an aralkyl group, an alkoxy group, a sulfoxide group, a sulfone group, a carbonyl group, an ester group, an amide group, or the like. Among these aromatic amino compounds, particularly preferred are aniline, 2,4- and 2,6-diaminotoluene, chloroaniline (each isomer), dichloroaniline (each isomer), 4,4'- and 2,
4'-diaminodiphenylmethane and 1,5-diaminonaphthalene. Further, the aromatic nitro compound may be any compound in which a nitro group is directly bonded to an aromatic ring. Examples of such aromatic nitro compounds include nitrobenzene, dinitrobenzene (each isomer), nitropyridine (each isomer), dinitropyridine (each isomer), nitronaphthalene (each isomer), and dinitronaphthalene (each isomer). Examples include isomers of mononitro compounds and dinitro compounds of the diphenyl compound represented by the general formula () and the above-mentioned general formula (). Furthermore, in these aromatic nitro compounds, one or more hydrogens bonded to the aromatic ring may be substituted with other substituents, such as halogen atoms, amino groups, cyano groups, alkyl groups, alicyclic groups, aromatic groups. , an aralkyl group, an alkoxy group, a sulfoxide group, a sulfone group, a carbonyl group, an ester group, an amide group, etc. Among these aromatic nitro compounds, particularly preferred are nitrobenzene, nitrotoluene (each isomer), nitroaniline (each isomer), 2,4-
and 2,6-dinitrotoluene, dichloronitrobenzene (each isomer), 4,4'- and 2,4'-dinitrodiphenylmethane, and 1,5-dinitronaphthalene. In the method of the present invention, the aromatic nitro compound acts as a reaction agent and an oxidizing agent. Therefore, when the aromatic nitro compound and the aromatic amino compound used differ in structure other than both groups, at least two types of aromatic nitro compounds are used. aromatic urethane will be obtained. When manufacturing only one type of aromatic urethane, the aromatic nitro compound may be structurally the same as the aromatic amino compound. The organic hydroxyl compound used in the present invention refers to monohydric or polyhydric alcohols or monohydric or polyhydric phenols. Such alcohols include linear or branched monohydric or polyhydric alkanols or alkenols having 1 to 20 carbon atoms, or monohydric or polyhydric cycloalkanols;
There are cycloalkenols or aralkyl alcohols. Furthermore, these alcohols may contain other inert substituents, such as halogen atoms, cyano groups, alkoxy groups, sulfoxide groups, sulfone groups, carbonyl groups, ester groups, and amide groups. Examples of such alcohols include methanol, ethanol, propanol (each isomer),
Butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), octanol (each isomer), nonyl alcohol (each isomer), decyl alcohol (each isomer) ), undecyl alcohol (each isomer), lauryl alcohol (each isomer), tridecyl alcohol (each isomer), tetradecyl alcohol (each isomer), and aliphatic alcohols such as pentadecyl alcohol (each isomer) Cycloalkanols such as cyclohexanol and cycloheptanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl Alkylene glycol monoalkyl ethers such as ether and propylene glycol monoethyl ether; polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, hexanetriol, and trimethylolpropane; aralkyl such as benzyl alcohol, etc. Alcohols etc. are used. Examples of phenols that can be used include phenol, various alkylphenols, various alkoxyphenols, various halogenated phenols, dihydroxybenzene, 4,4'-dihydroxy-diphenylmethane, bisphenol-A, and hydroxynaphthalene. The catalyst used in the method of the present invention contains a platinum group metal as a catalyst component, and such a component includes one or more platinum group metals consisting of palladium, rhodium, platinum, ruthenium, iridium, and osmium. Any type of material containing more than this may be used. These metals may be in a metallic state or may be a compound component.
In addition, these catalyst components include activated carbon, graphite, silica, alumina, silica-alumina, silica-titania, titania, zirconia, barium sulfate, calcium carbonate, asbestos, bentonite, diatomaceous earth, polymers, ion exchange resins, zeolites, and more. It may be supported on a carrier such as cyular sieve, magnesium silicate, or magnesia. Platinum group metals in the metallic state include palladium,
Metals such as rhodium, platinum, ruthenium, iridium, and osmium are included, and catalyst components containing these metal ions are supported on the above-mentioned carrier, and then reduced with hydrogen or formaldehyde. Alternatively, alloys or intermetallic compounds containing these metals may be used. The alloy or intermetallic compound may be of these platinum group metals, or of these platinum group metals and other metals, such as selenium, tellurium, sulfur, antimony, bismuth, copper, silver, gold, and zinc. ,
