JPS6125704B2 - - Google Patents

Info

Publication number
JPS6125704B2
JPS6125704B2 JP1086282A JP1086282A JPS6125704B2 JP S6125704 B2 JPS6125704 B2 JP S6125704B2 JP 1086282 A JP1086282 A JP 1086282A JP 1086282 A JP1086282 A JP 1086282A JP S6125704 B2 JPS6125704 B2 JP S6125704B2
Authority
JP
Japan
Prior art keywords
compounds
compound
reaction
isomer
halogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1086282A
Other languages
Japanese (ja)
Other versions
JPS58128357A (en
Inventor
Shinsuke Fukuoka
Masazumi Chono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1086282A priority Critical patent/JPS58128357A/en
Priority to EP19820111989 priority patent/EP0083096B1/en
Priority to DE8282111989T priority patent/DE3275464D1/en
Publication of JPS58128357A publication Critical patent/JPS58128357A/en
Priority to US06/681,061 priority patent/US4621149A/en
Publication of JPS6125704B2 publication Critical patent/JPS6125704B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はウレタンの製造方法に関するものであ
り、さらに詳しくいえば、白金族金属や白金族元
素を含む化合物と陰イオンがハロゲンであるオニ
ウム化合物とから成る触媒系を用い、酸化剤の存
在下、1級アミンまたは2級アミン(但し、芳香
族アミンを除く)に一酸化炭素及び有機ヒドロキ
シル化合物を反応させることによつてウレタンを
製造する方法に関するものである。 ウレタン類はカーバメイト系農薬などに用いら
れる重要な化合物であるが、従来は相当するイソ
シアナート類とアルコール類とを反応させるか、
相当するアミン類とクロルギ酸エステル類とを反
応させる方法によつて製造されていた。しかしな
がら、これらのいずれの方法でも原料として用い
られるイソシアナート類あるいはクロルギ酸エス
テル類を製造するためには、毒性が強く腐食性の
高いホスゲンを使用しなければならないなどの欠
点があつた。 一方、ホスゲンを用いないで1級アミンと一酸
化炭素およびアルコール類から、貴金属触媒を用
いて酸化的にウレタン化する方法も提案されてい
る。(特開昭55―120551号公報) しかしこの方法では、助触媒として塩化銅、塩
化鉄、オキシ塩化鉄、塩化バナジウム、オキシ塩
化バナジウムなど、ルイス酸であつてしかも反応
系においてレドツクス反応を行いうる元素の塩化
物を反応系中に溶解させておく必要があり、溶解
したこれらの塩化物は反応容器や配管、バルブな
どの金属材料に対する腐食性が大きく、このため
高価な金属材料を使用しなければならないという
設備上の問題がある。さらに溶解したこれらの塩
化物を生成物であるウレタン類から分離、回収す
るためには、はん雑な操作と多大の費用を要する
という欠点があるばかりでなく、これらの助触媒
は、レドツクス反応によつて還元された状態にお
いて生成する塩化水素が未反応アミンの塩酸塩と
なるために反応系での再酸化によつても元の塩化
物に完全には戻らず、したがつて回収された時に
は部分的に還元されたものも存在するため、反応
を繰り返し行う場合には、これらの助触媒も再調
製しなければならないという欠点がある。 本発明者らは、これらの欠点を克服すべく、1
級アミンまたは2級アミン(但し、芳香族アミン
は除く)を酸化的にウレタン化してウレタンを製
造する方法について鋭意研究を重ねた結果、これ
らの欠点の主要原因となつているルイス酸やレド
ツクス反応を行う元素の塩化物などを用いない
で、接触的に反応を進行させうる、まつたく新し
い触媒系を見出し、この知見に基づいて本発明を
完成するに至つた。 すなわち、本発明は、酸化剤の存在下、1級ア
ミンまたは2級アミン(但し、芳香族アミンは除
く)に一酸化炭素及び有機ヒドロキシル化合物を
反応させてウレタンを製造するに当り、(a)白金族
金属及び白金族元素を含む化合物の中から選ばれ
た少なくとも1種と、(b)陰イオンがハロゲンであ
るオニウム化合物および反応系でこれらを生成す
ることのできる化合物の中から選ばれた少なくと
も1種とから成る触媒系を用いることを特徴とす
るウレタンの製造方法を提供するものである。 このように、本発明の大きな特徴は、白金族金
属及び白金族元素を含む化合物の中から選ばれた
少なくとも1種と、陰イオンがハロゲンであるオ
ニウム化合物の中から選ばれた少なくとも1種と
を組合わせた触媒を用いることにあつて、この触
媒系を用いることによつて1級アミンまたは2級
アミンから選択性よく、かつ高収率でウレタンが
得られる。 このような事実は今までまつたく知られていな
かつた実に驚くべきことであつて、前記の先行技
術(特開昭55―120551号公報)からもまつたく予
想できなかつたことである。すなわち、この先行
技術においては白金族化合物を主触媒とし、反応
系においてレドツクス反応を行いうる元素の塩化
物を助触媒とする触媒系、例えば代表的なものと
して実施例にみられるような塩化パラジウムにオ
キシ塩化鉄を組合わせた触媒系を用いている。こ
のような系においては2価のパラジウムが反応に
関与しており、反応の進行とともに還元されて0
価のパラジウムとなり、これが3価のオキシ塩化
鉄によつて再酸化されて2価のパラジウムに戻る
と同時に、3価の鉄は還元されて2価の鉄とな
り、さらにこの2価の鉄が酸化剤によつて再酸化
されて3価の鉄に戻るといつた、いわゆるワツカ
ー反応型の触媒サイクルによつて主生成物である
ウレタンを与えているものと考えられる。 このように先行技術の方法では、反応系におい
てレドツクス作用を有する元素の塩化物が主触媒
の再酸化剤として必須であることが示されてい
る。このような機能を有する元素としては、周期
律表のa〜a族及びb〜b族の元素の中
から選ばれたレドツクス反応を受けることのでき
るものであつて、具体的には銅、亜鉛、水銀、タ
リウム、スズ、チタン、ヒ素、アンチモン、ビス
マス、バナジウム、クロム、モリブデン、タング
ステン、マンガン、鉄、コバルト、ニツケルなど
が挙げられており、その中で銅、バナジウム、マ
ンガン及び鉄のみが実施例に記載されているに過
ぎず、しかもこれらの例は芳香族1級アミンのウ
レタン化反応のみであり、脂肪族アミンや脂環族
アミンの反応については何ら例示されていない。 これに対して本発明方法は、陰イオンがハロゲ
ンであるオニウム化合物またはこれらを反応系で
生成することのできる化合物を用いるものであつ
て、これらの化合物は全く金属成分を含んでいな
いか、あるいは通常の反応条件下でカチオン部は
レドツクス反応を行なえないものである。 従つて本発明の反応は先行技術に記載されてい
る反応とは全く異なる反応機構で進行しているも
のと推定される。 このような陰イオンがハロゲンであるオニウム
化合物が本発明の反応においてどのような機構で
作用しているかは不明であるが、白金族金属また
は白金族元素を含む化合物と組み合わせた場合
に、1級アミン又は2級アミンの酸化的ウレタン
化反応の触媒成分として重要な作用をしているこ
とは明らかである。すなわち、陰イオンがハロゲ
ンであるオニウム化合物のみでは本反応のウレタ
ン化反応はまつたく進行しないし、また白金族金
属又は白金族元素を含む化合物のみを用いた場合
でも、本反応の条件下ではウレタン化反応はほと
んど進行しないか、あるいは進行しても少量のウ
レタンを与えるに過ぎず、特に金属状態の白金族
元素のみを用いた場合は、ウレタンはほとんど得
られない。例えば、パラジウムは本反応に対して
有効な触媒成分の1つであるが、0価の金属パラ
ジウムであるパラジウム黒のみでは本反応は実質
的にほとんど進行しない。しかし、これに陰イオ
ンがハロゲンであるオニウム化合物、例えばヨウ
化テトラメチルアンモニウムなどを加えると、ほ
ぼ定量的にウレタンが得られるようになる。 このように本発明方法においては、金属状態の
固体の白金族化合物をも触媒成分の1つとして用
いることができ、このことは高価な白金族化合物
を反応系からろ過などの簡単な方法で分離、回収
しうることを示しており、工業的に有利である。 また本発明のもう1つの大きな特徴は、陰イオ
ンがハロゲンであるオニウム化合物を用いてお
り、これらの化合物はほとんどが水溶性であるの
で生成物からの分離、回収が容易に行えることで
あつて、従来用いられているような重金属類の塩
化物とは異なり、生成物中に汚染物質として混入
することもない。 本発明方法において用いられる白金族金属及び
白金族元素を含む化合物については、成分として
パラジウム、ロジウム、白金、ルテニウム、イリ
ジウム、オスミウムなどの白金族元素から選ばれ
た少なくとも1種を含むものであれば特に制限は
なく、これらの元素が金属状態であつてもよい
し、化合物を形成する成分であつてもよい。ま
た、これらの触媒成分は活性炭、グラフアイト、
シリカ、アルミナ、シリカ―アルミナ、シリカ―
チタニア、チタニア、ジルコニア、硫酸バリウ
ム、炭酸カルシウム、アスベスト、ベントナイ
ト、ケイソウ土、ポリマー、イオン交換樹脂、ゼ
オライト、モレキユラーシーブ、ケイ酸マグネシ
ウム、マグネシアなどの担体に担持されたもので
あつてもよい。 金属状態の白金族元素として、例えばパラジウ
ム、ロジウム、白金、ルテニウム、イリジウム及
びオスミウムなどの金属、これらの金属黒、これ
らの金属イオンを含む触媒成分を前記のような担
体に担持したのち、水素やホルムアルデヒドで還
元処理したもの、及びこれらの金属を含む合金あ
るいは金属間化合物などが用いられる。また、合
金あるいは金属間化合物はこれらの白金族金属同
士のものであつてもよいし、他の元素、例えばセ
レン、テルル、イオウ、アンチモン、ビスマス、
銅、銀、金、亜鉛、スズ、バナジウム、鉄、コバ
ルト、ニツケル、水銀、鉛、タリウム、クロム、
モリブデン、タングステンなどを含むものであつ
てもよい。 一方、白金族元素を含む化合物としては、例え
ばハロゲン化物、硫酸塩、硝酸塩、リン酸塩、ホ
ウ酸塩などの無機塩類;酢酸塩、シユウ酸塩、ギ
酸塩などの有機酸塩類;シアン化物類;水酸化物
類;酸化物類;硫化物類;ニトロ基、シアノ基、
ハロゲン、シユウ酸イオンなどのアニオン含む金
属酸塩及びアンモニア、アミン類、ホスフイン
類、一酸化炭素、キレート配位子などを含む塩又
は錯体などの金属の錯化合物類;有機配位子又は
有機基を有する有機金属化合物類などがあげられ
る。 これらの触媒成分の中では、パラジウム又はロ
ジウム若しくはその両方を含むものが特に好まし
く、このようなものとしては、例えばPd黒;Pd
―C、Pd―Al2O3、Pd―SiO2、Pd―TiO2、Pd―
ZrO2、Pd―BaSO4、Pd―CaCO3、Pd―アスベス
ト、Pd―ゼオライト、Pd―モレキユラーシーブ
などの担持パラジウム触媒類;Pd―Pb、Pd―
Se、Pd―Te、Pd―Hg、Pd―Tl、Pd―P、Pd―
Cu、Pd―Ag、Pd―Fe、Pd―Co、Pd―Ni、Pd―
Rhなどの合金又は金属間化合物類;及びこれら
の合金又は金属間化合物を前記のような担体に担
持したもの;PdCl2、PdBr2、PdI2、Pd
(NO32、PdSO4などの無機塩類;Pd
(OCOCH32、シユウ酸パラジウムなどの有機酸
塩類;Pd(CN)2;PdO;PdS;M2〔PdX4〕、M2
〔PdX6〕で表わされるパラジウム酸塩類(Mはア
ルカリ金属又はアンモニウムイオンを表わし、X
はニトロ基又はシアノ基又はハロゲンを表わ
す。);〔Pd(NH34〕X2、〔Pd(en)2〕X2など
のパラジウムのアンミン錯体類(Xは上記と同じ
意味をもち、enはエチレンジアミンを表わ
す);PdCl2(PhCN)2、PdCl2(PR32、Pd
(CO)(PR33、Pd(PPh34、PdCl(R)
(PPh32、Pd(C2H4)(PPh32、Pd(C3H52など
の錯化合物又は有機金属化合物類(Rは有機基を
表わす);Pd(acac)2などのキレート配位子が
配位した錯化合物類;Ph黒;Pdと同様な担持ロ
ジウム触媒類;Pdと同様なRh合金又は金属間化
合物類及びこれらを担体に担持したもの;RhCl3
及び水和物、RhBr3及び水和物、RhI3及び水和
物、Rh2(SO43及び水和物などの無機塩類;Rh2
(OCOCH34;Rh2O3、RhO2;M3〔RhX6〕及び水
和物(M,Xは前記と同じ意味をもつ);〔Rh
(NH35〕X3、〔Rh(en)3〕X3などのロジウムの
アンミン錯体類;Rh4(CO)12、Rh6(CO)16など
のロジウムカルボニルクラスター類;〔RhCl
(CO)22、RhCl3(PR33、RhCl(PPh33、RhX
(CO)L2(Xは前記と同じ意味をもち、Lは有
機リン化合物及び有機ヒ素化合物からなる配位子
である)、RhH(CO)(PPh33などの錯化合物又
は有機金属化合物類があげられる。 本発明においては、これらの白金族金属又は白
金族元素を含む化合物を1種だけ用いてもよい
し、また2種以上混合して用いてもよく、その使
用量については特に制限はないが、通常白金族元
素を含む成分がアミンに対して、0.0001〜50モル
%の範囲であるのが望ましい。 また本発明で用いられる、陰イオンがハロゲン
であるオニウム化合物とは、孤立電子対をもつ元
素を含む化合物において、これらの孤立電子対に
プロトンあるいは他の陽イオン形の試薬が結合し
て孤立電子対をもつ元素が共有結合原子価1を増
加して陽イオンとなつているものであつて、対イ
オンとしてハロゲンアニオンを有するものであ
る。 このようなオニウム化合物としては、アンモニ
ウム化合物、ホスホニウム化合物
(〔R1R2R3R4P〕X)、アルソニウム化合物
(〔R1R2R3R4As〕X、スチボニウム化合物
(〔R1R2R3R4Sb〕X)、オキソニウム化合物
(〔R1R2R3O〕X)、スルホニウム化合物
(〔R1R2R3S〕X)、オキシスルホニウム化合
物(〔R1R2R3S〕(O)X)、セレノニウム化
合物、(〔R1R2R3Se〕X)、テルロニウム化合
物(〔R1R2R3Te〕X)、スタンノニウム化合
物(〔R1R2R3Sn〕X)、ヨウドニウム化合物
(〔R1R2I〕X)、などがあげられる。ここで
はR1,R2,R3,R4は水素または脂肪族基、芳香
族基、脂環族基、芳香脂肪族基から選ばれた基を
表わし、それぞれが同じであつてもよいし、また
場合によつては孤立電子対を有する元素を含む環
の構成要素であつてもよい。またXは前記の通り
でF,Cl,Br,Iから選ばれたハロゲンを表わ
す。 このようなハロゲン化オニウム化合物は、ハロ
ゲン化水素または有機ハロゲン化物と相当するア
ンモニア、アミン、ホスフイン化合物、アルシン
化合物、スチビン化合物、オキシ化合物、スルフ
イド化合物、スルホキシド化合物、セレニド化合
物、テルリド化合物などとの反応によつて容易に
得られるものであり、これらは反応系外で製造さ
れたものを用いてもよいし、反応系内でこれらを
生成させてもよい。もちろん他の方法で製造され
たものであつてもよいし、他の方法によつて反応
系内で生成させたものであつてもよい。 これらの中で好ましいのはハロゲン化アンモニ
ウム化合物、ハロゲン化ホスホニウム化合物、ハ
ロゲン化アルソニウム化合物およびハロゲン化ス
ルホニウム化合物で、特に好ましいのはハロゲン
化アンモニウム化合物およびハロゲン化ホスホニ
ウム化合物である。 ハロゲン化アンモニウム化合物とは通常、一般
式() で表わされるグループを有する含窒素化合物のハ
ロゲン化水素塩及び四級アンモニウムハライドの
ことである。ここで、Nに連なる3本又は4本の
線は、窒素原子と他の原子又は基との結合手を表
わし、Xは前記の通りF,Cl,Br,Iを表わ
す。 式()において、窒素に結合する原子又は基と
しては例えば水素、アルカリ金属原子、ヒドロキ
シル基、脂肪族基、脂環族基、芳香族基、芳香脂
肪族基、複素環式基などがある。また式()にお
いて窒素は、例えばピペリジン、ピリジン、キノ
リンのように、それ自身が環を構成する要素とな
つていてもよい。 さらに式()で表わされるグループを分子内に
2個以上存在するものであつてもよい。 このようなハロゲン化アンモニウム化合物は、
相当する含窒素化合物とハロゲン化水素との反
応、含窒素化合物とハロゲン化アルキルあるいは
ハロゲン化アリールとの反応などによつて容易に
得ることができる。 このようなハロゲン化水素、ハロゲン化アルキ
ル又はハロゲン化アリールと塩又は第四級アンモ
ニウムハライドを形成することのできる含窒素化
合物としては、アンモニア;第一級アミン、第二
級アミン、第三級アミン等のアミン類;ヒドロキ
シルアミン類;ヒドラジン類;ヒドラゾン類;ア
ミノ酸類;オキシム類;イミドエステル類;アミ
ド類及び種々の含窒素複素環式化合物等がある。 好ましい含窒素化合物のハロゲン化水素塩とし
ては、塩化アンモニウム、臭化アンモニウム、ヨ
ウ化アンモニウム等のアンモニアの塩類;本発明
の原料として用いられる1級アミンまたは2級ア
ミンの塩類;ジフエニルアミン、トリフエニルア
ミン等の芳香族アミンの塩類;メチルアミン、エ
チルアミン、プロピルアミン、ブチルアミン、ヘ
キシルアミン、オクチルアミン、ジメチルアミ
ン、トリメチルアミン、ジエチルアミン、トリエ
チルアミン、ジプロピルアミン、トリプロピルア
ミン、ジブチルアミン、トリプロピルアミン、メ
チルエチルアミン、ジメチルエチルアミン、ジエ
チルメチルアミン、エチルブチルアミン、ジブチ
ルメチルアミン、トリブチルアミン、トリヘキシ
ルアミン、エチレンジアミン、ヘキサメチレンジ
