JPS6394893A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPS6394893A
JPS6394893A JP61241001A JP24100186A JPS6394893A JP S6394893 A JPS6394893 A JP S6394893A JP 61241001 A JP61241001 A JP 61241001A JP 24100186 A JP24100186 A JP 24100186A JP S6394893 A JPS6394893 A JP S6394893A
Authority
JP
Japan
Prior art keywords
information recording
compound
optical information
recording medium
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61241001A
Other languages
Japanese (ja)
Inventor
Koichi Nakamura
浩一 中村
Hiroshi Shibano
博史 柴野
Kenji Morikawa
森川 健治
Harumasa Yamazaki
山崎 晴正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP61241001A priority Critical patent/JPS6394893A/en
Publication of JPS6394893A publication Critical patent/JPS6394893A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2532Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising metals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To cover widely the wave area for emission of semiconductor laser with a good sensitivity to obtain superior stability and film processability, by a method wherein an information recording layer contains a specific silicon naphthalocyanine compound. CONSTITUTION:An information recording layer contains a silicon naphthalocyanine compound shown by a formula (I) (where R1 and R2 may be either the same or different and represent 4 or more C branched alkyl, alkenyl, or cycloalkyl). This silicon naphthalocyanine compound can be easily obtained by performing the reaction of dihydroxy(2,3-naphthalocyanate)silicon with a branched alcohol shown by R1OH, R2OH. Because the compound has branched chain alkyl or alkenyl, an optical information recording medium has superior light absorption characteristics to a wavelength of 780-830nm. Furthermore, the compound having a solubility in a general-purpose organic solvent such as halogenated hydrocarbon, aromatic hydrocarbon, and ketone compound can dissolve in these solvents to be coated on a substrate in film form by a spray or roller coating etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザー光線によって情報を記録、再生する
ことのできる光学的情報記録媒体に関するものであり、
更に詳しくは、特定のナフタロシアニン化合物を含有す
る情報記録層をもつ光学的情報記録媒体に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical information recording medium that can record and reproduce information using a laser beam.
More specifically, the present invention relates to an optical information recording medium having an information recording layer containing a specific naphthalocyanine compound.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来、レーザー光線により情報を記録、再生する光学的
情報記録媒体の材料として、Te合金、Te酸化物等の
無機物及び種々の有機色素類が多数提案されている。有
機色素類は無機物に比べ、無公害で高感度の媒体をより
安価に作製できる可能性を有している。例えば、フタロ
シアニン系、シアニン系、メロシアニン系、スクワリリ
ウム塩基、ピリリウム塩系、アントラキノン系、トリフ
ェニルメタン系等が挙げられるが、光学的情報記録媒体
として用いるための必要特性、即ち、吸収波長・感度・
安定性・薄膜加工性等をすべて満足するものはまだ見出
されていないのが現状である。
Conventionally, many inorganic materials such as Te alloys and Te oxides, and various organic dyes have been proposed as materials for optical information recording media that record and reproduce information using laser beams. Compared to inorganic materials, organic dyes have the potential to produce pollution-free and highly sensitive media at lower cost. Examples include phthalocyanine-based, cyanine-based, merocyanine-based, squarylium base, pyrylium salt-based, anthraquinone-based, triphenylmethane-based, etc. However, they have the necessary characteristics for use as optical information recording media, such as absorption wavelength, sensitivity,
At present, no material has yet been found that satisfies all aspects such as stability and thin film processability.

現在、記録用レーザーとして汎用される半導体レーザー
は、その発光波長が、長波長のもので830 nm付近
、短波長のもので780 nm付近のものが主体である
。従って、これらの半導体レーザーを光源として用いる
場合、対応する色素としては、それぞれの波長に応じた
色素を使い分けるか、その両波長の光をカバーするに足
る広い吸収波長領域をもつ色素を用いる必要があるが、
当然のことながら後者の方が望ましい。
Currently, semiconductor lasers commonly used as recording lasers mainly emit light at long wavelengths around 830 nm and short wavelengths around 780 nm. Therefore, when using these semiconductor lasers as a light source, it is necessary to use dyes that correspond to each wavelength, or to use a dye that has a wide absorption wavelength range that covers both wavelengths of light. Yes, but
Naturally, the latter is preferable.