It may be an alloy or intermetallic compound with tin, vanadium, iron, cobalt, nickel, mercury, lead, thallium, chromium, molybdenum, tungsten, etc. Compounds containing platinum group metals include inorganic salts of these metals such as halides, sulfates, nitrates, phosphates, and borates; organic acid salts such as acetates, oxalates, and formates; and cyanides. ; Hydroxides; Oxides; Sulfides; Nitro group, cyano group,
Complex compounds of metals such as metal salts containing anions such as halogens and oxalate ions, and salts or complexes containing ammonia, amines, phosphines, carbon monoxide, chelate ligands, etc.; organic ligands or organic This includes organometallic compounds having groups. Among these catalyst species, those containing palladium or rhodium are particularly preferred. Catalyst species containing palladium and rhodium include, for example, Pd.
Black; Pd-C, Pd- Al2O3 , Pd - SiO2 , Pd-
TiO2 , Pd- ZrO2 , Pd- BaSO4 , Pd- CaCO3 ,
Supported palladium catalysts such as Pd-asbestos, Pd-zeolite, Pd-molecular sieve; Pd
−Pb, Pd−Se, Pd−Te, Pd−Hg, Pd−Tl,
Pd-P, Pd-Cu, Pd-Ag, Pd-Fe, Pd-Co,
Alloys or intermetallic compounds such as Pd-Ni and Pd-Rh; and these alloys or intermetallic compounds supported on the above-mentioned carriers; PdCl 2 , PdBr 2 ,
Inorganic salts such as PdI 2 , Pd(NO 3 ) 2 , PdSo 4 ; Organic acid salts such as palladium acetate and palladium oxalate; Pd(CN) 2 ; PdO; PdS; M 2 [PdX′ 4 ], M 2
Palladate salts represented by [PdX′ 6 ] (where M represents an alkali metal or ammonium ion, and X′ represents a nitro group, cyano group, or halogen); [Pd(NH 3 ) 4 ]X′ 2 , Palladium ammine complexes such as [Pd(en) 2 ]X′ 2 (X′ is as above,
en represents ethylenediamine); PdCl 2
(PhCN) 2 , PdCl 2 (PR 3 3 ) 2 , Pd(CO) (PR 3 3 ) 3 ,
Pd( PPh3 ) 4 , PdCl( R3 )( PPh3 ) 2 , Pd( C2H4 )
Complex compounds or organometallic compounds such as (PPh 3 ) 2 , Pd(C 3 H 5 ) 2 (R 3 represents an alkyl or aryl group); coordinated with chelate ligands such as Pd(acac) 2 Complex compounds; Rh black; Supported rhodium catalysts similar to Pd; Rh alloys or intermetallic compounds similar to Pd, and these supported on carriers; RhCl 3
and hydrates, RhBr 3 and hydrates, Rh 2 (So 4 ) 3 and inorganic salts such as hydrates; Rh 2 (OCOCH 3 ) 4 ;
Rh 2 O 3 , RhO 2 ; M 2 [RhX′ 6 ] and hydrates (M,
X′ is as above); [Rh(NH 3 ) 5 ]X′ 3 , [Rh
Rhodium ammine complexes such as (en) 3 ]X′ 3 ;
Rhodium carbonyl clusters such as Rh 4 (CO) 12 , Rh 6 (CO) 16 ; [RhCl(CO) 2 ] 2 , RhCl 3
(PR 3 3 ) 3 , RhCl(PPh 3 ) 3 , RhX′(CO)L 2 (X′ is as described above, L represents a ligand consisting of an organic phosphorus compound and an organic arsenic compound), RhH( CO)
Complex compounds such as (PPh 3 ) 3 or organometallic compounds can be mentioned. One or more types of these platinum group metal or compound catalysts can be used. These platinum group metal-containing catalysts used as catalysts usually contain 0.0001% of the total amount of aromatic amino compounds and aromatic nitro compounds as metal components.
It is used in a range of 50 mol%, preferably 0.001 to 10 mol%. In the method of the present invention, other additives can also be added to the reaction system in order to carry out the reaction more efficiently. Preferred examples of such additives include tertiary amines; zeolites; alkali metal salts or alkaline earth metal salts of boric acid, aluminate, carbonic acid, silicic acid, and organic acids. In the reaction of the present invention, it is preferable to use an excess of the organic hydroxyl compound so that it also serves as a solvent.
Other solvents that are inert to the reaction can also be used. Examples of such inert solvents include aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; halogenated solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, fluorobenzene, chlorotoluene, chlornaphthalene, and bromnaphthalene; Aromatic hydrocarbons; halogenated aliphatic hydrocarbons or halogenated alicyclic hydrocarbons such as chlorhexane, chlorocyclohexane, trichlorotrifluoroethane, methylene chloride, and carbon tetrachloride; nitriles such as acetonitrile and benzonitrile; Sulfones such as sulfolane, methylsulfolane, dimethylsulfolane;
Tetrahydrofuran, 1,4-dioxane, 1,
Examples include ethers such as 2-dimethoxyethane; ketones such as acetone and methyl ethyl ketone; and esters such as ethyl acetate and ethyl benzoate. Since the compound is a solid, there is little corrosion of equipment, separation and recovery from the reaction solution can be carried out by simple methods such as filtration, and the compound can be recycled and reused, which is extremely advantageous. In the method of the present invention, some diarylureas may be produced as by-products, but these diarylureas are converted to the target aromatic urethane under the conditions of this reaction, so they cannot be recycled to the reaction system. The yield of urethane can be increased by The reaction is generally carried out at 80-300°C, preferably 120-220°C.
