JPS58166675A - Combustion control method of reformer - Google Patents

Combustion control method of reformer

Info

Publication number
JPS58166675A
JPS58166675A JP57049511A JP4951182A JPS58166675A JP S58166675 A JPS58166675 A JP S58166675A JP 57049511 A JP57049511 A JP 57049511A JP 4951182 A JP4951182 A JP 4951182A JP S58166675 A JPS58166675 A JP S58166675A
Authority
JP
Japan
Prior art keywords
combustion
reformer
fuel
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57049511A
Other languages
Japanese (ja)
Other versions
JPS6356674B2 (en
Inventor
Kiyoshi Kamitsuji
清 上辻
Koji Mikawa
広治 三河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP57049511A priority Critical patent/JPS58166675A/en
Publication of JPS58166675A publication Critical patent/JPS58166675A/en
Publication of JPS6356674B2 publication Critical patent/JPS6356674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To automatically perform the optimum control by finding supply and flow out energy to a reformer based on measured values of flow rate and temperature of gas, and separating the amounts of operation loss and of ordinary loss, to compensate the variation of operating conditions. CONSTITUTION:Fuel is supplied to an anode room 12 of a fuel cell 10 from a reaction part 22 of a reformer 20. Unreacting fuel 80, unreacting air 100 from a cathode room 11, air 110 from a compressor, and fuel gas-for-combustion 40 are supplied to a combustion room 21 of the reformer 20 to operate. A signal proportional to flow rate and temperature of flow in and flow out materials to and from the reformer 20 and to a load is inputted to a control apparatus 130. The heat in the reformer 20 is separated to the amount of operating loss proportional to operating conditions and the amount of ordinary loss which is not varied by operating conditions and calculated, and a control valve 43 is controlled so as to correct the amount of operating loss when operating conditions were varied. Therefore, control of fuel flow rate corresponding to the change of operating conditions is automated.

Description

【発明の詳細な説明】 本発明は、改質器の燃焼制御方法に関するものである。[Detailed description of the invention] The present invention relates to a combustion control method for a reformer.

燃料電池発電システムの発1効4倉向上させる方法の1
つに、燃料改質器の燃料流量titllJ御する方法が
ある。具体的な方法として、改質器への改質用燃料及び
燃焼用燃料流蓋會電池電流と改質器温度で制御する方法
(%公開50−15058号)が提案されている。この
方法は、電池電流変化時には、フィードフォワード制御
により、追従性を向上させ、定常時には改質器温度が一
定となるようにvJ4IIEする%*t−有している。
Method 1 to improve the power generation efficiency of a fuel cell power generation system by 4 degrees
One method is to control the fuel flow rate of the fuel reformer. As a specific method, a method has been proposed (% Publication No. 50-15058) in which the flow of reforming fuel and combustion fuel to the reformer is controlled by the cell current and reformer temperature. This method uses feedforward control to improve followability when the battery current changes, and to keep the reformer temperature constant during steady state.

燃料改質器のように、高温度で運転され、発熱、吸熱反
応1伴う装置においては、負荷レベル毎の熱効率が異な
るため、従来の方法ては最適に制御されない場合が多い
。このため、改質器の温度が大幅に変化し九夛、必要以
上の燃料が供給されて一時的に熱効率が低下する等の問
題があった。
In devices such as fuel reformers that operate at high temperatures and involve exothermic and endothermic reactions, the thermal efficiency differs depending on the load level, so conventional methods often do not control the devices optimally. As a result, the temperature of the reformer changes significantly, causing problems such as more fuel than necessary being supplied and a temporary drop in thermal efficiency.

本発明の目的は、上記従来技術の問題点全解決1改質器
への燃料供給量を負荷に応じて自動的に調節する制御方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control method that solves all of the problems of the prior art described above and automatically adjusts the amount of fuel supplied to a reformer according to the load.

次に本発明の散点を述べる。Next, the points of the present invention will be described.

燃料改質器は高温で運転されるため、高温1.*持する
のに燃料を燃焼させているが、発生したエネルギーは大
別して次の3つの経路で失なわれる。
Since the fuel reformer is operated at high temperature, high temperature 1. *Fuel is burned to maintain energy, but the energy generated is lost in three main ways:

(1)  改質用エネルギーとして利用されるもの。(1) Used as energy for reforming.

