JPH01134869A - Fuel cell power generating facility and its operating method - Google Patents

Fuel cell power generating facility and its operating method

Info

Publication number
JPH01134869A
JPH01134869A JP62290644A JP29064487A JPH01134869A JP H01134869 A JPH01134869 A JP H01134869A JP 62290644 A JP62290644 A JP 62290644A JP 29064487 A JP29064487 A JP 29064487A JP H01134869 A JPH01134869 A JP H01134869A
Authority
JP
Japan
Prior art keywords
gas
temperature
battery
oxidant gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62290644A
Other languages
Japanese (ja)
Inventor
Nobuhiro Seiki
信宏 清木
Narihisa Sugita
杉田 成久
Shigeyoshi Kobayashi
成嘉 小林
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62290644A priority Critical patent/JPH01134869A/en
Publication of JPH01134869A publication Critical patent/JPH01134869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide high performance, high reliability, and long life by controlling the inlet temp. and rate of flow of an oxidating agent gas on the basis of sensed temp. at the cell inlet and outlet, and thereby optimizing the cell temp. with respect to the load in a wider range. CONSTITUTION:When a cell is operated, the cell inlet temp. of an oxidating agent gas is sensed by a sensor 15 and sent to a controller 50, which sends a combustion gas temp. controlling signal according to the temp. and set value to a valve 42 for fuel of a combustor 40 for recirculation, to hold the gas temp. supplied to the cell constant. At the same time, the temp signal from a gas temp. sensor 16 at the cell inlet and a difference signal with the set value is passed from the controller 50 to a fuel valve 53 of a fuel modifier 20 to hold the supply temp. of the fuel gas constant. On the other hand, the temp. signal from an oxidating agent gas temp. sensor 60 at the cell outlet is sent to the controller 50, which passes a rate-of-flow signal to a flow adjusting valve 62 of a bypass flowline 63 of compressor 32, to adjust the rate of flow of the oxidating agent gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電設備およびその運転方法に係り、
特に負荷変動時にも電池温度が変化せず、高性能、高信
鯨性、および長寿命を保持して広い負荷範囲で最適温度
で運転するのに好適な燃料電池発電設備およびその運転
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell power generation facility and a method of operating the same.
In particular, the present invention relates to fuel cell power generation equipment and a method of operating the same, which are suitable for operating at an optimum temperature over a wide load range, with the battery temperature not changing even during load fluctuations, maintaining high performance, high reliability, and long life.

〔従来の技術〕[Conventional technology]

従来の燃料電池発電設備およびその運転方法は、特開昭
53−29534号に記載のように酸化剤ガスの再循環
手段、燃料改質器用燃焼排気ガスと圧縮機からの給気酸
化剤ガスとの混合によるガスの電池入口温度の制御を行
なっていた。また、特開昭58−164157号では、
電池出口、あるいは酸化剤ガスの電池入口温度を検出し
、酸化剤ガスの再循環流量を制御し、酸化剤ガスの電池
入口温度を調節するようになっていた。
Conventional fuel cell power generation equipment and its operating method include means for recirculating oxidizing gas, combustion exhaust gas for a fuel reformer, and supply air oxidizing gas from a compressor, as described in JP-A No. 53-29534. The temperature of the gas at the cell inlet was controlled by mixing the gas. In addition, in Japanese Patent Application Laid-open No. 58-164157,
The temperature at the battery outlet or the battery inlet of the oxidizing gas is detected, the recirculation flow rate of the oxidizing gas is controlled, and the temperature of the oxidizing gas at the battery inlet is adjusted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は電池の負荷が変化した場合、電池を最適
温度で運転する酸化剤ガス温度、ガス流量の制御、運転
方法について配慮がなされていない。特開昭53−29
534号では、電池の負荷が変化した場合にどのように
電池を運転するかについては特に記されておらず、酸化
剤ガスの電池入口温度、ガス流量で制御するとしても、
電池の最高、最低あるいは平均温度などから決まる運転
範囲は必ずしも広くな(、ガス流量、ガス温度を適切に
制御する必要があるとともに、電池は一種の化学反応器
であり、温度が変化する場合にはその変化する速度は非
常に遅く、安定した出力が得られない、低サイクルの熱
疲労が発生するなど性能、信頼性、運転特性などの面で
問題があった。
The above-mentioned conventional technology does not take into consideration the oxidant gas temperature, gas flow rate control, or operating method for operating the battery at an optimum temperature when the battery load changes. Japanese Patent Publication No. 53-29
No. 534 does not specifically describe how to operate the battery when the battery load changes, and even if it is controlled by the battery inlet temperature of the oxidizing gas and the gas flow rate,
The operating range determined by the battery's maximum, minimum, or average temperature is not necessarily wide (although it is necessary to appropriately control the gas flow rate and gas temperature, and the battery is a type of chemical reactor, and when the temperature changes, The speed of change is very slow, and there are problems in terms of performance, reliability, and operating characteristics, such as the inability to obtain stable output and the occurrence of low-cycle thermal fatigue.