It is carried out in a temperature range of ℃. Pressure is 5~500Kg/
cm 2 , preferably in the range of 20 to 300 Kg/cm 2 . The reaction time varies depending on the reaction system, catalyst system, and other reaction conditions, but is usually from several minutes to several hours. The reaction of the present invention can be carried out either batchwise or continuously, in which reaction components are continuously supplied and a reaction solution is continuously withdrawn. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 200ml stirring autoclave (SUS316
), 30 mmol of aniline, 30 m of nitrobenzene
mol, methanol 60ml, Pd black 0.8mgatom, black powdery intercalation compound of ferric chloride and graphite containing about 15% by weight FeCl3 (Graphimet FeCl3
-15) After 4g of carbon monoxide was added and the inside of the system was replaced with carbon monoxide, 130Kg/cm 2 of carbon monoxide and 10Kg/cm 2 of hydrogen were introduced under pressure. After reacting at 160°C for 2 hours with stirring, the reaction mixture was filtered and the filtrate was analyzed, and it was found that 7 mmol of aniline and 3 m of nitrobenzene.
mol, methyl N-phenylcarbamate is 43m
It was found that mol was present. The yield of methyl N-phenylcarbamate from aniline and nitrobenzene was 72%, and the selectivity was 86%. The filtrate was placed in an autoclave as it was, 30 mmol of aniline, 30 mmol of nitrobenzene, and 60 ml of methanol were added, and carbon monoxide and hydrogen were injected under pressure. As a result of repeating the same experiment, methyl N-phenylcarbamate was recovered from aniline and nitrobenzene. The rate was 70% and the selection rate was 85%, showing similar results. It should be noted that almost no corrosion of the container or stirrer rod was observed after the reaction. Example 2 30 mmol of aniline, 40 mmol of nitrobenzene,
60ml of ethanol, 1mgatom of Pd black, about 15% by weight
Interlayer compound of cupric chloride and graphite containing CuCl 2 [Graphimet (registered trademark name) CuCl 2 -15]
5 g was placed in the same autoclave as in Example 1, and after replacing the system with carbon monoxide, 120 g of carbon monoxide was added.
Kg/cm 2 and hydrogen 12Kg/cm 2 were pressurized. After reacting at 170°C for 2 hours while stirring, the reaction mixture was filtered and the filtrate was analyzed.
mol, 4 mmol of nitrobenzene, and 48 mmol of ethyl N-phenylcarbamate were found to be present. N- from aniline and nitrobenzene
The yield and selectivity of ethyl phenylcarbamate were 69% and 80%, respectively. The filtrate was returned to the autoclave as it was, 30 mmol of aniline, 40 mmol of nitrobenzene and 60 ml of ethanol were added, and carbon monoxide and hydrogen were injected under pressure and the same experiment was repeated. As a result, ethyl N-phenylcarbamate was recovered from aniline and nitrobenzene. rate and selection rate were 72% and 83%, respectively.
The results were almost the same. It should be noted that almost no corrosion of the container or stirrer rod was observed after the reaction. Example 3 25 mmol of aniline, 45 mmol of nitrobenzene,
Intercalation compound with graphite containing 50 ml of ethanol, 1 mmol of palladium chloride, and 15% by weight of ferric chloride [Graphimet (registered trademark) FeCl 3 -15] 5
After placing g in an autoclave and replacing the inside of the system with carbon monoxide, carbon monoxide was 120 kg/cm 2 and hydrogen was 15 kg/cm 2 .
cm 2 was injected under pressure and reacted at 160°C for 2 hours. Analysis of the reaction solution revealed 8 mmol of aniline, 2 mmol of nitrobenzene, and ethyl N-phenylcarbamate.
It was found that 50 mmol was present. Examples 4 to 12 Aniline 30 was added to the autoclave used in Example 1.
mmol, nitrobenzene 30 mmol, ethanol 60
ml of carbon monoxide and hydrogen at room temperature using various catalysts shown in the table below and intercalation compounds of various metal halides and graphite as cocatalysts at 130 Kg/cm 2 and 10 Kg/cm 2 , respectively. The reaction was carried out in the same manner as in Example 1 by injecting the mixture under initial pressure. The results of each experiment are summarized in the table below. In each of these examples, the intercalation compound contained approximately 5 mmol as metal halide and the catalyst contained approximately 1 mmol as metal atom.
mgatom was used. In addition, G means graphite, and the % expression represents the approximate weight % of the metal halide in the intercalation compound.