アミン等の脂肪族アミンの塩類;シクロプロピル
アミン、シクロヘキシルアミン、N―メチルシク
ロヘキシルアミン等の脂環族アミンの塩類;ベン
ジルアミン、N―メチルベンジルアミン、N,N
−ジエチルベンジルアミン、ジベンジルアミン等
の芳香脂肪族アミンの塩類;ピペリジン、ピペラ
ジン、モルホリン、ピリジン、キノリン、ヘキサ
メチレンテトラミン、オキサゾール、チアゾー
ル、イミダゾール、トリアゾール、ベンゾトリア
ゾール、ジアザビシクロウンデセン等の含窒素複
素環式化合物の塩類;ジメチルアセトアミド、N
―メチルピロリドン等のアミドの塩類などが用い
られる。 また第四級アンモニウムハライドとしては、ハ
ロゲン化テトラメチルアンモニウム、ハロゲン化
テトラエチルアンモニウム、ハロゲン化テトラプ
ロピルアンモニウム、ハロゲン化テトラブチルア
ンモニウム、ハロゲン化トリメチルエチルアンモ
ニウム、ハロゲン化トリメチルブチルアンモニウ
ム、ハロゲン化ジエチルジブルアンモニウム等の
脂肪族第四級アンモニウムハライド類;ハロゲン
化N,N,N―トリメチルシクロヘキシルアンモ
ニウム等の脂環族第四級アンモニウムハライド
類;ハロゲン化テトラベンジルアンモニウム、ハ
ロゲン化トリメチルベンジルアンモニウム等の芳
香脂肪族第四級アンモニウムハライド類;ハロゲ
ン化N,N,N―トリメチルフエニルアンモニウ
ム、ハロゲン化N,N,N―トリエチルフエニル
アンモニウム等の芳香族第四級アンモニウムハラ
イド類;ハロゲン化N―メチルピリジニウム、ハ
ロゲン化N―エチルピリジニウム、ハロゲン化N
―メチルキノリニウム、ハロゲン化N―エチルキ
ノリニウム、ハロゲン化N,N―ジメチルピペリ
ジニウム、ハロゲン化N,N′―ジメチルイミダ
ゾリニウム等の複素環式第四級アンモニウムハラ
イド等が好ましく用いられる。 ハロゲン化ホスホニウム化合物としては例え
ば、ハロゲン化テトラメチルホスホニウム、ハロ
ゲン化テトラエチルホスホニウム、ハロゲン化テ
トラプロピルホスホニウム、ハロゲン化テトラブ
チルホスホニウム、ハロゲン化テトラヘキシルホ
スホニウム等の対称形テトラアルキルホスホニウ
ム化合物類;ハロゲン化エチルトリメチルホスホ
ニウム、ハロゲン化ジエチルジメチルホスホニウ
ム等の非対称形テトラアルキルホスホニウム化合
物類;ハロゲン化テトラフエニルホスホニウム、
ハロゲン化テトラ(p―トリル)ホスホニウム等
の対称形テトラアリールホスホニウム化合物類;
ハロゲン化(α―ナフチル)トリフエニルホスホ
ニウム等の非対称形テトラアリールホスホニウム
化合物類;ハロゲン化メチルトリフエニルホスホ
ニウム、ハロゲン化エチルトリフエニルホスホニ
ウム、ハロゲン化フエニルトリメチルホスホニウ
ム等のアルキルアリール混合ホスホニウム化合物
類;ハロゲン化テトラベンジルホスホニウム等の
テトラアラルキルホスホニウム化合物類などが好
ましく用いられる。 ハロゲン化アルソニウム化合物としては例えば
ハロゲン化テトラメチルアルソニウム、ハロゲン
化テトラエチルアルソニウム等の対称形テトラア
ルキルアルソニウム化合物類;ハロゲン化メチル
トリエチルアルソニウム、ハロゲン化ジメチルジ
エチルアルソニウム等の非対称形テトラアルキル
アルソニウム化合物類;ハロゲン化テトラフエニ
ルアルソニウム等の対称形テトラアリールアルソ
ニウム化合物類;ハロゲン化メチルトリフエニル
アルソニウム、ハロゲン化エチルトリフエニルア
ルソニウム、ハロゲン化フエニルトリメチルアル
ソニウム等のアルキルアリール混合アルソニウム
化合物類などが好ましく用いられる。 またハロゲン化スルホニウム化合物としては例
えば、ハロゲン化トリメチルスルホニウム、ハロ
ゲン化トリエチルスルホニウム、ハロゲン化メチ
ルジエチルスルホニウム等の対称又は非対称形ア
ルキルスルホニウム化合物類;ハロゲン化トリフ
エニルスルホニウム等のアリールスルホニウム化
合物類;ハロゲン化ジメチルフエニルスルホニウ
ム、ハロゲン化メチルジフエニルスルホニウム等
のアルキルアリールスルホニウム化合物類;ハロ
ゲン化ビシクロー(2,2,1′)―ヘプタン―1
―スルホニウム、ハロゲン化チオピリリウム等の
環状スルホニウム化合物類などが好ましく用いら
れる。 これらのハロゲン化オニウム化合物は1種だけ
で用いることもできるし、2種以上を混合して用
いることもできる。もちろん1分子内に同じかま
たは異なるハロゲン化オニウムグループを2個以
上含むものであつてもよい。 またこのようなハロゲン化オニウム化合物の中
ではハロゲン種が臭素またはヨウ素であるものが
好ましく用いられ、特に好ましいのはヨウ素を含
むものである。 本発明において用いられる前記のハロゲン化オ
ニウム化合物の量については、特に制限はない
が、使用される白金族元素を含む成分の中の金属
元素の量に対して、通常0.001〜10000倍モルの範
囲で使用されるのが好ましい。 本発明の原料として用いる1級アミンまたは2
級アミン(但し、芳香族アミンは除く)とは次式 〓NH で示されるようなアミノ基を1分子中に少くとも
1つ含む化合物のことである。ここで、Nに連な
る2本の線は、窒素原子と他の原子又は基との結
合手を表わす。このような原子又は基としては水
素、ハロゲン、アルカリ金属原子、ヒドロキシル
基、アミノ基、脂肪族基、脂環族基、芳香脂肪族
基、複素環式基などがある。またこの窒素はピロ
ール、ピペリジン、ピペラジン、モルホリンなど
のように、それ自身が環を構成する要素となつて
いてもよい。 このような1級アミンとしては例えば、アンモ
ニア、メチルアミン、エチルアミン、プロピルア
ミン(各異性体)、ブチルアミン(各異性体)、ペ
ンチルアミン(各異性体)、ヘキシルアミン(各
異性体)、ドデシルアミン(各異性体)等の脂肪
族1級モノアミン類;エチレンジアミン、ジアミ
ノプロパン(各異性体)、ジアミノブタン(各異
性体)、ジアミノペンタン(各異性体)、ジアミノ
ヘキサン(各異性体)、ジアミノデカン(各異性
体)等の脂肪族1級ジアミン類;1,2,3―ト
リアミノプロパン、トリアミノヘキサン(各異性
体)、トリアミノノナン(各異性体)、トリアミノ
ドデカン(各異性体)等の脂肪族1級トリアミン
類;シクロプロピルアミン、シクロブチルアミ
ン、シクロペンチルアミン、シクロヘキシルアミ
ン、ジアミノシクロブタン、ジアミノシクロヘキ
サン(各異性体)、トリアミノシクロヘキサン
(各異性体)等の脂環族1級モノ及びポリアミン
類;ベンジルアミン、ジ(アミノメチル)ベンゼ
ン(各異性体)、アミノメチルピリジン(各異性
体)、ジ(アミノメチル)ピリジン(各異性体)、
アミノメチルナフタレン(各異性体)、ジ(アミ
ノメチル)ナフタレン(各異性体)等の芳香脂肪
族1級モノ及びポリアミン類;アミノフラン(各
異性体)、アミノテトラヒドロフラン(各異性
体)、アミノチオフエン(各異性体)、アミノピロ
ール(各異性体)、アミノピロリジン(各異性
体)などの複素環式1級アミン類などが好ましく
用いられる。 また2級アミンとしては例えば、ジメチルアミ
ン、ジエチルアミン、ジプロピルアミン、ジブチ
ルアミン、ジペンチルアミン、ジヘキシルアミ
ン、エチルメチルアミン、エチルプロピルアミ
ン、ブチルメチルアミン、エチルヘキシルアミン
等の脂肪族2級アミン類;ジシクロプロピルアミ
ン、ジシクロヘキシルアミン、メチルシクロヘキ
シルアミン等の脂環族2級アミン類;ジベンジル
アミン、エチルベンジルアミン、ジフエネチルア
ミン等の芳香脂肪族2級アミン類;ジフラニルア
ミン、ジチオフエニルアミン等の複素環式2級ア
ミン類;ピロリジン、ピロール、3―ピロリド
ン、インドール、カルバゾール、ピペリジン、ピ
ペラジン、β―ピペリドン、γ―ピペリドン、イ
ミダゾール、ピラゾール、トリアゾール、ベンゾ
イミダゾール、モルホリン、1,3―オキサジン
等の環状2級アミン類などが好ましく用いられ
る。 またこれらの1級アミン及び2級アミンにおい
て窒素に結合する有機基の1個以上の水素が他の
置換基、例えば低級脂肪族基、アミノ基、カルボ
キシル基、エステル基、アルコキシ基、シアノ
基、ハロゲン、ニトロ基、ウレタン基、スルホキ
シド基、フルホン基、カルボニル基、アミド基、
芳香族基、芳香脂肪基などによつて置換されてい
るものであつてもよい。さらにこれらの1級アミ
ン及び2級アミンにおいて、不飽和結合を有する
ものであつてもよい。 また前記のようなアミノ基が直接窒素原子を有
する有機基とN―Nで結合しているヒドラジン型
の化合物であつてもよい。 また分子内にアミノ基とヒドロキシル基を有す
る化合物、例えばエタノールアミン、プロパノー
ルアミンなども本反応に用いることができ、この
ような場合には環状ウレタンを製造することがで
きる。 これらの1級アミン及び2級アミンは1種また
はそれ以上で用いられる。 本発明に用いる有機ヒドロキシル化合物は、一
価又は多価のアルコール類、あるいは一価又は多
価のフエノール類であり、このようなアルコール
類としては、例えば炭素数1〜20の直鎖又は分枝
鎖の一価又は多価アルカノールやアルケノール、
一価又は多価のシクロアルカノールやシクロアル
ケノールやアラルキルアルコールなどがあげられ
る。さらにこれらのアルコール類は不活性な他の
置換基、例えばハロゲン原子、シアノ基、アルコ
キシ基、スルホキシド基、スルホン基、カルボニ
ル基、エステル基、アミド基などを含んでいても
よい。 このようなアルコール類の具体例として、メタ
ノール、エタノール、プロパノール(各異性
体)、ブタノール(各異性体)、ペンタノール(各
異性体)、ヘキサノール(各異性体)、ヘプタノー
ル(各異性体)、オクタノール(各異性体)、ノニ
ルアルコール(各異性体)、デシルアルコール
(各異性体)、ウンデシルアルコール(各異性
体)、ラウリルアルコール(各異性体)、トリデシ
ルアルコール(各異性体)、テトラデシルアルコ
ール(各異性体)、ペンタデシルアルコール(各
異性体)などの脂肪族アルコール類;シクロヘキ
サノール、シクロヘプタノールなどのシクロアル
カノール類;エチレングリコールモノメチルエー
テル、エチレングリコールモノエチルエーテル、
ジエチレングリコールモノメチルエーテル、ジエ
チレングリコールモノエチルエーテル、トリエチ
レングリコールモノメチルエーテル、トリエチレ
ングリコールモノエチルエーテル、プロピレング
リコールモノメチルエーチル、プロピレングリコ
ールモノエチルエーテルなどのアルキレングリコ
ールモノエーテル類;エチレングリコール、プロ
ピレングリコール、ジエチレングリコール、ジプ
ロピレングリコール、グリセリン、ヘキサントリ
オール、トリメチロールプロパンなどの多価アル
コール類;ベンジルアルコールなどのアラルキル
アルコール類などが用いられる。 またフエノール類としては例えば、フエノー
ル、各種アルキルフエノール、各種アルコキシフ
エノール、各種ハロゲン化フエノール、ジヒドロ
キシベンゼン、4,4′―ジヒドロキシ―ジフエニ
ルメタン、ビスフエノール―A、ヒドロキシナフ
タレンなどが用いられる。 本発明において用いられる酸化剤としては、通
常の酸化剤を使用しうるが、好ましいものは分子
状酸素又は有機ニトロ化合物若しくはこれらの混
合物である。特に好ましいのは分子状酸素であ
る。この分子状酸素とは純酸素又は酸素を含むも
のであつて空気でもよいし、あるいは空気又は純
酸素に反応を阻害しない他のガス、例えば窒素、
アルゴン、ヘリウム、炭酸ガスなどの不活性ガス
を加えて希釈したものであつてもよい。また場合
によつては、水素、一酸化炭素、炭化水素、ハロ
ゲン化炭化水素などのガスを含んでいてもよい。 また、有機ニトロ化合物としては脂環族、脂肪
族及び芳香族のいずれのニトロ化合物であつても
よい。脂環族ニトロ化合物としては、例えばニト
ロシクロブタン、ニトロシクロペンタン、ニトロ
シクロヘキサン、ジニトロシクロヘキサン(各異
性体)、ビス―(ニトロシクロヘキシル)―メタ
ンなどが、脂肪族ニトロ化合物としては、例えば
ニトロメタン、ニトロエタン、ニトロプロパン
(各異性体)、ニトロブタン(各異性体)、ニトロ
ペンタン(各異性体))、ニトロヘキサン(各異性
体)、ニトロデカン(各異性体)、1,2―ジニト
ロエタン、ジニトロプロパン(各異性体)、ジニ
トロブタン(各異性体)、ジニトロペンタン(各
異性体)、ジニトロヘキサン(各異性体)、ジニト
ロデカン(各異性体)、フエニルニトロメタン、
ビス―(ニトロメチル)―シクロヘキサン、ビス
―(ニトロメチル)―ベンゼンなどが、芳香族ニ
トロ化合物としては、例えばニトロベンゼン、ジ
ニトロベンゼン(各異性体)、ニトロトルエン
(各異性体)、ジニトロトルエン(各異性体)、ニ
トロピリジン(各異性体)、ジニトロピリジン
(各異性体)、ニトロナフタレン(各異性体)、ジ
ニトロナフタレン(各異性体)等があげられる。 また、これらのニトロ化合物において、少なく
とも1個の水素が他の置換基、例えばハロゲン原
子、アミノ基、シアノ基、アルキル基、脂環族
基、芳香族基、アラルキル基、アルコキシ基、ス
ルホキシド基、スルホン基、カルボニル基、エス
テル基、アミド基などで置換されていてもよい。 本発明において酸化剤が分子状酸素の場合は、
例えば1級アミンの反応は次のような一般的な反
応式に従つて進行する。 R5(NH2o+0.5n・O2 +n・CO+n・R6OH →R5(NHCOOR6)n+n・H2O (ここでR5は1級アミンの有機残基を、R6
有機ヒドロキシル化合物の有機残基を、nはアミ
ノ化合物1分子中における1級アミノ基の数を表
わす) 分子状酸素は当量よりも少なくても、多くても
よいが、酸素/一酸化炭素又は酸素/有機ヒドロ
キシル化合物の混合物は爆発界外で使用すべきで
ある。 また、有機ニトロ化合物を酸化剤として用いる
場合、有機ニトロ化合物自体も反応に与かりウレ
タンとなるので、その構造がアミノ化合物と異な
れば、それぞれの構造に応じたウレタン化合物が
得られ、両者の構造が同じであれば同じウレタン
化合物が得られることはいうまでもない。 この場合、ウレタン化反応は例えば1級アミン
の反応は次のような反応式に従つて進行する。 2R5(NH2n+R7(NO2n +3m・CO+3m・R6OH →2R5(NHCOOR6n+R7(NHCOOR6n +2m・H2O (ここでR5及びR6は前記と同じ意味をもち、
R7は有機ニトロ化合物の有機残基を、mはアミ
ノ化合物及びニトロ化合物中におけるアミノ基と
ニトロ基の数を表わす) 有機ニトロ化合物だけを酸化剤として用いる場
合、アミノ化合物と有機ニトロ化合物の量比は、
アミノ基2モル当りニトロ基1モルとなるように
するのが好ましいが、もちろんこの化学量論量比
から離れたところで実施してもかまわない。一般
にアミノ基のニトロ基に対する当量比は1.1:1
ないし4:1、好ましくは1.5:1ないし2.5:1
で実施される。 もちろん分子状酸素あるいはその他の酸化剤を
同時に使用する場合には有機ニトロ化合物は化学
量論量より少なくてもよい。 本発明方法においては、反応溶媒として有機ヒ
ドロキシル化合物を過剰に用いることが好ましい
が、必要に応じて反応に悪影響を及ぼさない溶媒
を用いることもできる。このような溶媒として
は、例えばベンゼン、トルエン、キシレン、メシ
チレンなどの芳香族炭化水素類;クロルベンゼ
ン、ジクロルベンゼン、トリクロルベンゼン、フ
ルオロベンゼン、クロルトルエン、クロルナフタ
レン、ブロムナフタリンなどのハロゲン化芳香族
炭化水素類;クロルヘキサン、クロルシクロヘキ
サン、トリクロルトリフルオロエタン、塩化メチ
レン、四塩化炭素などのハロゲン化脂肪族炭化水
素あるいはハロゲン化脂環族炭化水素類;アセト
ニトリル、ベンゾニトリルなどのニトリル類;ス
ルホラン、メチルスルホラン、ジメチルスルホラ
ンなどのスルホン類;テトラヒドロフラン、1,
4―ジオキサン、1,2―ジメトキシエタンなど
のエーテル類;アセトン、メチルエチルケトンな
どのケトン類;酢酸エチル、安息香酸エチルなど
のエステル類;N,N―ジメチルホルムアミド、
N,N―ジメチルアセトアミド、N―メチルピロ
リドン、ヘキサメチルホスホルアミドなどのアミ
ド類などがあげられる。 本発明方法において、
反応をより効率的に行うために必要に応じて他の
添加物を反応系に加えることもできる。このよう
な添加物として、例えばゼオライト類、3級アミ
ン類、およびハロゲン化水素酸、ホウ酸、アルミ
ン酸、炭酸、ケイ酸、有機酸などの酸のアルカリ
金属塩やアルカリ土類金属塩類が好適である。 本発明方法において、反応は通常80〜300℃、
好ましくは120〜220℃の温度範囲で行われる。ま
た反応圧力は5〜500Kg/cm2、好ましくは20〜300
Kg/cm2の範囲であり、反応時間は反応系、触媒系
及びその他の反応条件によつて異なるが、通常数
分〜数時間である。 また、本発明の反応は回分式でも実施しうる
し、連続的に反応成分を供給しながら連続的に反
応液を抜き出す連続方式でも実施しうる。 次に実施例によつて本発明をさらに詳細に説明
するが、本発明はこれらの実施例に限定されるも
のではない。 実施例 1 内容積140mlのかきまぜ式オートクレーブにシ
クロヘキシルアミン40m mol、エタノール40ml、
パラジウム黒0.5mg atom、ヨウ化テトラメチル
アンモニウム2m molを入れ系内を一酸化炭素で
置換したのち、一酸化炭素を80Kg/cm2、次いで酸
素6Kg/cm2を圧入した。かきまぜながら160℃で1
時間反応させた後、反応混合物をろ過して淡黄色
溶液を得た。この溶液を分析した結果、シクロヘ
キシルアミンの反応率は82%、N―シクロヘキシ
ルカルバミン酸エチルの収率は80%で選択率は98
%であつた。 この溶液から減圧下にエタノールを留去すると
淡黄色結晶が析出した。この粗結晶は純度98%の
N―シクロヘキシルカルバミン酸エチルであり、
1回エタノールから再結晶させることによつて純
度100%の白色結晶が得られた。 実施例 2〜16 ヨウ化テトラメチルアンモニウムの代りに種々
のハロゲン化オニウム化合物2m molを用いた以
外は実施例1と同様の反応を行つた結果を第1表
に示す。