一方、上記の有機色素類の中で、フタロシアニン系色素
は古くから青色〜緑色の顔料として知られ、安定性の優
れた色素として広く用いられている。例えば銅フタロシ
アニン、鉛フタロシアニン、チタニウムフタロシアニン
、バナジルフタロシアニン、錫フタロシアニン等ヲ光学
的情報記録媒体の材料として用いる提案が数多く発表さ
れているが(特開昭55−97033号公報、特開昭5
6−130742号公報、特開昭58−36490号公
報、特開昭59−11292号公報等)、これらの吸収
波長は700 nm付近に極大があり、半導体レーザー
の発光波長領域(780nmもしくは830 nm付近
)では吸光度が低い。
On the other hand, among the above organic pigments, phthalocyanine pigments have long been known as blue to green pigments and are widely used as pigments with excellent stability. For example, many proposals have been made to use copper phthalocyanine, lead phthalocyanine, titanium phthalocyanine, vanadyl phthalocyanine, tin phthalocyanine, etc. as materials for optical information recording media (Japanese Unexamined Patent Publication No. 55-97033,
6-130742, JP-A-58-36490, JP-A-59-11292, etc.), their absorption wavelengths have a maximum near 700 nm, and the emission wavelength region of semiconductor lasers (780 nm or 830 nm) (near), the absorbance is low.

そこでヘンシフエノンのようなシフト化剤となるものを
用いる(特開昭59−16153号公報)とか、溶剤処
理あるいは加熱処理を行うとかの手段により吸収帯を広
げ全体として長波長ヘシフトさせる方法が提案されてい
るが、工程が煩雑となり好ましくない。又、これら金属
フタロシアニン系色素は、有機溶媒等への溶解性に乏し
く、溶液塗工等による薄膜形成が行えないため、真空蒸
着、スパッタリング等の方法のみに軌らざるを得す使用
上の制限も大きかった。
Therefore, methods have been proposed to widen the absorption band and shift the entire absorption band to longer wavelengths by using a shifting agent such as hensifenone (Japanese Patent Application Laid-Open No. 16153/1982), or by performing solvent treatment or heat treatment. However, the process becomes complicated, which is not preferable. In addition, these metal phthalocyanine dyes have poor solubility in organic solvents, etc., and cannot be formed into thin films by solution coating, etc., so they have limitations in use that force them to use only methods such as vacuum evaporation and sputtering. It was also big.

フタロシアニンの誘導体化による長波長化についてはそ
のπ−電子共役領域を更に拡大した形で、ナフタロシア
ニン誘導体が考えられ、このナフタロシアニン骨格をも
つ化合物群が目的とする800nm付近に高い吸光度を
もつことは既に知られている(Inorg、 ChiI
I+、^cta、、 44. L209(I980) 
; Zh、 0bshch、 Khim、、42(3)
、 696(I972) ;J、 Am、 CheIl
、 Soc、、106.7404(I984))。
Regarding longer wavelengths through derivatization of phthalocyanine, naphthalocyanine derivatives can be considered as a form in which the π-electron conjugation region is further expanded, and this group of compounds with a naphthalocyanine skeleton has a high absorbance in the targeted vicinity of 800 nm. is already known (Inorg, ChiI
I+, ^cta,, 44. L209 (I980)
; Zh, 0bshch, Khim,, 42(3)
, 696 (I972); J, Am, CheIl
, Soc, 106.7404 (I984)).

しかしナフタロシアニン自身、又その金属塩はその母体
であるフタロシアニン系化合物に比べて、一般の有機溶
媒に対してより一層溶解しにくくなり、これが合成の難
しさとあいまってこの化合物の有効利用を妨げてきた。
However, naphthalocyanine itself and its metal salts are more difficult to dissolve in general organic solvents than their parent phthalocyanine compounds, and this, combined with the difficulty of synthesis, has hindered the effective use of this compound. Ta.

近年、このものの溶解性を向上させる目的で工夫がなさ
れている(米国特許第4492750号、特開昭61−
25886号、J、Am、 Chem、 Soc、+1
0敗7404 (I984) 、特開昭61−1772
87号、特開昭61−177288号)が、いずれの方
法も合成が煩雑であるか、もしくは合成された化合物の
溶解性が十分でないなどの欠点を有する上に、吸収波長
が780 nm付近のみをカバーし、830 nmのレ
ーザー光への感度が低い。
In recent years, efforts have been made to improve the solubility of this substance (U.S. Pat.
No. 25886, J, Am, Chem, Soc, +1
0 loss 7404 (I984), JP-A-61-1772
No. 87, JP-A No. 61-177288), all of these methods have drawbacks such as complicated synthesis or insufficient solubility of the synthesized compound, and the absorption wavelength is only around 780 nm. , and has low sensitivity to 830 nm laser light.

以上のように、特に半導体レーザーの発光波長領域(7
80〜830 nn+)を幅広くかつ感度よくカバーし
、安定性に優れ、薄膜加工性も高く、また合成も容易で
ある、という実用化に必要な条件を全て満たすものは未
だ見出されていないのが現状である。
As mentioned above, especially in the emission wavelength region of semiconductor lasers (7
No material has yet been found that satisfies all the conditions necessary for practical use: covering a wide range of 80 to 830 nn+ with good sensitivity, excellent stability, high thin film processability, and easy synthesis. is the current situation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の従来技術の問題点を解決するため鋭
意検討を行った結果、特に分岐鎖状のアルキル基又はア
ルケニル基を有する特定のナフタロシアニン化合物を用
いた光学的情報記録媒体が、780 nm、830 n
mの両波長に対する吸光特性、加工性、安定性に優れ、
また、該化合物の合成が容易であるというメリットを有
していることを見出し、本発明に到った。
The present inventors conducted intensive studies to solve the above-mentioned problems of the prior art, and found that an optical information recording medium using a specific naphthalocyanine compound having a particularly branched alkyl group or alkenyl group. 780nm, 830nm
Excellent absorption characteristics, processability, and stability for both m wavelengths,
Furthermore, it was discovered that the compound has the advantage of being easy to synthesize, leading to the present invention.

