JPS6394564A - Fuel control device for fuel cell power generating plant - Google Patents

Fuel control device for fuel cell power generating plant

Info

Publication number
JPS6394564A
JPS6394564A JP61239028A JP23902886A JPS6394564A JP S6394564 A JPS6394564 A JP S6394564A JP 61239028 A JP61239028 A JP 61239028A JP 23902886 A JP23902886 A JP 23902886A JP S6394564 A JPS6394564 A JP S6394564A
Authority
JP
Japan
Prior art keywords
fuel
load
fuel cell
pressure
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61239028A
Other languages
Japanese (ja)
Inventor
Yasushi Uchida
内田 恭嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61239028A priority Critical patent/JPS6394564A/en
Publication of JPS6394564A publication Critical patent/JPS6394564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the follow-up performance of fuel pressure control by previously using the deviation between a fuel cell real load and erquire value in the fuel supply control to a fuel processing device with the fuel supplied to a fuel cell is processed. CONSTITUTION:A fuel pressure adjusting valve 12 provided at the inlet of a reformer 11A is controlled in such a way that the inlet pressure of a fuel flow adjusting valve 9 nears the set value. At the time of load increasing, required fuel flow increases and the inlet pressure of the fuel flow. adjusting valve 9 lowers, thereby the fuel quantity to be supplied to a fuel processing device 11 is previously increased based on the deviation between a required load value from a cell output setter 30 and a real load from from a cell output detector 26. At the time of load lowering, the required fuel quantity decreases and the inlet pressure of the fuel flow adjusting valve 9 increases thereby the fuel quantity to be supplied to the fuel processing device 11 is previously decreased based on the deviation between the required load value and the real load. Thereby,it is possible to lower the pressure change of the fuel according to the load change and to ensure the fuel cell power generating plant with stability and follow-up performance.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、水素−酸素燃料電池等の燃料電池を有する燃
料電池発電プラントに係り、特に燃料電池に供給される
燃料を前処理する燃料処理装置への燃料供給制御に燃料
電池実負荷と負荷要求値との偏差を先行的に用いるよう
にした燃料電池発電プラントの燃料電池制御装置に関す
る。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation plant having a fuel cell such as a hydrogen-oxygen fuel cell, and particularly to a fuel cell power generation plant having a fuel cell such as a hydrogen-oxygen fuel cell. The present invention relates to a fuel cell control device for a fuel cell power generation plant, in which a deviation between an actual fuel cell load and a required load value is used in advance to control fuel supply to a fuel processing device for pretreatment.

(従来の技術) 一般に、燃料電池発電プラントは燃料と酸化剤とを化学
反応させて直流電力を発電させる燃料電池を有する。従
来この種の燃料電池発電プラントは第2図に示すように
構成され、燃料電池1は電解質保持マトリックス2の上
下に正極3と負極4とをそれぞれ積層して、正極ガスス
ペースSと負極ガススペース6とをそれぞれ設け、正極
3と負j4A4とに負荷7を接続して、正極ガススペー
ス5の上方に冷却器8を設けている。
(Prior Art) Generally, a fuel cell power generation plant has a fuel cell that generates DC power by chemically reacting fuel and an oxidizing agent. Conventionally, this type of fuel cell power generation plant has been constructed as shown in FIG. A load 7 is connected to the positive electrode 3 and the negative j4A4, and a cooler 8 is provided above the positive electrode gas space 5.

その負極ガススペース6は燃料流量調節弁9゜シフトコ
ンバータ10.燃料処理装置11の改質器11A、燃料
圧力調節弁12および燃料ポンプ13に接続されている
。この燃料ポンプ13の駆動によりメタンガス等の水素
を含む燃料aを気水分離器20からの水蒸気すと混合し
て、改質器11A、シフトコンバータ10.および燃料
流量調節弁9にこの順に与えられ、これにより得られた
水素が負極ガススペース6に供給される。
The negative electrode gas space 6 is connected to a fuel flow rate control valve 9° shift converter 10. It is connected to the reformer 11A of the fuel processing device 11, the fuel pressure control valve 12, and the fuel pump 13. By driving the fuel pump 13, the fuel a containing hydrogen such as methane gas is mixed with steam from the steam separator 20, and the fuel a is mixed with the steam from the steam separator 20, and the fuel a is mixed with the steam from the steam separator 20, and the fuel a is mixed with the steam from the steam separator 20. and the fuel flow control valve 9 in this order, and the hydrogen thus obtained is supplied to the negative electrode gas space 6.