The present invention relates to a method for producing urethane, and more specifically, using a catalyst system consisting of a platinum group metal or a compound containing a platinum group element and an onium compound whose anion is a halogen, in the presence of an oxidizing agent, This invention relates to a method for producing urethane by reacting a primary amine or a secondary amine (excluding aromatic amines) with carbon monoxide and an organic hydroxyl compound. Urethanes are important compounds used in carbamate-based pesticides, etc., but conventionally, they have been made by reacting the corresponding isocyanates with alcohols, or by reacting them with alcohols.
It was produced by a method in which the corresponding amines and chloroformic acid esters were reacted. However, all of these methods have drawbacks, such as the need to use highly toxic and corrosive phosgene in order to produce isocyanates or chloroformates used as raw materials. On the other hand, a method has also been proposed in which primary amine, carbon monoxide, and alcohol are oxidatively converted into urethane using a noble metal catalyst without using phosgene. (Japanese Unexamined Patent Publication No. 120551/1983) However, in this method, the cocatalyst is a Lewis acid such as copper chloride, iron chloride, iron oxychloride, vanadium chloride, vanadium oxychloride, etc., and is capable of carrying out a redox reaction in the reaction system. Elemental chlorides must be dissolved in the reaction system, and these dissolved chlorides are highly corrosive to metal materials such as reaction vessels, piping, and valves, so expensive metal materials must be used. There is a problem with the equipment. Furthermore, in order to separate and recover these dissolved chlorides from the product urethanes, not only do they require complicated operations and a large amount of cost, but these cocatalysts also have the disadvantage of being difficult to use in redox reactions. Since the hydrogen chloride produced in the reduced state becomes the hydrochloride of unreacted amine, it cannot be completely returned to the original chloride even by reoxidation in the reaction system, and therefore it is not recovered. The drawback is that these cocatalysts also have to be re-prepared when the reaction is repeated, since some are sometimes partially reduced. In order to overcome these drawbacks, the present inventors have made the following points:
As a result of extensive research into methods for producing urethane by oxidatively converting primary or secondary amines (excluding aromatic amines) into urethanes, we found that Lewis acid and redox reactions are the main causes of these drawbacks. We have discovered a new catalyst system that allows the reaction to proceed catalytically without the use of chlorides of elements that carry out the reaction, and based on this knowledge, we have completed the present invention. That is, in the present invention, in producing urethane by reacting a primary amine or a secondary amine (excluding aromatic amines) with carbon monoxide and an organic hydroxyl compound in the presence of an oxidizing agent, (a) At least one selected from platinum group metals and compounds containing platinum group elements, and (b) selected from onium compounds whose anions are halogens and compounds that can produce these in a reaction system. The present invention provides a method for producing urethane characterized by using a catalyst system comprising at least one type. As described above, a major feature of the present invention is that at least one compound selected from platinum group metals and compounds containing platinum group elements, and at least one compound selected from onium compounds whose anion is a halogen. By using this catalyst system, urethane can be obtained with good selectivity and high yield from primary amines or secondary amines. This fact is truly surprising and has not been known until now, and could not have been expected from the prior art mentioned above (Japanese Unexamined Patent Publication No. 120551/1983). That is, in this prior art, a catalyst system in which a platinum group compound is used as a main catalyst and a chloride of an element that can undergo a redox reaction in a reaction system is used as a co-catalyst, such as palladium chloride as a typical example, is used. A catalyst system that combines iron oxychloride with iron oxychloride is used. In such a system, divalent palladium is involved in the reaction and is reduced to zero as the reaction progresses.
At the same time, trivalent iron is reduced to divalent iron, and this divalent iron is further oxidized. It is thought that the main product, urethane, is produced through a catalytic cycle of the so-called Watzker reaction type, in which iron is reoxidized by a chemical agent and returned to trivalent iron. As described above, in the prior art methods, it has been shown that the chloride of an element having a redox effect in the reaction system is essential as a reoxidizing agent for the main catalyst. Elements that have such a function are those that can undergo redox reactions selected from the elements of groups a to a and groups b to b of the periodic table, and specifically include copper and zinc. , mercury, thallium, tin, titanium, arsenic, antimony, bismuth, vanadium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, etc. Among them, only copper, vanadium, manganese, and iron have been tested. These examples are only described as examples, and these examples only involve urethanization reactions of aromatic primary amines, and do not exemplify reactions of aliphatic amines or alicyclic amines. In contrast, the method of the present invention uses onium compounds whose anions are halogens or compounds that can generate these in a reaction system, and these compounds do not contain any metal components or Under normal reaction conditions, the cation moiety cannot undergo a redox reaction. Therefore, it is presumed that the reaction of the present invention proceeds by a completely different reaction mechanism from the reactions described in the prior art. It is unclear how onium compounds whose anions are halogens act in the reaction of the present invention, but when combined with platinum group metals or compounds containing platinum group elements, primary It is clear that it plays an important role as a catalyst component in the oxidative urethanization reaction of amines or secondary amines. In other words, the urethanization reaction of this reaction will not proceed quickly if only an onium compound whose anion is a halogen is used, and even if only a platinum group metal or a compound containing a platinum group element is used, under the conditions of this reaction, urethane formation will not proceed quickly. The chemical reaction hardly progresses, or even if it does proceed, only a small amount of urethane is obtained, and especially when only platinum group elements in a metallic state are used, hardly any urethane is obtained. For example, palladium is one of the effective catalyst components for this reaction, but the reaction hardly progresses if only palladium black, which is zero-valent metal palladium, is used alone. However, when an onium compound whose anion is a halogen, such as tetramethylammonium iodide, is added, urethane can be obtained almost quantitatively. In this way, in the method of the present invention, a solid platinum group compound in a metallic state can also be used as one of the catalyst components, which means that the expensive platinum group compound can be separated from the reaction system by a simple method such as filtration. , it has been shown that it can be recovered, which is industrially advantageous. Another major feature of the present invention is that it uses onium compounds whose anions are halogens, and since most of these compounds are water-soluble, they can be easily separated and recovered from the product. Unlike conventionally used heavy metal chlorides, they do not mix into products as contaminants. The platinum group metal and platinum group element-containing compound used in the method of the present invention may contain at least one component selected from platinum group elements such as palladium, rhodium, platinum, ruthenium, iridium, and osmium. There are no particular limitations on these elements, and these elements may be in a metallic state or may be components forming a compound. In addition, these catalyst components include activated carbon, graphite,