即ち、本発明は、基板上に情報記録層を設けてなる光学
的情報記録媒体において、該情報記録層が次式(I)で
表されるシリコンナフタロシアニン化合物を含有するも
のであることを特徴とする光学的情報記録媒体を提供す
るものである。
That is, the present invention provides an optical information recording medium comprising an information recording layer provided on a substrate, characterized in that the information recording layer contains a silicon naphthalocyanine compound represented by the following formula (I). The present invention provides an optical information recording medium.

(式中RI+ Rzは同一でも異なるものでも良く、炭
素数4以上の分岐したアルキル基、アルケニル基又はシ
クロアルキル基を表す) 本発明の好ましい実施の態様としては、RI+R2とし
て炭素数が8〜36の分岐したアルキル基、アルケニル
基又はシクロアルキル基を有する化合物を用いる場合を
挙げることができ、特に好ましい実施の態様としては、
R+、Rtとして炭素数が16〜30の分岐したアルキ
ル基、アルケニル基又はシクロアルキル基を有する化合
物を用いる場合を挙げることができる。
(In the formula, RI+Rz may be the same or different, and represents a branched alkyl group, alkenyl group, or cycloalkyl group having 4 or more carbon atoms.) In a preferred embodiment of the present invention, RI+R2 has 8 to 36 carbon atoms. A particularly preferred embodiment includes the use of a compound having a branched alkyl group, alkenyl group, or cycloalkyl group.
Examples include a case where a compound having a branched alkyl group, alkenyl group, or cycloalkyl group having 16 to 30 carbon atoms is used as R+ and Rt.

本発明の前記式(I)で表されるシリコンナフタロシア
ニン化合物は、ジヒドロキシ(2,3−ナフタロシアナ
ート)シリコンにR+OB、 RJHで表される分岐ア
ルコールを反応させることにより容易に得ることができ
る。
The silicon naphthalocyanine compound represented by the formula (I) of the present invention can be easily obtained by reacting dihydroxy (2,3-naphthalocyanate) silicon with a branched alcohol represented by R+OB or RJH. .

用いられる原料の分岐アルコールとしては、2−エチル
ヘキシルアルコール、2−へブチルドデシルアルコール
、2− (I,3,3−)リメチルブチル)−5,7,
7−トリメチルオクチルアルコール、2−ドデシルミリ
スチルアルコール、2.4−ジブチルデシルアルコール
、2−ブチル−4,4,6,6,8−ペンタメチルノニ
ルアルコール、2−へキシル−4,4,6−)リメチル
−6−へブテニルアルコール、8−ヒドロキシメチルト
リシクロ[5,2,1,0”°6〕デカン、4−t−ブ
チル−1−ヒドロキシメチルシクロヘキサン等が挙げら
れる。
The branched alcohols used as raw materials include 2-ethylhexyl alcohol, 2-hebutyldodecyl alcohol, 2-(I,3,3-)limethylbutyl)-5,7,
7-trimethyloctyl alcohol, 2-dodecylmyristyl alcohol, 2.4-dibutyldecyl alcohol, 2-butyl-4,4,6,6,8-pentamethylnonyl alcohol, 2-hexyl-4,4,6- ) Limethyl-6-hebutenyl alcohol, 8-hydroxymethyltricyclo[5,2,1,0''°6]decane, 4-t-butyl-1-hydroxymethylcyclohexane, and the like.

本発明に用いられる式(I)で表されるシリコンナフタ
ロシアニン化合物の具体例としては、例エバ、ビス(2
−エチルへキシルオキシ)輯。
Specific examples of the silicon naphthalocyanine compound represented by formula (I) used in the present invention include eva, bis(2
-ethylhexyloxy)