また、特開昭58−164157号では、酸化剤ガスの
再循環流量を電池出口の酸化剤ガス温度、必要に応じ入
口の酸化剤ガス温度の検出により再循環流量と圧縮機か
らの空気流量との混合比を制御しているが、燃料電池は
化学反応装置の一種であり、電池温度が変化するとその
性能も大きく変化、すなわち、電池内での発熱量が変化
し、それにともない電池温度が変化する。したがって、
出口、あるいは入口ガス温度の一方、あるいは両方の検
出データで再循環酸化剤ガス流量を制御することは、電
池の入口ガス温度が常に変動し、それにともない性能、
電池温度も変化し、出力の不安定、低サイクルの熱疲労
などの発生をもたらし、性能、信頼性、運転特性の面で
問題があった。また、電池の負荷が変化する場合には、
上記の問題点がさらに強調され、負荷特性に大きな問題
を有する制御方式となる。
In addition, in JP-A No. 58-164157, the recirculation flow rate of the oxidizing gas is determined by detecting the oxidizing gas temperature at the outlet of the battery and, if necessary, the oxidizing gas temperature at the inlet. However, a fuel cell is a type of chemical reaction device, and when the battery temperature changes, its performance changes significantly.In other words, the amount of heat generated within the battery changes, and the battery temperature changes accordingly. do. therefore,
Controlling the recirculating oxidant gas flow rate based on the detection data of either the outlet or inlet gas temperature, or both, means that the inlet gas temperature of the cell will constantly fluctuate, and the performance will change accordingly.
Battery temperature also changes, leading to unstable output and low-cycle thermal fatigue, which poses problems in terms of performance, reliability, and operating characteristics. Also, if the battery load changes,
The above-mentioned problems are further emphasized, resulting in a control method that has serious problems in load characteristics.

本発明の目的は負荷応答性にすぐれ、しかも広い範囲の
負荷に対して電池温度を最適な温度で運転でき、高性能
、高信頼性、及び長寿命を達成できる燃料電池発電設備
およびその運転方法を提供することにある。
The object of the present invention is to provide a fuel cell power generation equipment and method for its operation that has excellent load responsiveness, can be operated at an optimal battery temperature for a wide range of loads, and achieves high performance, high reliability, and long life. Our goal is to provide the following.