Silica, alumina, silica - alumina, silica -
It may be supported on a carrier such as titania, titania, zirconia, barium sulfate, calcium carbonate, asbestos, bentonite, diatomaceous earth, polymer, ion exchange resin, zeolite, molecular sieve, magnesium silicate, magnesia, etc. . Examples of platinum group elements in the metallic state include metals such as palladium, rhodium, platinum, ruthenium, iridium, and osmium, these metal blacks, and catalyst components containing these metal ions on the above-mentioned carrier, and then hydrogen and Those reduced with formaldehyde, alloys or intermetallic compounds containing these metals, etc. are used. Further, the alloy or intermetallic compound may be one of these platinum group metals, or may be one of these platinum group metals, or may contain other elements such as selenium, tellurium, sulfur, antimony, bismuth,
Copper, silver, gold, zinc, tin, vanadium, iron, cobalt, nickel, mercury, lead, thallium, chromium,
It may also contain molybdenum, tungsten, or the like. On the other hand, compounds containing platinum group elements include, for example, inorganic salts such as halides, sulfates, nitrates, phosphates, and borates; organic acid salts such as acetates, oxalates, and formates; and cyanides. ; Hydroxides; Oxides; Sulfides; Nitro group, cyano group,
Complex compounds of metals such as metal salts containing anions such as halogens and oxalate ions, and salts or complexes containing ammonia, amines, phosphines, carbon monoxide, chelate ligands, etc.; organic ligands or organic groups Examples include organometallic compounds having the following. Among these catalyst components, those containing palladium or rhodium or both are particularly preferred, such as Pd black; Pd black;
-C, Pd-Al 2 O 3 , Pd-SiO 2 , Pd-TiO 2 , Pd-
Supported palladium catalysts such as ZrO 2 , Pd-BaSO 4 , Pd-CaCO 3 , Pd-asbestos, Pd-zeolite, Pd-molecular sieve; Pd-Pb, Pd-
Se, Pd-Te, Pd-Hg, Pd-Tl, Pd-P, Pd-
Cu, Pd―Ag, Pd―Fe, Pd―Co, Pd―Ni, Pd―
Alloys or intermetallic compounds such as Rh; and these alloys or intermetallic compounds supported on the above-mentioned supports; PdCl 2 , PdBr 2 , PdI 2 , Pd
(NO 3 ) 2 , PdSO 4 and other inorganic salts; Pd
(OCOCH 3 ) 2 , organic acid salts such as palladium oxalate; Pd(CN) 2 ; PdO; PdS; M 2 [PdX 4 ], M 2
Palladate salts represented by [PdX 6 ] (M represents an alkali metal or ammonium ion,
represents a nitro group, a cyano group, or a halogen. ); Ammine complexes of palladium such as [Pd(NH 3 ) 4 ] X 2 , [Pd(en) 2 ] ) 2 , PdCl 2 (PR 3 ) 2 , Pd
(CO)( PR3 ) 3 , Pd( PPh3 ) 4 , PdCl(R)
(PPh 3 ) 2 , Pd(C 2 H 4 )(PPh 3 ) 2 , Pd(C 3 H 5 ) 2 and other complex compounds or organometallic compounds (R represents an organic group); Pd(acac) 2 Complex compounds coordinated with chelate ligands such as Ph black; supported rhodium catalysts similar to Pd; Rh alloys or intermetallic compounds similar to Pd, and those supported on supports; RhCl 3
and hydrates, RhBr 3 and hydrates, RhI 3 and hydrates, Rh 2 (SO 4 ) 3 and inorganic salts such as hydrates; Rh 2
(OCOCH 3 ) 4 ; Rh 2 O 3 , RhO 2 ; M 3 [RhX 6 ] and hydrates (M and X have the same meanings as above); [Rh
Rhodium ammine complexes such as ( NH3 ) 5 ] X3 , [Rh(en) 3 ] X3 ; Rhodium carbonyl clusters such as Rh4 (CO) 12 , Rh6 (CO) 16 ;
(CO) 2 ] 2 , RhCl 3 (PR 3 ) 3 , RhCl (PPh 3 ) 3 , RhX
Complex compounds or organometallic compounds such as (CO)L 2 (X has the same meaning as above, and L is a ligand consisting of an organophosphorus compound and an organoarsenic compound), RhH(CO)(PPh 3 ) 3 There are many types. In the present invention, only one type of these platinum group metals or compounds containing platinum group elements may be used, or two or more types may be used as a mixture, and there is no particular restriction on the amount used. Usually, it is desirable that the amount of the component containing the platinum group element is in the range of 0.0001 to 50 mol % based on the amine. Furthermore, the onium compound used in the present invention, in which the anion is a halogen, is a compound containing an element with a lone pair of electrons, and a proton or other cationic reagent is bonded to these lone pairs to generate a lone electron. An element having a pair increases the valence of a covalent bond by 1 to become a cation, and has a halogen anion as a counter ion. Examples of such onium compounds include ammonium compounds, phosphonium compounds ([R 1 R 2 R 3 R 4 P] X), arsonium compounds ( [ R 1 R 2 R 3 R 4 As] R 2 R 3 R 4 Sb]X), oxonium compounds ([ R 1 R 2 R 3 O ] R 3 S] (O)X) , selenonium compounds, ([ R 1 R 2 R 3 Se ] 3 Sn]X) , iodonium compounds ( [ R 1 R 2 I ] Represents a group selected from group groups and aromatic aliphatic groups, each of which may be the same or, in some cases, may be a constituent element of a ring containing an element having a lone pair of electrons. X represents a halogen selected from F, Cl, Br, and I as described above.Such halogenated onium compounds include ammonia, amines, phosphine compounds, arsine compounds, It is easily obtained by reaction with stibine compounds, oxy compounds, sulfide compounds, sulfoxide compounds, selenide compounds, telluride compounds, etc. These compounds may be produced outside the reaction system, or These may be produced within the system. Of course, they may be produced by other methods, or may be produced within the reaction system by other methods. Preferred are halogenated ammonium compounds, halogenated phosphonium compounds, halogenated arsonium compounds and halogenated sulfonium compounds, and particularly preferred are halogenated ammonium compounds and halogenated phosphonium compounds. formula() Hydrogen halide salts and quaternary ammonium halides of nitrogen-containing compounds having the group represented by Here, three or four lines connected to N represent bonds between the nitrogen atom and other atoms or groups, and X represents F, Cl, Br, and I as described above. In formula (), examples of atoms or groups bonded to nitrogen include hydrogen, alkali metal atoms, hydroxyl groups, aliphatic groups, alicyclic groups, aromatic groups, araliphatic groups, and heterocyclic groups. Further, in formula (), nitrogen itself may be an element constituting a ring, as in, for example, piperidine, pyridine, or quinoline. Furthermore, two or more groups represented by formula () may be present in the molecule. Such ammonium halide compounds are
It can be easily obtained by a reaction between a corresponding nitrogen-containing compound and a hydrogen halide, or a reaction between a nitrogen-containing compound and an alkyl halide or an aryl halide. Examples of nitrogen-containing compounds that can form salts or quaternary ammonium halides with hydrogen halides, alkyl halides, or aryl halides include ammonia; primary amines, secondary amines, and tertiary amines. hydroxylamines; hydrazines; hydrazones; amino acids; oximes; imidoesters; amides and various nitrogen-containing heterocyclic compounds. Preferred hydrogen halide salts of nitrogen-containing compounds include ammonia salts such as ammonium chloride, ammonium bromide, and ammonium iodide; salts of primary amines or secondary amines used as raw materials of the present invention; diphenylamine, triphenylamine; Salts of aromatic amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, dimethylamine, trimethylamine, diethylamine, triethylamine, dipropylamine, tripropylamine, dibutylamine, tripropylamine, methylethylamine , salts of aliphatic amines such as dimethylethylamine, diethylmethylamine, ethylbutylamine, dibutylmethylamine, tributylamine, trihexylamine, ethylenediamine, hexamethylenediamine; fatty acids such as cyclopropylamine, cyclohexylamine, N-methylcyclohexylamine, etc. Salts of cyclic amines; benzylamine, N-methylbenzylamine, N,N