3−ナフタロシアナート)シリコン、ビス(2−へブチ
ルドデシルオキシ)(2,3−ナフタロシアナート)シ
リコン、ビス(2−(L3,3−)リメチルブチル) 
−5,7,T −トリメチルオクチルオキシ) (2,
3−ナフタロシアナート)シリコン、ビス(2−ドデシ
ルミリスチルオキシ)(2゜3−ナフタロシアナート)
シリコン、ビス(2゜4−ジブチルデシルオキシ)(2
,3−ナフタロシアナート)シリコン、ビス(2−ブチ
ル−4,4゜6.6.8−ペンタメチルノニルオキシ)
(2,3−ナフタロシアナート)シリコン、ビス(2−
へキシル−4,4,6−)リメチル−6−へブテニルオ
キシ)(2,3−ナフタロシアナート)シリコン、ビス
(トリシクロ(5,2,1,0”6)デシル−8−メチ
ルオキシ)(2,3−ナフタロシアナート)シリコン、
ビスク4−t−ブチル−シクロへキシル−1−メチルオ
キシ)(2,3−ナフタロシアナート)シリコン等を挙
げることができるが、これらに限られるものではない。
3-naphthalocyanate) silicone, bis(2-hebutyldodecyloxy)(2,3-naphthalocyanate) silicone, bis(2-(L3,3-)limethylbutyl)
-5,7,T-trimethyloctyloxy) (2,
3-naphthalocyanate) silicone, bis(2-dodecylmyristyloxy)(2゜3-naphthalocyanate)
Silicon, bis(2゜4-dibutyldecyloxy)(2
, 3-naphthalocyanate) silicon, bis(2-butyl-4,4゜6.6.8-pentamethylnonyloxy)
(2,3-naphthalocyanate) silicon, bis(2-
hexyl-4,4,6-)limethyl-6-hebutenyloxy)(2,3-naphthalocyanato)silicon, bis(tricyclo(5,2,1,0”6)decyl-8-methyloxy)( 2,3-naphthalocyanate) silicon,
Examples include, but are not limited to, bisque 4-t-butyl-cyclohexyl-1-methyloxy) (2,3-naphthalocyanate) silicon.

上記式(I)で表されるシリコンナフタロシアニン化合
物はフタロシアニン系色素に比べて、π電子の非局在領
域が拡大していることから、フタロシアニン系よりも長
波長領域である800nun前後の近赤外領域で吸収を
示す。更にこれらの化合物は、塩化メチレン、クロロホ
ルム、四塩化炭素等のハロゲン化炭化水素、トルエン、
ベンゼン等の芳香族炭化水素、アセトン、メチルエチル
ケトン、シクロヘキサノン等のケトン系化合物等、汎用
の有機溶媒に可溶性を示し、これらのうち適当な溶媒に
溶解することにより、スプレー、ローラーコーティング
、ディッピング、スピンコーティング等の方法で基板上
に薄膜塗工することができる。この際シリコンナフタロ
シアニン化合物単体で薄膜塗工することもできるが、適
当な高分子バインダーを併用してもよい。ここで言う高
分子バインダーとしては、ニトロセルロース、ポリスチ
レン、ポリエチレン、ポリ酢酸ビニル、ポリビニルアル
コール、ポリウレタン、ポリアミド、ポリエステル等の
熱可塑性樹脂を例示することができる。
The silicon naphthalocyanine compound represented by the above formula (I) has an expanded π-electron delocalized region compared to phthalocyanine dyes, so it has a near-infrared wavelength of around 800 nm, which is a longer wavelength region than phthalocyanine dyes. It shows absorption in the outer region. Furthermore, these compounds include halogenated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride, toluene,
It is soluble in general-purpose organic solvents such as aromatic hydrocarbons such as benzene, ketone compounds such as acetone, methyl ethyl ketone, and cyclohexanone, and by dissolving them in an appropriate solvent, it can be used for spraying, roller coating, dipping, and spin coating. A thin film can be coated on a substrate by methods such as the following. At this time, the silicon naphthalocyanine compound alone can be applied as a thin film, but a suitable polymeric binder may also be used in combination. Examples of the polymer binder mentioned here include thermoplastic resins such as nitrocellulose, polystyrene, polyethylene, polyvinyl acetate, polyvinyl alcohol, polyurethane, polyamide, and polyester.

また、前記式(I)で表されるシリコンナフタロシアニ
ン化合物と合わせて、同一の有機溶媒に可溶な他の有機
色素類を併用することも可能である。
Moreover, it is also possible to use other organic dyes soluble in the same organic solvent together with the silicon naphthalocyanine compound represented by the formula (I).

又、他の薄膜塗工法として、真空蒸着、スパッタリング
などの方法も用いることができる。
Further, other thin film coating methods such as vacuum deposition and sputtering can also be used.

本発明におけるシリコンナフタロシアニン化合物を含有
する記録層を担持する基板材料としては、塩化ビニル樹
脂、アクリル樹脂、ポリオレフィン樹脂、ポリカーボネ
ート樹脂、ポリビニルアセタール樹脂等の熱可塑性樹脂
、又はエポキシ樹脂、不飽和ポリエステル樹脂、ビニル
エステル樹脂等の熱硬化性樹脂、或いはガラス、金属類
を用いることができる。これらの材料により、成型され
た基板の鏡面上あるいは案内溝パターン(プリグループ
)の刻まれた面上に、上記のような方法で薄膜塗工する
ことができる。
In the present invention, the substrate material supporting the recording layer containing the silicon naphthalocyanine compound is a thermoplastic resin such as vinyl chloride resin, acrylic resin, polyolefin resin, polycarbonate resin, or polyvinyl acetal resin, or epoxy resin or unsaturated polyester resin. , thermosetting resins such as vinyl ester resins, glass, and metals can be used. Using these materials, a thin film can be applied by the method described above onto the mirror surface of a molded substrate or onto a surface in which a guide groove pattern (pre-group) is carved.