【表】【table】

【表】 実施例 13 2,4−ジアミノトルエン25mmol、2,4−
ジニトロトルエン25mmol、エタノール50ml、Pd
黒2mgatom、15重量%の塩化第二銅を含むグラ
フアイトとの層間化合物〔Graphimet(登録商標
名)CuCl2−15〕5gをオートクレーブに入れ、
系内を一酸化炭素で置換した後、一酸化炭素130
Kg/cm2、水素20Kg/cm2を圧入し、170℃で2時間
反応させた。得られた反応生成液を高速液体クロ
マトグラフイーで分析した結果、トリレン−2,
4−ジカルバミン酸ジエチルが28mmol、エチル
−3−アミノ−4−メチルカルバニレートとエチ
ル−2−メチル−5−アミノカルバニレートとの
混合物であるアミノモノウレタンが8mmol、エ
チル−3−ニトロ−4−メチルカルバニレートと
エチル−2−メチル−5−ニトロカルバニレート
との混合物であるニトロモノウレタンが3mmol
生成していることが分つた。
[Table] Example 13 2,4-diaminotoluene 25 mmol, 2,4-
Dinitrotoluene 25 mmol, ethanol 50 ml, Pd
2 mg of black, 5 g of an intercalation compound with graphite containing 15% by weight of cupric chloride [Graphimet (registered trademark) CuCl 2 -15] was placed in an autoclave.
After replacing the system with carbon monoxide, carbon monoxide 130
Kg/cm 2 and hydrogen at 20 Kg/cm 2 were injected under pressure, and the mixture was reacted at 170°C for 2 hours. As a result of analyzing the obtained reaction product liquid by high performance liquid chromatography, it was found that tolylene-2,
28 mmol of diethyl 4-dicarbamate, 8 mmol of aminomonourethane, which is a mixture of ethyl-3-amino-4-methylcarbanilate and ethyl-2-methyl-5-aminocarbanilate, and ethyl-3-nitro- 3 mmol of nitromonourethane, which is a mixture of 4-methylcarbanilate and ethyl-2-methyl-5-nitrocarbanilate.
I found out that it was generated.