(2)高温の機器より嬉豐、補機、大気勢に失われるも
の(定常損失)。
(2) Loss from high-temperature equipment to energy, auxiliary equipment, and atmospheric pressure (steady-state loss).

(3)改質されたガス、燃焼ガスが持ち去るもの(運転
損失)。
(3) Reformed gas and combustion gas carry away (operating loss).

上記(2)では、改質器が運転されていれば、運転条件
による差はほとんど無く、常に一定の熱が損失されるが
、(1)および(3)は運転条件によシ著しく異なって
くる。
In (2) above, if the reformer is operating, there is almost no difference depending on the operating conditions, and a constant amount of heat is always lost, but in (1) and (3), there is a marked difference depending on the operating conditions. come.

本発明では、燃料改質−での熱【、運転条件に比例する
運転損失量と、変化しない定常損失量に分離し、運転条
件が変化し九場合には前者の運転損失量を補正するよう
に燃料流量tIIl整する。
In the present invention, heat generated during fuel reforming is separated into operating loss proportional to operating conditions and steady loss that does not change, and when operating conditions change, the former operating loss is corrected. Adjust the fuel flow rate tIIl to .

以下、本発明の好適な一実施例tJIE1図により説明
する。        ・ 燃料電池10は、カソード室11およびアノード室12
に有し、1対の電極13および140間電解質15t−
配置したものである。燃料改質器20は、内部に燃焼室
21および反応部22に有する。
A preferred embodiment of the present invention will be described below with reference to FIG. - The fuel cell 10 has a cathode chamber 11 and an anode chamber 12.
has an electrolyte 15t- between a pair of electrodes 13 and 140.
This is what was placed. The fuel reformer 20 has a combustion chamber 21 and a reaction section 22 inside.

改質用燃料ガスは、流量計51t−有する配管50t−
通して反応部22に流入する。反応部22には、流量針
61i有する配管60よυ改質用蒸気が供給される。反
応部22で解質された燃料ガスは、流量171を有する
配管70七通ってアノード富12内に導かれる。カソー
ド室11内には、圧#1IlfIA(図示せず)から吐
出された酸化用ガスである空気が、配管110および9
(1通って流入する。カソード室11に空気およびアノ
ード室12に燃料ガスが供給されることによって、電極
13および14および電解質15による電気化学反応が
生じ、各電極間に電圧が生じる。この電気エネルギは、
回路31によって取出され、外部負0830に導かれろ
The reforming fuel gas is supplied through a 50t pipe having a flowmeter 51t.
Flows into the reaction section 22 through the reactor. υ reforming steam is supplied to the reaction section 22 through a pipe 60 having a flow needle 61i. The fuel gas decomposed in the reaction section 22 is guided into the anode well 12 through a pipe 70 having a flow rate 171. Inside the cathode chamber 11, air, which is an oxidizing gas discharged from the pressure #1 IlfIA (not shown), flows through the pipes 110 and 9.
By supplying air to the cathode chamber 11 and fuel gas to the anode chamber 12, an electrochemical reaction occurs between the electrodes 13 and 14 and the electrolyte 15, and a voltage is generated between each electrode. The energy is
Taken out by circuit 31 and led to external negative 0830.

燃焼用燃料ガスは配管40t−通って、アノード室12
内の未反応燃料ガスは配−#80を通って、カソード室
11内の未反応空気は配V100’に通って、圧縮機(
図示せず)から吐出された燃焼用9気は配[110に通
って、燃料改質器2Gの燃焼室21にそれぞれ供給され
る。供給された燃料ガスおよび未反応燃料ガスは、燃焼
室21内で燃焼される。この燃焼によって生じる熱エネ
ルギは、反応部22内の改質用燃料ガスの改質に用いら
れる。残りの熱エネルギは、燃焼ガスとと−に配管12
0より排出される。この燃焼ガスは、圧縮機駆動用のガ
スタービン(図示せず)に送られる。
Combustion fuel gas passes through 40t of piping to the anode chamber 12.
The unreacted fuel gas in the cathode chamber 11 passes through pipe #80, and the unreacted air in the cathode chamber 11 passes through pipe V100' to the compressor (
The combustion gases discharged from the combustion chambers (not shown) pass through the distribution chambers 110 and are respectively supplied to the combustion chambers 21 of the fuel reformer 2G. The supplied fuel gas and unreacted fuel gas are combusted within the combustion chamber 21. Thermal energy generated by this combustion is used to reform the reforming fuel gas in the reaction section 22. The remaining thermal energy is transferred to the combustion gas and the piping 12.
Ejected from 0. This combustion gas is sent to a gas turbine (not shown) for driving the compressor.