一方、燃料電池1の正極ガススペース5は、空気流量調
節弁14.空気流を適宜流量で分流させろエアーコント
ロールボックス15を介して圧縮機16の圧縮機u16
Aの吐出口に接続され、圧縮4i11(iにて圧縮され
た酸化剤2例えば圧縮空気dが給気されろ。圧縮機16
は補助バーナ17から排気される排ガスhにより駆動さ
れる排ガスタービン16I3の出力軸に圧縮機構16A
の回転軸を連動可能に結合しており、圧縮機構16Aを
排ガスタービン16Bにより駆動するようになっている
On the other hand, the positive electrode gas space 5 of the fuel cell 1 is connected to the air flow control valve 14. Dividing the air flow at an appropriate flow rate via the air control box 15 to the compressor u16 of the compressor
The compressor 16 is connected to the discharge port of A, and the oxidizing agent 2 compressed in the compressor 4i11 (i) is supplied with compressed air d.
A compression mechanism 16A is connected to the output shaft of an exhaust gas turbine 16I3 driven by the exhaust gas h exhausted from the auxiliary burner 17.
The rotation shafts of the compressor 16A are coupled to each other so as to be interlocked, and the compression mechanism 16A is driven by the exhaust gas turbine 16B.

また、燃料電池1では正極ガススペース5に与えられた
圧縮空気dと、負極ガススペース6に与えられた水素と
が化学反応して直流な力eを発生すると共に、水が正極
側に発生し、酸化剤をまだ多量に含む高温高圧の排ガス
fを正ガススペース5から排出する。また負極ガススペ
ース6からは、水素ガスをまだ多量に含む高温高圧の排
ガスgを排出する。
In addition, in the fuel cell 1, compressed air d applied to the positive electrode gas space 5 and hydrogen applied to the negative electrode gas space 6 chemically react to generate a direct current force e, and water is generated on the positive electrode side. , high-temperature, high-pressure exhaust gas f that still contains a large amount of oxidizing agent is discharged from the positive gas space 5. Further, high-temperature, high-pressure exhaust gas g that still contains a large amount of hydrogen gas is discharged from the negative electrode gas space 6.

このとき高温となる燃料電池1は冷却ポンプ18の駆動
により気水分離器20内のドレン水をラジェータ19に
通水させて冷却してから冷却配管8を通水することによ
って冷却され、冷却の際に加熱された冷却水は気水分離
器20内にて蒸発して蒸気を発生させる。
At this time, the fuel cell 1, which is at a high temperature, is cooled by driving the cooling pump 18 and passing the drain water in the steam water separator 20 through the radiator 19 to cool it, and then passing water through the cooling pipe 8. The heated cooling water is evaporated in the steam separator 20 to generate steam.

負極ガススペース6からの排ガス9は燃料処理装置11
の改質器バーナIIBに戻され、ここで正極ガススペー
ス5からの酸素を含んだ排気ガスfと混合されて燃焼し
、改質器11Aの熱源として利用される。
Exhaust gas 9 from the negative electrode gas space 6 is sent to a fuel processing device 11
It is returned to the reformer burner IIB, where it is mixed with the oxygen-containing exhaust gas f from the positive electrode gas space 5, combusted, and used as a heat source for the reformer 11A.