また、基板が上記材料で成型された平板の上に光硬化性
樹脂を積層し、案内溝パターンが該光硬化性樹脂層の表
面に転写された構造であってもよい。
Alternatively, the substrate may have a structure in which a photocurable resin is laminated on a flat plate molded from the above material, and the guide groove pattern is transferred onto the surface of the photocurable resin layer.

これら基板上に形成する記録層の膜厚は0.01〜5−
の範囲であればよく、好ましくは0.05〜1−の範囲
である。更に、反射層、保護層等を設けてディスク状あ
るいはシート状の光学的情報記録媒体を構成するが、本
発明はそれら構成の如何は問わない。
The thickness of the recording layer formed on these substrates is 0.01 to 5-5-
, preferably in the range of 0.05 to 1-. Furthermore, a reflective layer, a protective layer, etc. are provided to constitute a disk-shaped or sheet-shaped optical information recording medium, but the present invention does not care about these configurations.

こうして作製した、本発明の光学的情報記録媒体に、レ
ーザー光線を照射することにより、該照射部分にピット
が形成され情報の記録及び再生を行うことができるが、
用いるレーザー光は、記録層の吸収波長に応じて、N2
. He−Ne。
By irradiating the optical information recording medium of the present invention produced in this way with a laser beam, pits are formed in the irradiated area, and information can be recorded and reproduced.
The laser beam used is N2 depending on the absorption wavelength of the recording layer.
.. He-Ne.

^r、ルビー、色素、半導体等の各レーザー光を選ぶこ
とができる。中でもGa−Al−As半導体レーザー(
発振波長780 nm)などの近赤外領域に発振波長を
有するレーザーを用いるシステムが好適である。
^r, ruby, dye, semiconductor, etc. laser beams can be selected. Among them, Ga-Al-As semiconductor laser (
A system using a laser having an oscillation wavelength in the near-infrared region, such as an oscillation wavelength of 780 nm, is suitable.

〔実施例〕 以下に実施例を示して本発明を具体的に説明するが、本
発明はこれらの実施例に限定されるものではない。
[Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

尚、本発明で用いる式(I)で表されるシリコンナフタ
ロシアニン化合物の前駆体であるジヒドロキシ(2,3
−ナフタロシアナート)シリコンは、文献(J、 Am
、 Chem、 Soc、、106.7404(I98
4))の記載に準じて合成した。
Note that dihydroxy(2,3
- naphthalocyanate) silicon is described in the literature (J, Am
, Chem, Soc, 106.7404 (I98
It was synthesized according to the description in 4)).

実施例1 ジヒドロキシ(2,3−ナフタロシアナート)シリコン
296mg (0,382mmol) 、2− (I,
3,3−トリメチルブチル’) −5,7,7−)ジメ
チルオクタン−1−オール3.0 g (I1,1mm
ol)のテトラリン(I0mZ)溶液を1.5時間還流
した。室温まで冷却後、エタノール30耐を加え、沈澱
物を濾取した。この沈澱物をシリカゲルカラムで分離し
くトルエンで流出)、目的のジアルコキシ(2,3−ナ
フタロシアナート)シリコンを177 mg(0,13
8mmol、 36.2%)得た。この生成物は緑色粉
末で、この時点での融点は約275℃であった。再結晶
による精製の試みは成功しなかった。
Example 1 Dihydroxy(2,3-naphthalocyanate) silicone 296 mg (0,382 mmol), 2-(I,
3,3-trimethylbutyl')-5,7,7-)dimethyloctan-1-ol 3.0 g (I1,1 mm
ol) in tetralin (I0mZ) was refluxed for 1.5 hours. After cooling to room temperature, 30 ml of ethanol was added and the precipitate was collected by filtration. This precipitate was separated using a silica gel column (filtered with toluene), and 177 mg (0,13
8 mmol, 36.2%) was obtained. The product was a green powder with a melting point of about 275°C at this point. Attempts at purification by recrystallization were unsuccessful.

この緑色固体は塩化メチレン、トルエン、シクロヘキサ
ノン、シクロヘキサン等の溶媒に可溶であり、塩化メチ
レン溶液について吸光度分析を行った結果、775nm
に極めて強い吸収極大(ε−1,8X105I!/mo
icm)を持っていた。
This green solid is soluble in solvents such as methylene chloride, toluene, cyclohexanone, and cyclohexane, and as a result of absorbance analysis of the methylene chloride solution, it was found to be 775 nm.
extremely strong absorption maximum (ε-1,8X105I!/mo
icm).