燃焼室21内に供給される燃焼用燃料ガスの供給量は、
111節弁4aで制御される。
The amount of combustion fuel gas supplied into the combustion chamber 21 is:
It is controlled by the 111 section valve 4a.

流量針41.81,101,111および121は、配
管40,80,100,110および120に設けられ
る。52.62.72.82,102゜112および1
22は、配管50,6・0.7G。
Flow needles 41.81, 101, 111 and 121 are provided in piping 40, 80, 100, 110 and 120. 52.62.72.82, 102°112 and 1
22 is piping 50,6/0.7G.

80.100,110および120内會それぞれ流れる
ガスの@Ct検出する温屓針である。
80.100, 110, and 120 are temperature needles that detect @Ct of flowing gas.

71tlj御装置130は、燃料改質器20への流入物
とそれからの流出物の流量および温度、さらに負荷に比
例した信号倉入力し、これらの信号に基づいテ!14j
lrl弁43t−制御する。制御装置13GtC!る制
御音、第2園、Inx図を基づいて説明する。
The 71tlj control device 130 inputs signals proportional to the flow rate and temperature of the inflow to the fuel reformer 20 and the outflow from the fuel reformer 20, as well as the load, and based on these signals, the TE! 14j
lrl valve 43t-control. Control device 13GtC! This will be explained based on the control sound, second garden, and Inx diagram.

第2図は制御装置130での動作フロー線図である。定
常運転時には負荷は一定であるので、ステップ131の
出力はnoとなプ、ステップ132で定常時の入力熱量
が計算される。
FIG. 2 is an operation flow diagram of the control device 130. Since the load is constant during steady operation, the output of step 131 is no, and the amount of input heat during steady operation is calculated in step 132.

Qν舅P6・(q4 +Cp*・TI ) +Fl・C
9a −T舊+P、  ・ape  ・Ts +Ps 
 ・ (Q*  +CPa  ・T蟲 )+F1@ ・
Cり+e ・T111+P11 ・CPtt+Ttt 
 = ”(1)ここで、 Q、は入力熱量          (kJ/I)F4
は燃焼用燃料ガスの流t    (mot/I)q4は
燃焼用燃料ガスの燃焼熱 (kJ/no/、)CI)4
 n fida用燃料カ、t、ノ比熱 (kJ/m0t
−K)T1は燃焼用燃料ガスの温度     (K)F
sは改質用燃料ガスの流i1    (mot/1)F
6は改質用蒸気のfit      (mot/I)c
p−は改質用蒸気の比熱   (kJ/mo/、−K)
T・は改質用蒸気の温度       (K)Fiは未
反応燃料ガスの流量   (mo t/8 )q・は未
反応燃料ガスの燃焼熱 (kJ/mo/、)Cp、W′
i未反応燃料ガXO比繰(kJ/m0j−K)T、は未
反応燃料ガ、スの温度     (K)F、・は未反応
空気の流量     (moz/1)Ch、は未反応空
気の比熱   (kJ/m0L−K)Tllは未反応空
気の温IC(K) Fltは燃焼用g!9気の流量     (mOj/I
)CRtは燃焼用空気の比熱   (kJ/moj −
K)Tllは燃焼用空気の温度       (K)で
ある。
Qν舅P6・(q4 +Cp*・TI) +Fl・C
9a -T舊+P, ・ape ・Ts +Ps
・ (Q* +CPa ・T Insect) + F1@ ・
Cri+e ・T111+P11 ・CPtt+Ttt
= ”(1) Here, Q is the input heat amount (kJ/I)F4
is the flow of combustion fuel gas t (mot/I)q4 is the combustion heat of combustion fuel gas (kJ/no/,)CI)4
n Specific heat of fuel for fida, t, (kJ/m0t
-K)T1 is the temperature of the combustion fuel gas (K)F
s is the reforming fuel gas flow i1 (mot/1)F
6 is the reforming steam fit (mot/I)c
p- is the specific heat of reforming steam (kJ/mo/, -K)
T・ is the temperature of reforming steam (K), Fi is the flow rate of unreacted fuel gas (mot/8), q・ is the heat of combustion of unreacted fuel gas (kJ/mo/,) Cp, W'
i Unreacted fuel gas XO ratio (kJ/m0j-K)T, is the temperature of unreacted fuel gas, Specific heat (kJ/m0L-K) Tll is the temperature of unreacted air IC (K) Flt is the combustion g! Flow rate of 9 qi (mOj/I
) CRt is the specific heat of combustion air (kJ/moj −
K) Tll is the temperature (K) of the combustion air.