-Salts of aromatic aliphatic amines such as diethylbenzylamine, dibenzylamine; Salts of nitrogen heterocyclic compounds; dimethylacetamide, N
- Amide salts such as methylpyrrolidone are used. Examples of quaternary ammonium halides include tetramethylammonium halide, tetraethylammonium halide, tetrapropylammonium halide, tetrabutylammonium halide, trimethylethylammonium halide, trimethylbutylammonium halide, diethyl dibruammonium halide. Aliphatic quaternary ammonium halides such as halogenated N,N,N-trimethylcyclohexyl ammonium; alicyclic quaternary ammonium halides such as halogenated N,N,N-trimethylcyclohexylammonium; aromatic aliphatic such as halogenated tetrabenzylammonium, halogenated trimethylbenzylammonium, etc. Quaternary ammonium halides; aromatic quaternary ammonium halides such as halogenated N,N,N-trimethylphenylammonium, halogenated N,N,N-triethylphenylammonium; halogenated N-methylpyridinium, Halogenated N-ethylpyridinium, Halogenated N
- Heterocyclic quaternary ammonium halides such as methylquinolinium, halogenated N-ethylquinolinium, halogenated N,N-dimethylpiperidinium, and halogenated N,N'-dimethylimidazolinium are preferred. used. Examples of halogenated phosphonium compounds include symmetrical tetraalkylphosphonium compounds such as halogenated tetramethylphosphonium, halogenated tetraethylphosphonium, halogenated tetrapropylphosphonium, halogenated tetrabutylphosphonium, and halogenated tetrahexylphosphonium; halogenated ethyltrimethyl Phosphonium, asymmetric tetraalkylphosphonium compounds such as halogenated diethyldimethylphosphonium; halogenated tetraphenylphosphonium,
Symmetrical tetraarylphosphonium compounds such as halogenated tetra(p-tolyl)phosphonium;
Asymmetric tetraarylphosphonium compounds such as halogenated (α-naphthyl)triphenylphosphonium; alkylaryl mixed phosphonium compounds such as halogenated methyltriphenylphosphonium, halogenated ethyltriphenylphosphonium, and halogenated phenyltrimethylphosphonium; halogen Tetraaralkylphosphonium compounds such as tetrabenzylphosphonium oxide are preferably used. Examples of halogenated arsonium compounds include symmetrical tetraalkylarsonium compounds such as tetramethylarsonium halide and tetraethylarsonium halide; asymmetrical tetraalkylarsonium compounds such as methyltriethylarsonium halide and dimethyldiethylarsonium halide; Symmetrical tetraarylarsonium compounds such as halogenated tetraphenylarsonium; alkylaryl mixtures such as halogenated methyltriphenylarsonium, halogenated ethyltriphenylarsonium, and halogenated phenyltrimethylarsonium Arsonium compounds and the like are preferably used. Examples of halogenated sulfonium compounds include symmetrical or asymmetrical alkylsulfonium compounds such as trimethylsulfonium halide, triethylsulfonium halide, and methyldiethylsulfonium halide; arylsulfonium compounds such as triphenylsulfonium halide; dimethyl halide Alkylarylsulfonium compounds such as phenylsulfonium and halogenated methyldiphenylsulfonium; halogenated bicyclo(2,2,1')-heptane-1
- Cyclic sulfonium compounds such as sulfonium and thiopyrylium halide are preferably used. These halogenated onium compounds can be used alone or in combination of two or more. Of course, one molecule may contain two or more of the same or different onium halide groups. Further, among such halogenated onium compounds, those in which the halogen species is bromine or iodine are preferably used, and those containing iodine are particularly preferred. The amount of the onium halide compound used in the present invention is not particularly limited, but is usually in the range of 0.001 to 10,000 times the amount of the metal element in the platinum group element-containing component used. It is preferably used in Primary amine or secondary amine used as raw material of the present invention
A class amine (excluding aromatic amines) is a compound containing at least one amino group in one molecule as shown by the following formula: NH. Here, the two lines connected to N represent bonds between the nitrogen atom and other atoms or groups. Examples of such atoms or groups include hydrogen, halogen, alkali metal atoms, hydroxyl groups, amino groups, aliphatic groups, alicyclic groups, araliphatic groups, and heterocyclic groups. Further, this nitrogen may itself be an element constituting a ring, such as in pyrrole, piperidine, piperazine, morpholine, and the like. Examples of such primary amines include ammonia, methylamine, ethylamine, propylamine (each isomer), butylamine (each isomer), pentylamine (each isomer), hexylamine (each isomer), and dodecylamine. Aliphatic primary monoamines such as (each isomer); ethylenediamine, diaminopropane (each isomer), diaminobutane (each isomer), diaminopentane (each isomer), diaminohexane (each isomer), diaminodecane Aliphatic primary diamines such as (each isomer); 1,2,3-triaminopropane, triaminohexane (each isomer), triaminononane (each isomer), triaminododecane (each isomer) alicyclic primary triamines such as cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, diaminocyclobutane, diaminocyclohexane (each isomer), triaminocyclohexane (each isomer); Polyamines; benzylamine, di(aminomethyl)benzene (each isomer), aminomethylpyridine (each isomer), di(aminomethyl)pyridine (each isomer),
Aroaliphatic primary mono- and polyamines such as aminomethylnaphthalene (each isomer), di(aminomethyl)naphthalene (each isomer); aminofuran (each isomer), aminotetrahydrofuran (each isomer), aminothio Heterocyclic primary amines such as phene (all isomers), aminopyrrole (all isomers), and aminopyrrolidine (all isomers) are preferably used. Examples of secondary amines include aliphatic secondary amines such as dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, ethylmethylamine, ethylpropylamine, butylmethylamine, and ethylhexylamine; Alicyclic secondary amines such as cyclopropylamine, dicyclohexylamine, methylcyclohexylamine; aromatic aliphatic secondary amines such as dibenzylamine, ethylbenzylamine, diphenethylamine; difuranylamine, dithiophenylamine, etc. Heterocyclic secondary amines; pyrrolidine, pyrrole, 3-pyrrolidone, indole, carbazole, piperidine, piperazine, β-piperidone, γ-piperidone, imidazole, pyrazole, triazole, benzimidazole, morpholine, 1,3-oxazine, etc. Cyclic secondary amines and the like are preferably used. In addition, in these primary amines and secondary amines, one or more hydrogens of the organic group bonded to nitrogen may be substituted with other substituents, such as lower aliphatic groups, amino groups, carboxyl groups, ester groups, alkoxy groups, cyano groups, Halogen, nitro group, urethane group, sulfoxide group, fluorone group, carbonyl group, amide group,
It may be substituted with an aromatic group, an aromatic aliphatic group, or the like. Furthermore, these primary amines and secondary amines may have unsaturated bonds. Further, it may be a hydrazine type compound in which the above-mentioned amino group is directly bonded to an organic group having a nitrogen atom through N—N. Compounds having an amino group and a hydroxyl group in the molecule, such as ethanolamine and propanolamine, can also be used in this reaction, and in such cases, a cyclic urethane can be produced. One or more of these primary amines and secondary amines may be used. The organic hydroxyl compound used in the present invention is a monohydric or polyhydric alcohol, or a monohydric or polyhydric phenol, and examples of such alcohol include linear or branched alcohols having 1 to 20 carbon atoms. monohydric or polyhydric alkanols or alkenols in the chain,
Examples include monovalent or polyvalent cycloalkanols, cycloalkenols, and aralkyl alcohols. Furthermore, these alcohols may contain other inert substituents, such as halogen atoms, cyano groups, alkoxy groups, sulfoxide groups, sulfone groups, carbonyl groups, ester groups, and amide groups. Specific examples of such alcohols include methanol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), Octanol (each isomer), Nonyl alcohol (each isomer), Decyl alcohol (each isomer), Undecyl alcohol (each isomer), Lauryl alcohol (each isomer), Tridecyl alcohol (each isomer), Tetra Aliphatic alcohols such as decyl alcohol (each isomer) and pentadecyl alcohol (each isomer); cycloalkanols such as cyclohexanol and cycloheptanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether,