このシリコンナフタロシアニン化合物とポリスチレン樹
脂とを、重量比1:1でクロロホルムに溶解し、ガラス
板上にスピンコード法で厚さ0.banの均一な膜を作
成した。この薄膜は778nmに極大のある強い、帯域
の広い吸収を示し、波長805nm 、ビーム径1.0
−のレーザー光(5i)を照射したところ鮮明なピット
が形成された。波長803nmのレーザー光(5mW)
でも同様に鮮明なピントが形成された。
This silicon naphthalocyanine compound and polystyrene resin were dissolved in chloroform at a weight ratio of 1:1, and placed on a glass plate with a spin code method to a thickness of 0.5 mm. A uniform film of the ban was prepared. This thin film exhibits strong, broad-band absorption with a maximum at 778 nm, with a wavelength of 805 nm and a beam diameter of 1.0 nm.
- When irradiated with laser light (5i), clear pits were formed. Laser light with a wavelength of 803 nm (5 mW)
However, a clear focus was formed as well.

上記積層物を60℃、90%RHの環境下に放置し、吸
光特性を経口追跡したが、2000時間の後においても
ほとんど変化は見られなかった。又、通常の太陽光下に
一日放置するテストに於いても色素の再凝集は見られず
、何ら問題はなかった。
The above laminate was left in an environment of 60° C. and 90% RH, and its light absorption characteristics were orally monitored, but almost no change was observed even after 2000 hours. Further, even in a test in which the dye was left under normal sunlight for a day, no reaggregation of the dye was observed, and no problems occurred.

実施例2 ジヒドロキシ(2,3−ナフタロシアナート)シリコン
250mg (0,3231111101) 、2−へ
ブチルドデカン−1−オール3.0 g (I1,1m
mol)のテトラリン(Loaf)溶液を2時間還流し
た。室温まで冷却後、エタノール30II+7を加え、
生した沈澱物を濾取した(281.6mg)。この沈澱
物をシリカゲルカラムで分離しくトルエン:酢酸エチル
=95: 5. vol比の混合溶液で流出)、目的の
ジアルコキシ(2,3−ナフタロシアナート)シリコン
を267mg(0,209mnol、 64.6%)得
た。これをヘキサン−クロロホルム混合溶媒中から再結
晶して、緑色の柱状結晶を得た。
Example 2 250 mg of dihydroxy(2,3-naphthalocyanate) silicon (0,3231111101), 3.0 g of 2-hebutyldodecane-1-ol (I1,1m
mol) of tetralin (Loaf) solution was refluxed for 2 hours. After cooling to room temperature, add ethanol 30II+7,
The resulting precipitate was collected by filtration (281.6 mg). This precipitate was separated using a silica gel column.Toluene:ethyl acetate=95:5. 267 mg (0,209 mmol, 64.6%) of the target dialkoxy (2,3-naphthalocyanate) silicone was obtained. This was recrystallized from a hexane-chloroform mixed solvent to obtain green columnar crystals.

n+p=281.5〜285℃ 得られた緑色固体はクロロホルム、塩化メチレン、四塩
化炭素、トルエン、キシレン、シクロヘキサノン、メチ
ルエチルケトン等の溶媒に可溶であり、塩化メチレン溶
液について吸光度分析を行った結果、798nmに吸収
極大(ε−2,2×105Il/l1O1−CIll)
を示した。
n+p=281.5-285°C The obtained green solid is soluble in solvents such as chloroform, methylene chloride, carbon tetrachloride, toluene, xylene, cyclohexanone, and methyl ethyl ketone, and as a result of absorbance analysis of the methylene chloride solution, Maximum absorption at 798 nm (ε-2, 2×105Il/l1O1-CIll)
showed that.

このシリコンナフタロシアニン化合物とニトロセルロー
スとを、重量比1;1でシクロヘキサノンに溶解し、エ
ポキシ樹脂よりなる厚さ1.2mmの透明板上にスピン
コード法により塗工し、厚さ0.11−の均一な膜を作
成した。
This silicon naphthalocyanine compound and nitrocellulose were dissolved in cyclohexanone at a weight ratio of 1:1, and coated on a transparent plate made of epoxy resin with a thickness of 1.2 mm by a spin cord method to a thickness of 0.11 mm. A uniform film was created.

この薄膜は760〜870 nmの間に特に強く広い吸
収波長帯を持ち(λmax = 829nm)、波長7
80nm、ビーム径1.0−のレーザー光(51)を照
射したところ鮮明なピットが形成された。また波長83
0nmのレーザー光(5mW)を用いても同様に鮮明な
ピットが形成された。
This thin film has a particularly strong and broad absorption wavelength band between 760 and 870 nm (λmax = 829 nm);
When irradiated with a laser beam (51) of 80 nm and a beam diameter of 1.0, clear pits were formed. Also wavelength 83
Clear pits were similarly formed even when a 0 nm laser beam (5 mW) was used.