第3図に示すように1人力熱QyFi定常損失Qtと運
転損失Qoにより消費され、Qoはさらに、改質用の熱
Qmと流出ガスの持ち去る熱Q!に分けられる。Q、と
0!はステップ133で計算される。
As shown in Fig. 3, one person's heat QyFi is consumed by the steady loss Qt and the operating loss Qo, and Qo is further consumed by the reforming heat Qm and the heat carried away by the outflow gas Q! It can be divided into Q, and 0! is calculated in step 133.

Q属=F、 ・qR,・・・・・・・・・・・・・・・
・・・12)Qr =Fv・cp、・Ty+Ft*−C
P+t、・Tit・・・・・・・・・・・・(3)ここ
で、 Q、は改質に要する熱量      (kJ/5)q−
は改質熱         (kJ/mot)Qrは流
出ガスの持ち去る熱量   (kJ/杓F1は反追部2
2から流出する燃料ガスの流量(moz/易) Cp、は反応部22力島ら流出する燃料ガスの比熱(k
J/mot−K) Tマは反応部22から流出する燃料ガスの@直(K) Fllは燃焼ガスの流量      (mot/5)c
pllは燃焼ガスの比熱    (kJ/m0t−K)
’I’llは燃焼ガスの温度         (K)
である。
Q genus=F, ・qR,・・・・・・・・・・・・・・・
...12) Qr =Fv・cp,・Ty+Ft*-C
P+t,・Tit・・・・・・・・・・・・(3) Here, Q is the amount of heat required for reforming (kJ/5)q−
is the heat of reforming (kJ/mot) Qr is the amount of heat carried away by the outflow gas (kJ/ladder F1 is the reaction part 2
The flow rate (moz/yield) of the fuel gas flowing out from the reaction section 22, Cp, is the specific heat (k) of the fuel gas flowing out from the reaction section 22.
J/mot-K) T is the flow rate of the fuel gas flowing out from the reaction section 22 (K) Fll is the flow rate of the combustion gas (mot/5)c
pll is the specific heat of combustion gas (kJ/m0t-K)
'I'll is the temperature of combustion gas (K)
It is.

定常損失Q7は入力熱量Qνと運転損失QoO差で求め
ることができ、ステップ134で計算する。
The steady loss Q7 can be determined from the difference between the input heat amount Qv and the operating loss QoO, and is calculated in step 134.

Qt:=Qv  Qm  Qt      ・・・・・
・・・・・・・・・・・・・(4)次に、燃料電池10
の負荷が2倍に変化し九場合(4〉Cとする)は、負荷
信号32ステツプ131の出力はy@Sとなシ、ステッ
プ135で加熱量の変化量が計算される。この場合、通
常は負荷に比例した燃料ガス及び空気を燃料電池lOに
供給する制御装置、t−動作させる九め、改質に要する
熱量及び流出ガスの持ち去る熱量の変化量は次式のよう
になる。
Qt:=Qv Qm Qt...
・・・・・・・・・・・・・・・(4) Next, the fuel cell 10
When the load changes by a factor of 9 (4>C), the output of the load signal 32 step 131 becomes y@S, and the amount of change in heating amount is calculated in step 135. In this case, normally a control device supplies fuel gas and air to the fuel cell lO in proportion to the load, a control device operates the t-operation, and the amount of change in the amount of heat required for reforming and the amount of heat removed by the outflow gas is expressed as follows: Become.