Alkylene glycol monoethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; ethylene glycol, propylene glycol, diethylene glycol, Polyhydric alcohols such as propylene glycol, glycerin, hexanetriol, and trimethylolpropane; aralkyl alcohols such as benzyl alcohol are used. Examples of phenols that can be used include phenol, various alkylphenols, various alkoxyphenols, various halogenated phenols, dihydroxybenzene, 4,4'-dihydroxy-diphenylmethane, bisphenol-A, and hydroxynaphthalene. The oxidizing agent used in the present invention may be any conventional oxidizing agent, but preferred are molecular oxygen, organic nitro compounds, or mixtures thereof. Particularly preferred is molecular oxygen. This molecular oxygen is pure oxygen or a substance containing oxygen, which may be air, or other gases that do not inhibit the reaction of air or pure oxygen, such as nitrogen,
It may be diluted by adding an inert gas such as argon, helium, or carbon dioxide. In some cases, it may also contain gases such as hydrogen, carbon monoxide, hydrocarbons, and halogenated hydrocarbons. Further, the organic nitro compound may be any of alicyclic, aliphatic, and aromatic nitro compounds. Examples of alicyclic nitro compounds include nitrocyclobutane, nitrocyclopentane, nitrocyclohexane, dinitrocyclohexane (each isomer), bis-(nitrocyclohexyl)-methane, and examples of aliphatic nitro compounds include nitromethane, nitroethane, Nitropropane (each isomer), Nitrobutane (each isomer), Nitropentane (each isomer)), Nitrohexane (each isomer), Nitrodecane (each isomer), 1,2-dinitroethane, Dinitropropane (each isomer), dinitrobutane (each isomer), dinitropentane (each isomer), dinitrohexane (each isomer), dinitrodecane (each isomer), phenylnitromethane,
Bis-(nitromethyl)-cyclohexane, bis-(nitromethyl)-benzene, etc.; examples of aromatic nitro compounds include nitrobenzene, dinitrobenzene (each isomer), nitrotoluene (each isomer), dinitrotoluene (each isomer) , nitropyridine (each isomer), dinitropyridine (each isomer), nitronaphthalene (each isomer), dinitronaphthalene (each isomer), and the like. In addition, in these nitro compounds, at least one hydrogen has another substituent, such as a halogen atom, an amino group, a cyano group, an alkyl group, an alicyclic group, an aromatic group, an aralkyl group, an alkoxy group, a sulfoxide group, It may be substituted with a sulfone group, carbonyl group, ester group, amide group, etc. In the present invention, when the oxidizing agent is molecular oxygen,
For example, the reaction of primary amines proceeds according to the following general reaction formula. R 5 (NH 2 ) o +0.5n・O 2 +n・CO+n・R 6 OH →R 5 (NHCOOR 6 )n+n・H 2 O (here, R 5 is the organic residue of the primary amine, and R 6 is The organic residue of the organic hydroxyl compound (n represents the number of primary amino groups in one molecule of the amino compound) Molecular oxygen may be less or more than the equivalent amount, but oxygen / carbon monoxide or oxygen /Organic hydroxyl compound mixtures should be used outside the explosive field. In addition, when an organic nitro compound is used as an oxidizing agent, the organic nitro compound itself also participates in the reaction and becomes urethane, so if the structure is different from the amino compound, a urethane compound corresponding to each structure will be obtained, and the structure of both will be different. It goes without saying that the same urethane compound can be obtained if they are the same. In this case, the urethanization reaction, for example, the reaction of a primary amine, proceeds according to the following reaction formula. 2R 5 (NH 2 ) n +R 7 (NO 2 ) n +3m・CO+3m・R 6 OH →2R 5 (NHCOOR 6 ) n +R 7 (NHCOOR 6 ) n +2m・H 2 O (Here, R 5 and R 6 are has the same meaning as above,
( R7 represents the organic residue of the organic nitro compound, m represents the number of amino groups and nitro groups in the amino compound and the nitro compound) When only the organic nitro compound is used as an oxidizing agent, the amount of the amino compound and the organic nitro compound The ratio is
Although it is preferable to use 1 mole of nitro group per 2 moles of amino group, it is of course possible to carry out the reaction at a value deviating from this stoichiometric ratio. Generally, the equivalent ratio of amino group to nitro group is 1.1:1
4:1 to 4:1, preferably 1.5:1 to 2.5:1
It will be carried out in Of course, if molecular oxygen or other oxidizing agents are used at the same time, the amount of organic nitro compound may be less than the stoichiometric amount. In the method of the present invention, it is preferable to use an excess of the organic hydroxyl compound as the reaction solvent, but if necessary, a solvent that does not adversely affect the reaction can also be used. Examples of such solvents include aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; halogenated aromatics such as chlorobenzene, dichlorobenzene, trichlorobenzene, fluorobenzene, chlorotoluene, chlornaphthalene, and bromnaphthalene. Hydrocarbons; halogenated aliphatic hydrocarbons or halogenated alicyclic hydrocarbons such as chlorhexane, chlorocyclohexane, trichlorotrifluoroethane, methylene chloride, and carbon tetrachloride; nitriles such as acetonitrile and benzonitrile; sulfolane, Sulfones such as methylsulfolane and dimethylsulfolane; tetrahydrofuran, 1,
Ethers such as 4-dioxane and 1,2-dimethoxyethane; Ketones such as acetone and methyl ethyl ketone; Esters such as ethyl acetate and ethyl benzoate; N,N-dimethylformamide,
Examples include amides such as N,N-dimethylacetamide, N-methylpyrrolidone, and hexamethylphosphoramide. In the method of the present invention,
Other additives can also be added to the reaction system as necessary to carry out the reaction more efficiently. Suitable examples of such additives include zeolites, tertiary amines, and alkali metal salts and alkaline earth metal salts of acids such as hydrohalic acid, boric acid, aluminic acid, carbonic acid, silicic acid, and organic acids. It is. In the method of the present invention, the reaction is usually carried out at 80 to 300°C.
Preferably it is carried out at a temperature range of 120 to 220°C. The reaction pressure is 5 to 500Kg/cm 2 , preferably 20 to 300Kg/cm 2 .
Kg/ cm2 , and the reaction time varies depending on the reaction system, catalyst system, and other reaction conditions, but is usually from several minutes to several hours. Furthermore, the reaction of the present invention can be carried out either batchwise or continuously, in which the reaction solution is continuously extracted while continuously supplying the reaction components. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 In a stirring autoclave with an internal volume of 140 ml, 40 m mol of cyclohexylamine, 40 ml of ethanol,
After adding 0.5 mg atom of palladium black and 2 mmol of tetramethylammonium iodide and replacing the inside of the system with carbon monoxide, 80 kg/cm 2 of carbon monoxide and then 6 kg/cm 2 of oxygen were introduced under pressure. 1 at 160℃ while stirring
After reacting for an hour, the reaction mixture was filtered to obtain a pale yellow solution. As a result of analyzing this solution, the reaction rate of cyclohexylamine was 82%, the yield of ethyl N-cyclohexylcarbamate was 80%, and the selectivity was 98%.
It was %. When ethanol was distilled off from this solution under reduced pressure, pale yellow crystals were precipitated. This crude crystal is ethyl N-cyclohexylcarbamate with a purity of 98%.
White crystals with 100% purity were obtained by recrystallizing once from ethanol. Examples 2 to 16 Table 1 shows the results of the same reaction as in Example 1, except that 2 mmol of various onium halide compounds were used in place of tetramethylammonium iodide.