一方、正極ガススペース5からの排ガスfは再生器21
を経て、コンデンサ22へ与えられ、ここで、排ガス中
の水分が冷却凝縮されて除去され、ドレンは気水分離器
20へ戻されて再び再生器21で再熱されてから補助バ
ーナ17に戻され、ここで、燃料aと混合されて燃焼さ
れる。補助バーナ17より排出された排ガスhは上述し
たように圧縮機16の排ガスタービン16Bに導入され
て、これを駆動して圧縮機構16Aが連動して、その吸
込口より空気が吸い込まれて圧縮され、吐出口より圧縮
空気dが吐出され、この圧縮空気dは酸化剤として燃料
電池3の正極ガススペース5に与えられる。
On the other hand, the exhaust gas f from the positive electrode gas space 5 is transferred to the regenerator 21
The water in the exhaust gas is cooled and condensed and removed, and the drain is returned to the steam-water separator 20 and reheated in the regenerator 21, and then returned to the auxiliary burner 17. Here, it is mixed with fuel a and combusted. As described above, the exhaust gas h discharged from the auxiliary burner 17 is introduced into the exhaust gas turbine 16B of the compressor 16, which is driven to operate the compression mechanism 16A, and air is sucked in from its suction port and compressed. , compressed air d is discharged from the discharge port, and this compressed air d is given to the positive electrode gas space 5 of the fuel cell 3 as an oxidizing agent.

ところで、一般に燃料電池における出力の制御は、正極
ガススペース5と負極ガススペース6のそれぞれを流れ
る酸化剤(空気)と水素の量により行ない、第3図に示
すようにそれぞれの流量が増加すると電池出力は増加し
、流量が減少すると出力は減少するという関係がある。
By the way, the output of a fuel cell is generally controlled by the amount of oxidant (air) and hydrogen flowing through each of the positive electrode gas space 5 and the negative electrode gas space 6, and as shown in FIG. The relationship is that the output increases and as the flow rate decreases, the output decreases.

さらに電池での化学反応に対するr12素の利用率と水
素の利用率の割合によって、電池の出力1ば圧が変化す
る。この酸素利用率に対する電池電圧の関係は第4図の
ように酸素利用率が一番小さい時電池出力は最大で、利
用率が高くなると電池電圧は除々に減少し、ある利用率
より大きくなると電池電圧は急速に減少する。また水素
利用率に対する電池電圧の関係は第5図のようになって
おり、酸素利用率と同様に利用率が高くなると電池電圧
は除々に減少し、ある利用率より大きくなると電池電圧
は急速に減少する。水素利用率に対する電池電圧の変化
率は、酸素利用率のそれと比べて小さい。
Furthermore, the output voltage of the battery changes depending on the ratio of the utilization rate of r12 element and the utilization rate of hydrogen to the chemical reaction in the battery. The relationship between the battery voltage and the oxygen utilization rate is as shown in Figure 4. When the oxygen utilization rate is the lowest, the battery output is at its maximum, and as the utilization rate increases, the battery voltage gradually decreases, and when the utilization rate exceeds a certain level, the battery output is at its maximum. The voltage decreases rapidly. In addition, the relationship between battery voltage and hydrogen utilization rate is as shown in Figure 5. As with the oxygen utilization rate, as the utilization rate increases, the battery voltage gradually decreases, and when the utilization rate exceeds a certain level, the battery voltage rapidly decreases. Decrease. The rate of change in battery voltage with respect to the hydrogen utilization rate is smaller than that of the oxygen utilization rate.

いま第2図の制御装置23は、入力装置23a、出力装
置23bおよび演算装置123cを備えて電池出力を制
御する。入力装置1123aは空気流量検出器24.水
素流量検出器25.f!l池出力出力検出器26び水素
圧力検出器27などの信号を入力して演′a、装置23
cへ送る。演算装置123cは空気と燃料制御に必要な
演算を実施し、答弁の駆動信号として出力装置23bへ
送る。出力装置i!23bは、答弁の駆動信号を出力す
る。つまり、電池出力に基づいた水素流量、酸素流量、
蒸気必要量等が演算され、各弁開度が決定されるのであ
る。
The control device 23 shown in FIG. 2 includes an input device 23a, an output device 23b, and an arithmetic device 123c, and controls the battery output. The input device 1123a is the air flow rate detector 24. Hydrogen flow rate detector 25. f! The device 23 is operated by inputting signals from the battery output detector 26, hydrogen pressure detector 27, etc.
Send to c. The calculation device 123c performs calculations necessary for air and fuel control, and sends it to the output device 23b as a response drive signal. Output device i! 23b outputs a driving signal for answering. In other words, hydrogen flow rate, oxygen flow rate based on battery output,
The required amount of steam, etc. is calculated, and the opening degree of each valve is determined.