jQ鳳3Q虱 ・ (j−1)  ・kR・1111 
+11@・・・・・・・・・・・・(5)ノQ!亀Q!
 ・(j−1) ・kT ・・・・・・・・・・・・・
・・・・・(6)こ仁で、 l Q m Fi改質に要する熱量変化分 (kJ/I
)lQ!は流出ガスの持ち去る熱量変化分(kJ/I) kRは補正係数(通常は1G) kTは補正係数(通常は1.0) である。
jQ Otori 3Q Lice ・ (j-1) ・kR・1111
+11@・・・・・・・・・・・・(5)ノQ! Turtle Q!
・(j-1) ・kT ・・・・・・・・・・・・・
・・・・・・(6) Change in amount of heat required for modification of l Q m Fi (kJ/I
)lQ! is the change in the amount of heat carried away by the outflow gas (kJ/I), kR is the correction coefficient (usually 1G), and kT is the correction coefficient (usually 1.0).

加熱量はQrに4GmとIQv を加えた値となシ、こ
れがステップ136で計算されて制御装置の出力信号1
37(第1図)になる、燃焼用燃料ガス流量制御装置4
2は、出力信号137七入力して燃焼用燃料ガスの流量
tg*する。すなわち、本発明では、負荷変化に応じて
変化する熱量のみt補正するように制御される。
The amount of heating is Qr plus 4Gm and IQv, which is calculated in step 136 and output signal 1 from the control device.
37 (Fig. 1), combustion fuel gas flow rate control device 4
2 inputs the output signal 1377 to obtain the combustion fuel gas flow rate tg*. That is, in the present invention, control is performed so that only the amount of heat that changes according to the load change is corrected by t.

以上においては、本発明をその特定の実施例について説
明し九が、本発明は説明し皮実施内に限定されるもので
なく、本発明の範囲内で種々の応用が可能でhることは
当業者にとって明らかである。
Although the invention has been described in terms of specific embodiments thereof, it is understood that the invention is not limited to the embodiments described and that various applications are possible within the scope of the invention. It will be clear to those skilled in the art.

例えば、制御装置130への信号32は電流の代〉に電
力でも同一の効果を得ることができる。
For example, the signal 32 to the controller 130 can be electrically powered instead of current to achieve the same effect.

盲九、#I1図では改質器への入口、出口のガス流量を
全量計測しているが、特に出口ガスの流量計測を省略し
て計算で求めることが可能である。さらに、未反応燃料
の流量に関しても、電池電流から算出することかで龜る
In Figure 9, #I1, the entire gas flow rate at the inlet and outlet of the reformer is measured, but it is possible to specifically calculate the flow rate by omitting the flow rate measurement of the outlet gas. Furthermore, the flow rate of unreacted fuel is also difficult to calculate based on the battery current.

本発明によれば次の効果がある。According to the present invention, there are the following effects.

(1)  運転牽件変fに対して必要な燃焼用燃料流量
t−自動的に調整することができる。
(1) The required combustion fuel flow rate t can be automatically adjusted in response to the driving conditions f.

(2)上記(1)の効果によシ、改質器の温度変化が低
減され、必要以上の燃料供給を防止することができる。
(2) Due to the effect of (1) above, temperature changes in the reformer are reduced, and more fuel than necessary can be prevented.

(3)  運転が自動化されることによシ、運転員の労
力を減少させることができる。
(3) By automating the operation, the labor of the operator can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