【表】【table】

【表】 比較例 1 ハロゲン化オニウム化合物を全く用いないでパ
ラジウム黒のみを用いて実施例1と同様の反応を
行つた結果、シクロヘキシルアミンの反応率は10
%で、N―シクロヘキシルカルバミン酸エチル
は、わずか3%の収率で生成しているに過ぎなか
つた。 実施例 17 内容積200mlのかきまぜ式オートクレーブにβ
―フエネチルアミン50m mol、エタノール50ml、
活性炭に5w%のロジウムを担持したRh/C1g、
ヨウ化テトラメチルアンモニウム3m molを入
れ、系内を一酸化炭素で置換した後、一酸化炭素
を80Kg/cm2、次いで酸素6Kg/cm2を圧入した。かき
まぜながら160℃で1時間反応させた後、反応混
合物をろ過してろ液を分析した結果、β―フエネ
チルアミンの反応率は80%、N―(β―フエネチ
ル)カルバミン酸エチルの収率は72%で選択率は
90%であつた。 比較例 2 ヨウ化テトラメチルアンモニウムを用いないで
実施例17と同じ反応を行つたが、β―フエネチル
アミンの反応率は9%で、N―(β―フエネチ
ル)カルバミン酸エチルの収率は2%以下であつ
た。 実施例 18 Rh/Cの代りにルテニウム黒0.5m molを用い
た以外は実施例17と同様の反応を行つた結果、β
―フエネチルアミンの反応率は55%で、N―(β
―フエネチル)カルバミン酸エチルの収率は45%
で選択率は82%であつた。 比較例 3 ヨウ化テトラメチルアンモニウムを用いないで
実施例18と同じ反応を行つたが、β―フエネチル
アミンの反応率は8%で、N―(β―フエネチ
ル)カルバミン酸エチルの収率は2%以下であつ
た。 実施例 19 内容積200mlのかきまぜ式オートクレーブにn
―オクチルアミン30m mol ニトロベンゼン15m
mol、メタノール50ml、塩化パラジウム0.5m mol
ヨウ化テトラブチルアンモニウム3m molを入
れ、系内を一酸化炭素で置換した後、一酸化炭素
140Kg/cm2を圧入した。かきまぜながら180℃で5
時間反応させた。反応液を分析した結果、n―オ
クチルアミン及びニトロベンゼンの反応率はそれ
ぞれ35%及び42%で、N―n―オクチルカルバミ
ン酸メチル及びN―フエニルカルバミン酸メチル
がそれぞれ7m mol及び3m mol生成していた。 実施例 20〜26 実施例1においてパルジウム黒の代りに種々の
白金族金属又は白金族元素を含む化合物を用いて
同様の反応を行つた結果を第2表に示す。
[Table] Comparative Example 1 The same reaction as in Example 1 was carried out using only palladium black without using any onium halide compound. As a result, the reaction rate of cyclohexylamine was 10
%, ethyl N-cyclohexylcarbamate was produced in a yield of only 3%. Example 17 β in a stirring autoclave with an internal volume of 200 ml.
-Phenethylamine 50m mol, ethanol 50ml,
1g of Rh/C with 5w% rhodium supported on activated carbon,
After adding 3 mmol of tetramethylammonium iodide and replacing the inside of the system with carbon monoxide, 80 kg/cm 2 of carbon monoxide and then 6 kg/cm 2 of oxygen were introduced under pressure. After reacting at 160°C for 1 hour with stirring, the reaction mixture was filtered and the filtrate was analyzed. As a result, the reaction rate of β-phenethylamine was 80%, and the yield of ethyl N-(β-phenethyl)carbamate was 72%. The selection rate is
It was 90%. Comparative Example 2 The same reaction as in Example 17 was carried out without using tetramethylammonium iodide, but the reaction rate of β-phenethylamine was 9% and the yield of ethyl N-(β-phenethyl)carbamate was 2%. It was below. Example 18 The same reaction as in Example 17 was carried out except that 0.5 mmol of ruthenium black was used instead of Rh/C. As a result, β
-The reaction rate of phenethylamine is 55%, and N-(β
The yield of ethyl carbamate (phenethyl) is 45%.
The selection rate was 82%. Comparative Example 3 The same reaction as in Example 18 was carried out without using tetramethylammonium iodide, but the reaction rate of β-phenethylamine was 8% and the yield of ethyl N-(β-phenethyl)carbamate was 2%. It was below. Example 19 In a stirring autoclave with an internal volume of 200 ml.
-Octylamine 30m mol Nitrobenzene 15m
mol, methanol 50ml, palladium chloride 0.5m mol
Add 3mmol of tetrabutylammonium iodide and replace the system with carbon monoxide.
140Kg/cm 2 was press-fitted. 5 at 180℃ while stirring
Allowed time to react. As a result of analyzing the reaction solution, the reaction rates of n-octylamine and nitrobenzene were 35% and 42%, respectively, and 7 mmol and 3 mmol of methyl N-n-octylcarbamate and methyl N-phenylcarbamate were produced, respectively. was. Examples 20 to 26 Table 2 shows the results of similar reactions in Example 1 using various platinum group metals or compounds containing platinum group elements in place of paldium black.