又、実施例1と同様な高温高温条件下、また太陽光下で
の保存テストにおいても何ら特性の変化は見られなかっ
た。
Further, no change in properties was observed in the storage test under the same high temperature conditions as in Example 1 and under sunlight.

実施例3 厚さ1.2mmのポリカーボネート製透明基板を真空室
内に入れて、実施例2で合成したシアルコキシ(2,3
−ナフタロシアナート)シリコンを入れた蒸着ポート上
に置き、このポートに電流源を接線して真空室を約10
−6mmHHに排気した。
Example 3 A polycarbonate transparent substrate with a thickness of 1.2 mm was placed in a vacuum chamber, and sialkoxy (2,3
- naphthalocyanate) placed on the vapor deposition port containing the silicone, and a current source tangentially connected to this port to open the vacuum chamber for approximately 10 min.
It was evacuated to -6 mmHH.

ポートを約300℃に加熱してシャッターを開き約1人
/秒の速度で色素を蒸着し、厚さ0.071Bmの均一
な薄膜を作成した。
The port was heated to about 300° C., the shutter was opened, and the dye was deposited at a rate of about 1 person/second to form a uniform thin film with a thickness of 0.071 Bm.

この薄膜は750〜860 nmにかけて特に強く広い
吸収波長帯を持ち(λwax = 830nm)、実施
例2と同じ半導体レーザー(830nm、 780 n
m)を用い、ビーム径1.0−15IIIHのレーザー
光を照射したところ、両波長ともに鮮明なピントが形成
された。
This thin film has a particularly strong and wide absorption wavelength band from 750 to 860 nm (λwax = 830 nm), and is similar to the semiconductor laser (830 nm, 780 nm) as in Example 2.
When a laser beam with a beam diameter of 1.0-15IIIH was irradiated using a laser beam with a diameter of 1.0-15IIIH, a clear focus was formed for both wavelengths.

又、実施例1と同様な高温高湿条件下、また太陽光下で
の保存テストにおいても何ら特性の変化は見られなかっ
た。
Further, no change in properties was observed in the storage test under the same high temperature and high humidity conditions as in Example 1 and under sunlight.

比較例I J、 Am、 Chem、 Soc、+刊6.7404
(I984)の記述に準じて、ビス(トリー〇−へキシ
ルシロキシ)(2,3−ナフタロシアナート)シリコン
を合成した。
Comparative Example I J, Am, Chem, Soc, + publication 6.7404
(I984), bis(tri-hexylsiloxy)(2,3-naphthalocyanate) silicon was synthesized.

得られた緑色固体は276〜279℃に融点を持ち、塩
化メチレン、クロロホルム、四塩化炭素、トルエン、シ
クロヘキサノン等の溶媒に可溶であった。塩化メチレン
溶液について吸光度分析を行った結果、772nmに極
めて強い吸収(ε=2.5 Xl051/mol−cm
)を示した。
The obtained green solid had a melting point of 276 to 279°C and was soluble in solvents such as methylene chloride, chloroform, carbon tetrachloride, toluene, and cyclohexanone. As a result of absorbance analysis of the methylene chloride solution, extremely strong absorption at 772 nm (ε=2.5 Xl051/mol-cm
)showed that.

このシリコンナフタロシアニン化合物とポリスチレン樹
脂とを、重量比1:1でクロロホルムに溶解し、ガラス
板上にスピンコード法で厚さ0.1−の均一な膜を作成
した。この薄膜は778nmに極大のある強い吸収を示
し、波長780 nm、ビーム径1.0 tmのレーザ
ー光(5mW)を照射したところ鮮明なピットが形成さ
れた。しかし、波長830nm 、ビーム径1.0−の
レーザー光(5mW)を用いた場合、ピットは小さく、
かつ部分的には不鮮明なものであった。
This silicon naphthalocyanine compound and polystyrene resin were dissolved in chloroform at a weight ratio of 1:1, and a uniform film with a thickness of 0.1 mm was formed on a glass plate by a spin cord method. This thin film showed strong absorption with a maximum at 778 nm, and when it was irradiated with laser light (5 mW) with a wavelength of 780 nm and a beam diameter of 1.0 tm, clear pits were formed. However, when using laser light (5 mW) with a wavelength of 830 nm and a beam diameter of 1.0, the pits are small.
And some parts were unclear.

〔発明の効果〕〔Effect of the invention〕

本発明の光学的情報記録媒体は、前記のように、分岐鎖
を持つ特定のシリコンナフタロシアニン化合物を記録層
に用いるが、このものは、合成が容易な上、種々の有機
溶媒に溶解することができ、真空蒸着、スパッタリング
法以外にも、溶液塗工法によっても、適当な基板上に容
易に薄膜を形成する。
As described above, the optical information recording medium of the present invention uses a specific branched-chain silicon naphthalocyanine compound in the recording layer, which is easy to synthesize and can be dissolved in various organic solvents. A thin film can be easily formed on a suitable substrate by not only vacuum evaporation and sputtering methods but also solution coating methods.