1111図は装置@を適用した燃料電池発電システムの
一例【示した系統図、第2図は第1図に示す制御装置1
3Gの動fft説明する九めめ計算70−線図、第3図
は本発明の熱収支図である。
Figure 1111 is an example of a fuel cell power generation system to which the device @ is applied.
Figure 3 is a diagram showing the heat balance diagram of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼用燃料ガス、燃料電池かもの未反応燃料ガスお
よび未反応酸化ガスおよび燃焼用空気が供給されて燃焼
ガスを排出する燃焼室と、改質用燃料ガスが供給されて
改質された燃料ガスt#出する反応部とt有する改質器
06鉤を制御する方法において、各々の前記ガス011
度および流量tllII定し、これらの測定値に基づい
て前記反応部および前記燃1s菫への供給エネルギおよ
び前記反応部および燃焼室からの流出エネルギを求め、
これらのエネルギを運転によって変化す為4転損失量と
運転によって変化しない定常損失量に分鴫し、運転条件
が変化し7を時、前記運転損失量を補償するように燃焼
用燃料ガスの供給量を制御すること會特徴とする改質器
の燃焼制御方法。
1. A combustion chamber to which combustion fuel gas, unreacted fuel gas, unreacted oxidizing gas, and combustion air are supplied to the fuel cell and exhaust combustion gas, and a combustion chamber to which reforming fuel gas is supplied and reformed. In a method for controlling a reformer 06 hook having a reaction section and t for emitting fuel gas t#, each of said gases 011
and determine the energy supplied to the reaction section and the combustion chamber and the energy flowing out from the reaction section and the combustion chamber based on these measured values,
Since these energies change with operation, they are divided into a four-wheel rotation loss amount and a steady loss amount that does not change with operation, and when the operating conditions change, fuel gas for combustion is supplied to compensate for the above-mentioned operating loss amount. A combustion control method for a reformer characterized by controlling the amount.
JP57049511A 1982-03-27 1982-03-27 Combustion control method of reformer Granted JPS58166675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049511A JPS58166675A (en) 1982-03-27 1982-03-27 Combustion control method of reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049511A JPS58166675A (en) 1982-03-27 1982-03-27 Combustion control method of reformer

Publications (2)

Publication Number Publication Date
JPS58166675A true JPS58166675A (en) 1983-10-01
JPS6356674B2 JPS6356674B2 (en) 1988-11-09

Family

ID=12833153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049511A Granted JPS58166675A (en) 1982-03-27 1982-03-27 Combustion control method of reformer

Country Status (1)

Country Link
JP (1) JPS58166675A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240066A (en) * 1984-05-14 1985-11-28 Mitsubishi Electric Corp Combustion control method and device of reforming device for fuel cell
JPS61263063A (en) * 1985-05-16 1986-11-21 Toshiba Corp Fuel cell power generation system
JPS62186472A (en) * 1986-02-10 1987-08-14 Toshiba Corp Fuel system controller for fuel cell power generation plant
US7282288B2 (en) 2001-06-27 2007-10-16 Nissan Motor Co., Ltd. Fuel cell system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240066A (en) * 1984-05-14 1985-11-28 Mitsubishi Electric Corp Combustion control method and device of reforming device for fuel cell
JPS61263063A (en) * 1985-05-16 1986-11-21 Toshiba Corp Fuel cell power generation system
JPS62186472A (en) * 1986-02-10 1987-08-14 Toshiba Corp Fuel system controller for fuel cell power generation plant
US7282288B2 (en) 2001-06-27 2007-10-16 Nissan Motor Co., Ltd. Fuel cell system and method

Also Published As

Publication number Publication date
JPS6356674B2 (en) 1988-11-09

Similar Documents

Publication Publication Date Title
JP2793365B2 (en) Fuel cell plant fuel flow control
JPS6326514B2 (en)
JPS58166675A (en) Combustion control method of reformer
JPH0461464B2 (en)
JP2002289226A (en) Reformer temperature control system for fuel cell power generator
JPH05335029A (en) Fuel cell power-generating system
TWI557981B (en) Power generation apparatus integrated clp and sofc and operation method thereof
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPS58133775A (en) Cooling method of fuel cell power generating system
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH02213056A (en) Fuel cell power generating plant
JPH08255621A (en) Power generating device for fuel cell
JP2814706B2 (en) Fuel cell generator
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPS63146367A (en) Reforming catalyst temperature controller in fuel cell power generating device
JP2021111454A (en) Fuel cell system
JPS6394564A (en) Fuel control device for fuel cell power generating plant
JPH01134869A (en) Fuel cell power generating facility and its operating method
JPS634565A (en) Fuel cell power generating system
JPS6030061A (en) Output controller of fuel cell
JPS61101970A (en) Fuel flow rate control device for fuel cell generation plant
JPH01217865A (en) Fuel cell power generating system
JPS62278767A (en) Fuel cell power generating plant
JPS6220256A (en) Fuel cell power generating plant