制御ブロックを第6図に示す。燃料電池への空気流量は
、電池出力設定器30からの電池出力設定信号と電池出
力検出器26からの電池出力信号を空気流量設定器37
に入力し、ここで第3図に基づいた関係により空気流量
設定値が演算され、比較器33に出力される。比較器3
3は、空気流4+1設定器37からの空気流量設定値と
空気流量検出器24からの空気流量を比較しそれらの偏
差信号を出力する。
The control block is shown in FIG. The air flow rate to the fuel cell is determined by combining the battery output setting signal from the battery output setting device 30 and the battery output signal from the battery output detector 26 with the air flow rate setting device 37.
Here, the air flow rate set value is calculated based on the relationship shown in FIG. 3, and is output to the comparator 33. Comparator 3
3 compares the air flow rate set value from the air flow 4+1 setting device 37 and the air flow rate from the air flow rate detector 24, and outputs a deviation signal between them.

比例・積分・微分制御装置34は、比較器33からの偏
差信号を演算し、電気・空気変換器36で空気圧信号に
変換し、空気流量調節弁14を制御する。
The proportional/integral/derivative control device 34 calculates the deviation signal from the comparator 33, converts it into a pneumatic signal using the electric/pneumatic converter 36, and controls the air flow control valve 14.

燃料電池への水素流量は、電池出力設定器30からの電
池出力設定信号と電池出力検出器26からの電池出力信
号および空気配管、水素配管に設置された酸素利用率検
出器39の酸素利用率信号を水素流量設定器38に入力
し、ここで第4図および第5図に示した酸素・水素の利
用率をキープした状態で第3図の関係を満すような水素
流量設定値が演算されて比較器33に出力される。比較
器33は、水素流量検出器25からの水素流量と設定値
とを比較しそれらの偏差信号を比例・積分・微分制御装
置34で演算し、電気・空気変換器36で空気圧信号に
変換して燃料流量調節弁9を制御する。
The hydrogen flow rate to the fuel cell is determined by the battery output setting signal from the battery output setting device 30, the battery output signal from the battery output detector 26, and the oxygen utilization rate of the oxygen utilization rate detector 39 installed in the air piping and hydrogen piping. The signal is input to the hydrogen flow rate setting device 38, where the hydrogen flow rate set value that satisfies the relationship shown in Figure 3 is calculated while maintaining the oxygen/hydrogen utilization rates shown in Figures 4 and 5. and output to the comparator 33. The comparator 33 compares the hydrogen flow rate from the hydrogen flow rate detector 25 with a set value, calculates their deviation signal with a proportional/integral/derivative control device 34, and converts it into an air pressure signal with an electric/pneumatic converter 36. to control the fuel flow control valve 9.

燃料処理装置11への燃料量は、燃料流量調節弁入口圧
設定器3】の設定値と燃料流量g節弁入口圧検出器から
の流量信号とを比較器33で比べて比例・積分・微分制
御装置34で演算し、電気・空気変換器36で空気圧信
号に変換して燃料圧力調節弁12を制御する。また燃料
処理装置X111への蒸気流量は、蒸気流量設定器32
の設定値と蒸気流量検出1;+40からの蒸気流量を比
較器33で比較し、偏差信号を比例・積分・微分制御装
置34で演算し、電気・空気変換器36で空気圧信号に
変換し、蒸気流量調節弁28を駆動して蒸気流量を制御
する。
The amount of fuel to be supplied to the fuel processing device 11 is determined by comparing the set value of the fuel flow rate control valve inlet pressure setter 3 with the flow rate signal from the fuel flow g control valve inlet pressure detector using a comparator 33 to calculate the amount of fuel by proportional, integral, and differential values. The control device 34 calculates the signal, and the electric/air converter 36 converts the signal into a pneumatic pressure signal to control the fuel pressure control valve 12. The steam flow rate to the fuel processing device X111 is determined by the steam flow rate setting device 32.
The comparator 33 compares the set value of steam flow rate detection 1; and the steam flow rate from +40, a deviation signal is calculated by a proportional/integral/derivative control device 34, and an electric/pneumatic converter 36 converts it into a pneumatic pressure signal. The steam flow rate control valve 28 is driven to control the steam flow rate.