Claims (1)

【特許請求の範囲】 1 (a)白金族金属を含む触媒、及び(b)銅族、悪鉛
族、窒素族、バナジウム族、クロム族、マンガン
族及び鉄族に属する金属元素のハロゲン化物から
選ばれた金属ハロゲン化物とグラフアイトの層間
化合物の少なくとも1種から成る助触媒の存在下
に、芳香族アミノ化合物及び芳香族ニトロ化合物
に有機ヒドロキシル化合物、水素及び一酸化炭素
と反応させることを特徴とするウレタンの製造方
法。 2 触媒成分がパラジウム、ロジウム、パラジウ
ム化合物及びロジウム化合物から選ばれた少なく
とも1種である特許請求の範囲第1項記載の方
法。 3 助触媒が銅族金属のハロゲン化物及び鉄族金
属のハロゲン化物から選ばれたハロゲン化物とグ
ラフアイトとの層間化合物の少なくとも1種であ
る特許請求の範囲又は第2項記載の方法。 4 助触媒が塩化第二銅とグラフアイトとの層間
化合物及び(又は)塩化第二鉄とグラフアイトと
の層間化合物である特許請求の範囲第3項記載の
方法。
[Scope of Claims] 1 (a) A catalyst containing a platinum group metal; and (b) a halide of a metal element belonging to the copper group, lead group, nitrogen group, vanadium group, chromium group, manganese group, and iron group. It is characterized by reacting an aromatic amino compound and an aromatic nitro compound with an organic hydroxyl compound, hydrogen and carbon monoxide in the presence of a cocatalyst consisting of at least one intercalation compound of a selected metal halide and graphite. A method for producing urethane. 2. The method according to claim 1, wherein the catalyst component is at least one selected from palladium, rhodium, palladium compounds, and rhodium compounds. 3. The method according to claim 2, wherein the promoter is at least one intercalation compound of graphite and a halide selected from halides of copper group metals and halides of iron group metals. 4. The method according to claim 3, wherein the promoter is an intercalation compound of cupric chloride and graphite and/or an intercalation compound of ferric chloride and graphite.
JP56084607A 1981-06-02 1981-06-02 Preparation of urethane Granted JPS57200351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56084607A JPS57200351A (en) 1981-06-02 1981-06-02 Preparation of urethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084607A JPS57200351A (en) 1981-06-02 1981-06-02 Preparation of urethane

Publications (2)

Publication Number Publication Date
JPS57200351A JPS57200351A (en) 1982-12-08
JPS639505B2 true JPS639505B2 (en) 1988-02-29

Family

ID=13835370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084607A Granted JPS57200351A (en) 1981-06-02 1981-06-02 Preparation of urethane

Country Status (1)

Country Link
JP (1) JPS57200351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465309A (en) * 1987-09-04 1989-03-10 Daihatsu Diesel Mfg Rodless fluid cylinder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018454A (en) * 2006-07-13 2008-01-31 National Institute Of Advanced Industrial & Technology Metal vitrification promoting tool, and manufacturing method and manufacturing device using the tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424854A (en) * 1977-07-28 1979-02-24 Mitsui Toatsu Chem Inc Preparation of aromatic urethane compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424854A (en) * 1977-07-28 1979-02-24 Mitsui Toatsu Chem Inc Preparation of aromatic urethane compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465309A (en) * 1987-09-04 1989-03-10 Daihatsu Diesel Mfg Rodless fluid cylinder

Also Published As

Publication number Publication date
JPS57200351A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
US4621149A (en) Production of urethane compounds
EP0083096B1 (en) Production of urethane compounds
JPS639505B2 (en)
JPS6332346B2 (en)
US4587056A (en) Process for producing an aliphatic isocyanate
JPS6132306B2 (en)
JPS6125703B2 (en)
JPS639504B2 (en)
JPS6116383B2 (en)
JPS6045873B2 (en) Method for producing aromatic urethane
JPH035387B2 (en)
JPS6125704B2 (en)
JPS6132307B2 (en)
JPS6124384B2 (en)
JPS58128358A (en) Preparation of urethane
JPS6154783B2 (en)
JPS6045874B2 (en) Method for producing aromatic urethane compounds
JPS58124756A (en) Preparation of aromatic urethane
JPS58146547A (en) Preparation of urethane
JPS6310146B2 (en)
JPS6123181B2 (en)
JPS636061B2 (en)
JPS6148825B2 (en)
JPS6148824B2 (en)
JPH0259827B2 (en)