【表】 なお、これらの実施例において白金族金属又は
白金族化合物は金属元素として0.5mg atomを用
い、%表示は担持された触媒成分の重量%を示
す。Pd―Te/Cは活性炭に塩化パラジウムと二
酸化テルルをモル比で10対3の割合で共担持した
後、350℃で水素還元したものである。 実施例 27 実施例1におけるシクロヘキシルアミンの代り
にジ―n―ブチルアミン40m olを、ヨウ化テト
ラメチルアンモニウムの代りにヨウ化メチルトリ
フエニルホスホニウム2m molを用いて実施例1
と全く同様の反応を行つた結果、ジ―n―ブチル
アミンの反応率は85%で、N,N―ジ―n―ブチ
ルカルバミン酸エチルの収率は78%で選択率は92
%であつた。 実施例 28 実施例1におけるシクロヘキシルアミンの代り
にピペリジン40m molを用いた以外は実施例1と
全く同様の反応を行つた結果、ピペリジンの反応
率は83%でN―エトキシカルボニルピペリジンの
収率は78%で選択率は94%であつた。 実施例 29 実施例1におけるシクロヘキシルアミンの代り
に1,6―ヘキサメチレンジアミン15m molを用
いた以外は実施例1と全く同様の反応を行つた結
果、1,6―ヘキサメチレンジアミンの反応率は
94%で、1,6―ヘキサメチレンジカルバミン酸
ジエチルの収率は87%で選択率は93%であつた。 実施例 30 シクロヘキシルアミン40m mol、エタノール20
ml、パラジウム黒0.5mg atom及びヨウ化水素3m
molを含むエタノール溶液20mlをオートクレーブ
に入れ実施例1と同様に反応を行つた結果、シク
ロヘキシルアミンの反応率は80%で、N―シクロ
ヘキシルカルバミン酸エチルの収率は70%で選択
率は88%であつた。 実施例 31 実施例1におけるシクロヘキシルアミンの代り
にピペラジン20m molを用いた以外は実施例1と
全く同様の反応を行つた結果、ピペラジンの反応
率は88%で、N,N′―ジエトキシカルボニルピ
ペラジンの収率は83%で選択率は94%であつた。
[Table] In these Examples, 0.5 mg atom of the platinum group metal or platinum group compound was used as the metal element, and the % expression indicates the weight % of the supported catalyst component. Pd-Te/C is obtained by co-supporting palladium chloride and tellurium dioxide at a molar ratio of 10:3 on activated carbon, which is then reduced with hydrogen at 350°C. Example 27 Example 1 was prepared by using 40 mol of di-n-butylamine in place of cyclohexylamine in Example 1 and 2 m mol of methyltriphenylphosphonium iodide in place of tetramethylammonium iodide.
As a result of carrying out exactly the same reaction as above, the reaction rate of di-n-butylamine was 85%, the yield of ethyl N,N-di-n-butylcarbamate was 78%, and the selectivity was 92%.
It was %. Example 28 The reaction was carried out in exactly the same manner as in Example 1 except that 40 mmol of piperidine was used instead of cyclohexylamine in Example 1. As a result, the reaction rate of piperidine was 83% and the yield of N-ethoxycarbonylpiperidine was The selection rate was 94% with 78%. Example 29 The reaction was carried out in exactly the same manner as in Example 1 except that 15 mmol of 1,6-hexamethylenediamine was used instead of cyclohexylamine in Example 1. As a result, the reaction rate of 1,6-hexamethylenediamine was
The yield of diethyl 1,6-hexamethylenedicarbamate was 87% and the selectivity was 93%. Example 30 Cyclohexylamine 40m mol, ethanol 20
ml, palladium black 0.5mg atom and hydrogen iodide 3m
mol of ethanol solution was placed in an autoclave and the reaction was carried out in the same manner as in Example 1. As a result, the reaction rate of cyclohexylamine was 80%, the yield of ethyl N-cyclohexylcarbamate was 70%, and the selectivity was 88%. It was hot. Example 31 The reaction was carried out in exactly the same manner as in Example 1 except that 20 mmol of piperazine was used instead of cyclohexylamine in Example 1. As a result, the reaction rate of piperazine was 88%, and N,N'-diethoxycarbonyl The yield of piperazine was 83% and the selectivity was 94%.

Claims (6)

【特許請求の範囲】[Claims] 1.酸化剤の存在下に1級アミンまたは2級アミ
ン(但し、芳香族アミンを除く)を一酸化炭素お
よび有機ヒドロキシル化合物と反応させてウレタ
ンを製造する方法において、 (a) 白金族金属および白金族元素を含む化合物の
中から選ばれた少くとも1種と (b) 陰イオンがハロゲンであるオニウム化合物お
よび反応系でこれらを生成することのできる化
合物の中から選ばれた少くとも1種 とから成る触媒系を用いることを特徴とするウレ
タンの製造法。
1. A method for producing urethane by reacting a primary amine or a secondary amine (excluding aromatic amines) with carbon monoxide and an organic hydroxyl compound in the presence of an oxidizing agent, comprising: (a) a platinum group metal and a platinum group metal; (b) At least one type selected from compounds containing the element and (b) at least one type selected from onium compounds whose anions are halogens and compounds that can generate these in a reaction system. A method for producing urethane, characterized by using a catalyst system consisting of:
2.酸化剤が分子状酸素または有機ニトロ化合物
若しくはその両方である特許請求の範囲第1項記
載の方法。
2. 2. The method of claim 1, wherein the oxidizing agent is molecular oxygen or an organic nitro compound or both.
3.酸化剤が分子状酸素である特許請求の範囲第
2項記載の方法。
3. 3. The method of claim 2, wherein the oxidizing agent is molecular oxygen.
4.白金族金属及び白金族元素を含む化合物がパ
ラジウム、ロジウム、パラジウム化合物及びロジ
ウム化合物である特許請求の範囲第1項〜第3項
のいずれか1項に記載の方法。
4. 4. The method according to claim 1, wherein the platinum group metal and the compound containing the platinum group element are palladium, rhodium, palladium compounds, and rhodium compounds.
5.オニウム化合物がアンモニウム化合物、ホス
ホニウム化合物、アルソニウム化合物、スルホニ
ウム化合物である特許請求の範囲第1項〜第4項
のいずれか1項に記載の方法。
5. The method according to any one of claims 1 to 4, wherein the onium compound is an ammonium compound, a phosphonium compound, an arsonium compound, or a sulfonium compound.
6.ハロゲン種がヨウ素である特許請求の範囲第
1項〜第5項のいずれか1項に記載の方法。
6. 6. The method according to any one of claims 1 to 5, wherein the halogen species is iodine.
JP1086282A 1981-12-25 1982-01-28 Preparation of urethane Granted JPS58128357A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1086282A JPS58128357A (en) 1982-01-28 1982-01-28 Preparation of urethane
EP19820111989 EP0083096B1 (en) 1981-12-25 1982-12-24 Production of urethane compounds
DE8282111989T DE3275464D1 (en) 1981-12-25 1982-12-24 Production of urethane compounds
US06/681,061 US4621149A (en) 1981-12-25 1984-12-10 Production of urethane compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086282A JPS58128357A (en) 1982-01-28 1982-01-28 Preparation of urethane

Publications (2)

Publication Number Publication Date
JPS58128357A JPS58128357A (en) 1983-07-30
JPS6125704B2 true JPS6125704B2 (en) 1986-06-17

Family

ID=11762160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086282A Granted JPS58128357A (en) 1981-12-25 1982-01-28 Preparation of urethane

Country Status (1)

Country Link
JP (1) JPS58128357A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139659A (en) * 1983-12-28 1985-07-24 Asahi Chem Ind Co Ltd Production of urethane

Also Published As

Publication number Publication date
JPS58128357A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
US4621149A (en) Production of urethane compounds
EP0083096B1 (en) Production of urethane compounds
JPS6125704B2 (en)
JPS6125703B2 (en)
JPS6132306B2 (en)
JPS6116383B2 (en)
JPS6313431B2 (en)
JPH035387B2 (en)
JPS6332347B2 (en)
JPS58118552A (en) Preparation of aromatic urethane
JPS634820B2 (en)
JPS6056703B2 (en) Urethane manufacturing method
JPS58128358A (en) Preparation of urethane
JPS639505B2 (en)
JPS58146549A (en) Preparation of urethane
JPS6124384B2 (en)
JPS6154783B2 (en)
JPS6155904B2 (en)
JPS6123181B2 (en)
JPS643866B2 (en)
JPS6148824B2 (en)
JPS636061B2 (en)
JPS58146550A (en) Preparation of urethane
JPS6124383B2 (en)
JPH0259827B2 (en)