(発明が解決しようとする問題点) ところで、一般に燃料電池では、その燃料と酸化剤の反
応物質の流量の増大に比例して電池出方が増加するので
、第2図で示す従来例においても酸化剤と水素はそれぞ
れの流量調節弁9,14により制御されている。これら
の制御信号は、制御袋[23によって制御される。また
燃料処理装置へ燃料を供給する燃料圧力調節弁12は、
燃料流量調節弁9の入口圧力が一定になるように入口圧
力を燃料流量調節弁入口圧力検出器27で測定し、設定
値との偏差がゼロとなるように制御している。
(Problems to be Solved by the Invention) Generally speaking, in a fuel cell, the amount of cell discharge increases in proportion to the increase in the flow rate of the reactant between the fuel and the oxidizer, so even in the conventional example shown in FIG. The oxidizer and hydrogen are controlled by respective flow control valves 9 and 14. These control signals are controlled by the control bag [23. Further, the fuel pressure control valve 12 that supplies fuel to the fuel processing device is
The inlet pressure of the fuel flow control valve 9 is measured by a fuel flow control valve inlet pressure detector 27 so that the inlet pressure is constant, and the pressure is controlled so that the deviation from the set value is zero.

しかしながら、このような従来の燃料電池発電プラント
において、負荷要求値が急変化すると、燃料圧力調節弁
12の制御が遅れ、燃料処理装置への外乱と、燃料電池
への燃料の安定供給が難かしいという問題があった。特
に燃料処理装置の容量は大きく、改質には化学プロセス
を用いているので燃料圧力調節弁12の遅れは重大な問
題である。
However, in such conventional fuel cell power generation plants, when the load request value suddenly changes, the control of the fuel pressure control valve 12 is delayed, causing disturbance to the fuel processing device and making it difficult to stably supply fuel to the fuel cell. There was a problem. In particular, since the capacity of the fuel processing device is large and a chemical process is used for reforming, the delay in the fuel pressure control valve 12 is a serious problem.

これは燃料流量調節弁9の制御が、要求負荷に対する空
気流量において、酸素利用率が設定値になるように水素
流量を制御しており、この水素流量の変化が結果として
圧力変化となって燃料圧力調節弁12の制御系に与えら
れるからである。このように負荷追従性に優れた燃料電
池発電プラントにおいて、燃料圧力の制御の遅れは極め
て大きな悪影響を与える。
This is because the fuel flow rate control valve 9 controls the hydrogen flow rate so that the oxygen utilization rate becomes the set value at the air flow rate for the required load, and this change in the hydrogen flow rate results in a pressure change, resulting in a fuel This is because it is applied to the control system of the pressure regulating valve 12. In a fuel cell power generation plant that has such excellent load followability, a delay in fuel pressure control has an extremely large adverse effect.

本発明の目的は、燃料圧力制御の追従性を高めることが
できる燃料電池発電プラントの燃料制御装置を提供する
ことにある。
An object of the present invention is to provide a fuel control device for a fuel cell power generation plant that can improve followability of fuel pressure control.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による燃料電池発電プラントの燃料制御装置は、
燃料と酸化剤とが供給される燃料電池と、上記燃料を前
処理するための改質装置とを有する燃料電池発電プラン
トにおいて、前記改質装置入口に燃料圧力調節弁を設け
、その燃料圧力調節弁を燃料電池燃料極入口の圧力と負
荷要求値とに対応した開度になるよう構成した制御手段
を設けたことを特徴とするものである。
(Means for solving the problems) A fuel control device for a fuel cell power generation plant according to the present invention includes:
In a fuel cell power generation plant having a fuel cell to which fuel and an oxidizer are supplied, and a reformer for pre-treating the fuel, a fuel pressure control valve is provided at the inlet of the reformer, and the fuel pressure is adjusted. The present invention is characterized by the provision of a control means configured to open the valve in accordance with the pressure at the inlet of the fuel electrode of the fuel cell and the required load value.