得られた薄膜は近赤外領域の光に対して好適な吸収スペ
クトル及び高い感度を有しており、光学的情報記録媒体
として好適に用いることができる。
The obtained thin film has a suitable absorption spectrum and high sensitivity to light in the near-infrared region, and can be suitably used as an optical information recording medium.

Claims (1)

【特許請求の範囲】 1、基板上に情報記録層を設けてなる光学的情報記録媒
体において、該情報記録層が次式( I )で表されるシ
リコンナフタロシアニン化合物を含有するものであるこ
とを特徴とする光学的情報記録媒体。 ▲数式、化学式、表等があります▼ (式中R_1、R_2は同一でも異なるものでも良く、
炭素数4以上の分岐したアルキル基、アルケニル基又は
シクロアルキル基を表す) 2、R_1、R_2が炭素数8〜36の分岐したアルキ
ル基、アルケニル基又はシクロアルキル基である特許請
求の範囲第1項記載の光学的情報記録媒体。 3、R_1、R_2が炭素数16〜30の分岐したアル
キル基、アルケニル基又はシクロアルキル基である特許
請求の範囲第1項記載の光学的情報記録媒体。
[Scope of Claims] 1. An optical information recording medium comprising an information recording layer provided on a substrate, wherein the information recording layer contains a silicon naphthalocyanine compound represented by the following formula (I). An optical information recording medium characterized by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R_1 and R_2 may be the same or different,
(represents a branched alkyl group, alkenyl group or cycloalkyl group having 4 or more carbon atoms) 2, R_1 and R_2 are a branched alkyl group, alkenyl group or cycloalkyl group having 8 to 36 carbon atoms Claim 1 The optical information recording medium described in Section 1. 3. The optical information recording medium according to claim 1, wherein R_1 and R_2 are branched alkyl groups, alkenyl groups, or cycloalkyl groups having 16 to 30 carbon atoms.
JP61241001A 1986-10-09 1986-10-09 Optical information recording medium Pending JPS6394893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241001A JPS6394893A (en) 1986-10-09 1986-10-09 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241001A JPS6394893A (en) 1986-10-09 1986-10-09 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPS6394893A true JPS6394893A (en) 1988-04-25

Family

ID=17067851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241001A Pending JPS6394893A (en) 1986-10-09 1986-10-09 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS6394893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158294A (en) * 1986-12-23 1988-07-01 Mitsui Toatsu Chem Inc Manufacture of optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239286A (en) * 1985-08-13 1987-02-20 Mitsubishi Chem Ind Ltd Optical recording material
JPS6372594A (en) * 1986-09-16 1988-04-02 Hitachi Ltd Optical information recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239286A (en) * 1985-08-13 1987-02-20 Mitsubishi Chem Ind Ltd Optical recording material
JPS6372594A (en) * 1986-09-16 1988-04-02 Hitachi Ltd Optical information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158294A (en) * 1986-12-23 1988-07-01 Mitsui Toatsu Chem Inc Manufacture of optical recording medium

Similar Documents

Publication Publication Date Title
JPH0749231B2 (en) Optical recording body
JPH0258575A (en) Dithiol based metal complex compound, production thereof and light recording medium using the same
US5260435A (en) Derivative of naphthalocyanine containing perfluoroalkyl group, process for preparing the same and optical recording medium
JPH02276866A (en) New tetraazaporphine, its production, optical recording medium using the same and production of the same recording medium
JPS6339388A (en) Optical information recording medium
US5256794A (en) Squarylium compounds
CA2362642A1 (en) Squarylium compounds and optical recording medium containing the same
JPS63191690A (en) Optical recording medium
JPS6394893A (en) Optical information recording medium
EP0279426B1 (en) Optical recording member
JPH0696347B2 (en) Optical recording body
JPH01105788A (en) Optical recording medium
JPS62233287A (en) Optical information recording medium
EP0408014B1 (en) Squarylium compounds and optical information recording medium using the same
JP2600763B2 (en) Metal-containing compound and optical recording medium using the compound
JPS63119036A (en) Optical recording medium
JP2635330B2 (en) Optical recording medium
JPH0768460B2 (en) Metal-containing indoaniline compound and optical recording medium using the compound
JPS63274591A (en) Optical information recording medium
JP2890407B2 (en) Optical recording medium
JP2946665B2 (en) Manufacturing method of optical recording medium
JP2727464B2 (en) Metal-containing indophenol compound and optical recording medium using the compound
JP2552671B2 (en) Method for manufacturing optical recording medium
JPH05124355A (en) Naphthalocyanine composition and optical recording medium using same
JPH10182651A (en) Pyridophenoxazine-metal chelate compound