(作用) 本発明においては、改質装置の入口に設けた燃料圧力調
節弁は、燃料流量調節弁入口圧力が設定値に近づくよう
に制御されている。負荷上昇時には必要な燃料流量が増
加して燃料流量調節弁入口圧力が低下するので、負荷要
求値と実負荷から先行的に燃料処理装置直に送り込む燃
料量を増加させる負荷下降時には必要な燃料流量が減少
し、燃料流量調節弁入口圧力が上昇するので、負荷要求
値と実負荷から先行的に燃料処理装置に送り込む燃料量
を減少される。このように負荷変化時の燃料流量調節弁
入口圧力の変動を小さくし燃料電池プラントの制御性の
向上を図っている。
(Function) In the present invention, the fuel pressure regulating valve provided at the inlet of the reformer is controlled so that the fuel flow regulating valve inlet pressure approaches a set value. When the load increases, the required fuel flow rate increases and the fuel flow control valve inlet pressure decreases, so the amount of fuel sent directly to the fuel processing device is increased in advance based on the load request value and the actual load.The required fuel flow rate when the load decreases. decreases and the fuel flow control valve inlet pressure increases, so the amount of fuel sent to the fuel processing device is reduced in advance based on the load request value and the actual load. In this way, fluctuations in the fuel flow rate control valve inlet pressure when the load changes are reduced, thereby improving the controllability of the fuel cell plant.

(実施例) 以下、本発明の実施例を第1図に基づいて説明する。な
お、第1図において、第2図および第6図と共通する部
分には同一符号を付している。第1図は本発明の一実施
例の要部を示しており、本実施例はこの要部を除いて第
2図で示す従来例と同様であるので、その重複した説明
は省略する。
(Example) Hereinafter, an example of the present invention will be described based on FIG. 1. In FIG. 1, parts common to FIGS. 2 and 6 are given the same reference numerals. FIG. 1 shows a main part of an embodiment of the present invention, and since this embodiment is similar to the conventional example shown in FIG. 2 except for this main part, a redundant explanation thereof will be omitted.

すなわち、本実施例は第1図で示すように、燃料圧力設
定器31.電池出力設定器30.i’!!池出力検出力
検出器26器33.加算器35.比例・積分・微分制御
装置34.電気・空気変換器36および燃料流量調節弁
12より成る。
That is, in this embodiment, as shown in FIG. 1, the fuel pressure setting device 31. Battery output setting device 30. i'! ! 26 output detection power detectors 33. Adder 35. Proportional/integral/derivative control device 34. It consists of an electric/air converter 36 and a fuel flow control valve 12.

電池出力設定器30からの設定値信号と電池出力検出器
26からの検出値を比較器33で比較し、その偏差を燃
料圧力設定器31からの設定値に加算器35で加えてい
る。この加算器35の値と電池燃料流量調節弁入口圧力
検出器27からの検出信号と比較器33で比較され、そ
の偏差信号が比例・積分・微分装置34で演算され、電
気・空気変換器3Gで変換されて燃料圧力調節弁12を
駆動する。
The set value signal from the battery output setter 30 and the detected value from the battery output detector 26 are compared by a comparator 33, and the difference is added to the set value from the fuel pressure setter 31 by an adder 35. The value of this adder 35 and the detection signal from the battery fuel flow control valve inlet pressure detector 27 are compared in the comparator 33, and the deviation signal is calculated in the proportional/integral/differentiator 34, and the electric/air converter 3G is converted to drive the fuel pressure control valve 12.

このように本発明においては、改質器11Aの入口に設
けた燃料圧力調節弁12は、燃料流量調節弁9の入口圧
力が設定値に近づくように制御されている。負荷上昇時
には必要な燃料流量が増加して燃料流量調節弁9の入口
圧力が低下するので、電池出力設定器30よりの負荷要
求値と電池出力検出器26よりの実負荷とから先行的に
燃料処理装置1qllに送り込む燃料量を増加させる。
As described above, in the present invention, the fuel pressure regulating valve 12 provided at the inlet of the reformer 11A is controlled so that the inlet pressure of the fuel flow regulating valve 9 approaches the set value. When the load increases, the required fuel flow rate increases and the inlet pressure of the fuel flow control valve 9 decreases. Increase the amount of fuel sent to the processing device 1qll.

また負荷下降時には、必要な燃料量が減少し、燃料流量
調節弁9の入口圧力が上昇するので、負荷要求値と実負
荷とから先行的に燃料処理装置11ffllに送り込む
燃料量を減少させる。
Further, when the load is lowered, the required amount of fuel decreases and the inlet pressure of the fuel flow rate control valve 9 increases, so the amount of fuel sent to the fuel processing device 11ffll is decreased in advance based on the load request value and the actual load.

このように燃料圧力調節弁12は、負荷変化にともなう
燃料流量調節弁入口圧力の変化が始まる前に先行的に燃
料処理装置11に燃料を供給できるので、負荷変化にと
もなって燃料の圧力変化を小さくするすることができ、
安定なしかも負荷追従性の良い燃料電池発電プラントと
して運転することができる。
In this way, the fuel pressure regulating valve 12 can supply fuel to the fuel processing device 11 in advance before the fuel flow regulating valve inlet pressure starts to change due to a load change, so that the fuel pressure regulating valve 12 can prevent the fuel pressure from changing due to a load change. can be made smaller,
It can be operated as a stable fuel cell power generation plant with good load followability.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、燃料圧力調節弁の制御信号に負
荷要求値と負荷の偏差信号を先行的に加えることにより
、負荷変化時に適切な燃料処理が行なえ、燃料要求量に
対して遅れなく供給できるので、負荷変化時のプラント
追従性を高めることができる。
As described above, by adding the load request value and the load deviation signal in advance to the control signal of the fuel pressure control valve, appropriate fuel processing can be performed when the load changes, and there is no delay in responding to the fuel request amount. Since it can be supplied, it is possible to improve the followability of the plant when the load changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃料電池発電プラントの燃料制御
装置の一実施例を示すブロック図、第2図は燃料電池発
電プラントの全体もη成を示す系統図、第3図、第4図
および第5図はそれぞれ燃料電池における流量−電池出
力電流、電池電圧−酸素利用率および電池電圧−水素利
用率の関係を示す特性図、第6図は従来の燃料電池発電
プラントの燃料制御装置を示すブロック図である。 1・・・燃料電池    12・・・燃料圧力調節弁3
0・・・燃料圧力設定装置 31・・・負荷検出装置3
2・・・負荷要求装置  33・・・比較器34・・・
比例・積分・微分制御装置 35・・・加算器     36・・・電気・空気変換
器代理人 弁理士 猪 股 祥 晃(ほか1名)ヘ 第1図 第4図 第5図
FIG. 1 is a block diagram showing an embodiment of the fuel control device for a fuel cell power plant according to the present invention, FIG. 2 is a system diagram showing the entire fuel cell power plant having an η configuration, FIGS. Fig. 5 is a characteristic diagram showing the relationship between flow rate - cell output current, cell voltage - oxygen utilization rate, and cell voltage - hydrogen utilization rate in a fuel cell, respectively, and Fig. 6 shows a fuel control device of a conventional fuel cell power generation plant. It is a block diagram. 1...Fuel cell 12...Fuel pressure control valve 3
0...Fuel pressure setting device 31...Load detection device 3
2... Load request device 33... Comparator 34...
Proportional/integral/derivative control device 35... Adder 36... Electricity/air converter Representative Patent attorney Yoshiaki Inomata (and one other person) Figure 1 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)燃料と酸化剤とが供給される燃料電池と、上記燃
料を前処理するための改質装置とを有する燃料電池発電
プラントにおいて、前記改質装置入口に燃料圧力調節弁
を設け、その燃料圧力調節弁を燃料電池燃料極入口の圧
力と負荷要求値とに対応した開度になるよう構成した制
御手段を設けたことを特徴とする燃料電池発電プラント
の燃料制御装置。
(1) In a fuel cell power generation plant having a fuel cell to which fuel and an oxidizer are supplied, and a reformer for pre-treating the fuel, a fuel pressure control valve is provided at the inlet of the reformer, and 1. A fuel control device for a fuel cell power generation plant, comprising a control means configured to set a fuel pressure regulating valve to an opening degree corresponding to a pressure at an inlet of a fuel cell fuel electrode and a required load value.
(2)燃料圧力調節弁を制御する制御手段は、燃料電池
の燃料極入口圧力の設定値からの偏差信号による燃料圧
力制御信号に、燃料電池の負荷と負荷要求信号との偏差
信号を先行的に加えて、負荷変化に伴う燃料圧力変動に
対する応答性を向上させる手段を備えていることを特徴
とする特許請求の範囲第1項記載の燃料電池発電プラン
トの燃料制御装置。
(2) The control means for controlling the fuel pressure regulating valve includes a deviation signal between the load of the fuel cell and a load request signal in advance of the fuel pressure control signal based on the deviation signal from the set value of the fuel electrode inlet pressure of the fuel cell. 2. The fuel control device for a fuel cell power plant according to claim 1, further comprising means for improving responsiveness to fuel pressure fluctuations due to load changes.
(3)酸化剤が空気である特許請求の範囲第1項記載の
燃料電池発電プラントの燃料制御装置。
(3) The fuel control device for a fuel cell power plant according to claim 1, wherein the oxidizing agent is air.
JP61239028A 1986-10-09 1986-10-09 Fuel control device for fuel cell power generating plant Pending JPS6394564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239028A JPS6394564A (en) 1986-10-09 1986-10-09 Fuel control device for fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239028A JPS6394564A (en) 1986-10-09 1986-10-09 Fuel control device for fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPS6394564A true JPS6394564A (en) 1988-04-25

Family

ID=17038807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239028A Pending JPS6394564A (en) 1986-10-09 1986-10-09 Fuel control device for fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPS6394564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516615A (en) * 1999-12-06 2003-05-13 バラード パワー システムズ インコーポレイティド Method and system for operating a fuel cell
WO2011086448A3 (en) * 2010-01-12 2011-10-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system
WO2020247074A3 (en) * 2019-06-03 2021-01-14 Microsoft Technology Licensing, Llc Fuel cell throttle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516615A (en) * 1999-12-06 2003-05-13 バラード パワー システムズ インコーポレイティド Method and system for operating a fuel cell
WO2011086448A3 (en) * 2010-01-12 2011-10-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system
US9105891B2 (en) 2010-01-12 2015-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for fuel cell system
WO2020247074A3 (en) * 2019-06-03 2021-01-14 Microsoft Technology Licensing, Llc Fuel cell throttle
US11108065B2 (en) 2019-06-03 2021-08-31 Microsoft Technology Licensing, Llc Fuel cell throttle
CN113939934A (en) * 2019-06-03 2022-01-14 微软技术许可有限责任公司 Fuel cell throttle valve

Similar Documents

Publication Publication Date Title
CN110414157B (en) Multi-target sliding mode control method for proton exchange membrane fuel cell system
JP5151057B2 (en) FUEL CELL OPERATION SYSTEM AND VALVATE COORDINATE CONTROL METHOD
JPS6030062A (en) Output controller of fuel cell
JPH0129029B2 (en)
JPS6394564A (en) Fuel control device for fuel cell power generating plant
JPS6356673B2 (en)
JPS6356672B2 (en)
JPH0461464B2 (en)
JPH02213056A (en) Fuel cell power generating plant
JPH07130388A (en) Fuel cell generation plant
JP2810367B2 (en) Operating method of fuel cell power plant and fuel cell power plant
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JP2841703B2 (en) Method and apparatus for controlling amount of air for cathode of molten carbonate fuel cell
JPS62119869A (en) Control system for fuel cell power generation plant
JPS6220256A (en) Fuel cell power generating plant
JPS61227371A (en) Fuel cell power generation system
JPS58166675A (en) Combustion control method of reformer
JPS62222571A (en) Fuel cell power generating plant
JPH0316750B2 (en)
JPS58133776A (en) Control system of fuel cell power generating system
JPS6030061A (en) Output controller of fuel cell
JPS6372072A (en) Control method of fuel cell power generating plant
JPS62278767A (en) Fuel cell power generating plant
JP3151860B2 (en) Molten carbonate fuel cell power generator