C問題点を解決するための手段〕 上記目的は、酸化剤ガスの再循環系に電池入口の酸化剤
ガス温度調節器を設けるとともに、酸化剤ガスの給、排
気管の電池入口、出口部に設けたガス温度検出器からの
信号、負荷装置の電流、電圧信号とから酸化剤ガスの目
標値となる電池出口温度範囲を計算し、この計算温度に
基づき、酸化剤ガスの電池入口温度を前記酸化剤ガス再
循環配管系に設けたガス温度調節器で一定に制御し、電
池への酸化剤ガス流量制御により酸化剤ガスの電池出口
温度を前記温度範囲となるように調節することにより、
達成される。
Means for Solving Problem C] The above purpose is to provide an oxidant gas temperature regulator at the battery inlet in the oxidant gas recirculation system, and to install an oxidant gas temperature regulator at the battery inlet and outlet of the oxidant gas supply and exhaust pipes. The cell outlet temperature range that is the target value of the oxidant gas is calculated from the signal from the installed gas temperature detector, the current of the load device, and the voltage signal, and based on this calculated temperature, the battery inlet temperature of the oxidant gas is set as above. By controlling the temperature at a constant level with a gas temperature regulator installed in the oxidizing gas recirculation piping system, and controlling the oxidizing gas flow rate to the battery so that the temperature at the battery outlet of the oxidizing gas falls within the above-mentioned temperature range,
achieved.

したつがって、本願発明の第1番目の発明は、「電解質
板、電極、及びセパレータ板から構成され、電極とセパ
レータ板との間に燃料、酸化剤ガス用の流路が形成され
る単位電池を複数枚積層した電池スタックとこのスタッ
クを格納する容器と上記スタックに燃料、酸化剤ガスの
給、排気を行なう配管系とスタックを格納する容器内に
ガスを給、排気する配管系と電池の外部負荷装置、酸他
剤ガス供給装置、燃料改質器とからなる燃料電池発電設
備において、前記酸化剤ガスの給、排気管の電池入口、
出口部ガス温度検出器を設け、酸化剤ガスの排気管と給
気管との間を連結する酸化剤ガス再循環配管系を設け、
前記配管系の途中に前記検出器によって検出された電池
入口温度に基づいて酸化剤ガスの電池入口温度を制御す
るガス温度調節器を設け、さらに、前記酸化剤ガス給気
配管系に前記検出器によって検出された電池出口温度に
基づいて酸化剤ガス流量を制御するガス流量制御装置を
設けたことを特徴とする燃料電池発電設備、」 であり、 本願発明の第2番目の発明は、 「燃料電池発電設備において、酸化剤ガスの排気管と給
気管との間を連結する酸化剤ガス再循環配管系を設け、
酸化剤ガスの給、排気管の電池入口、出口部ガス温度の
検出器からの信号、負荷装置の電流、電圧信号とから酸
化剤ガスの目標値となる電池出口温度範囲を計算し、こ
の計算温度に基づき、酸化剤ガスの電池入口温度を前記
酸化剤ガス再循環配管系に設けたガス温度調節器で一定
に制御し、電池への酸化剤ガス流量制御により酸化剤ガ
スの電池出口温度を前記温度範囲となるように調節する
ことを特徴とする燃料電池発電設備の運転方法。」 である。
Therefore, the first invention of the present invention is "a unit composed of an electrolyte plate, an electrode, and a separator plate, and in which a flow path for fuel and oxidant gas is formed between the electrode and the separator plate. A battery stack consisting of a plurality of stacked batteries, a container for storing the stack, a piping system for supplying and exhausting fuel and oxidizing gas to the stack, a piping system for supplying and exhausting gas to the container for storing the stack, and a battery. In the fuel cell power generation equipment comprising an external load device, an acid gas supply device, and a fuel reformer, the oxidant gas supply, the battery inlet of the exhaust pipe,
An outlet gas temperature detector is provided, and an oxidizing gas recirculation piping system is provided that connects the oxidizing gas exhaust pipe and the air supply pipe.
A gas temperature regulator for controlling the battery inlet temperature of the oxidizing gas based on the battery inlet temperature detected by the detector is provided in the middle of the piping system, and the detector is further provided in the oxidizing gas supply piping system. A fuel cell power generation equipment characterized by being provided with a gas flow rate control device that controls an oxidant gas flow rate based on a cell outlet temperature detected by a fuel In battery power generation equipment, an oxidizing gas recirculation piping system is provided that connects the oxidizing gas exhaust pipe and the air supply pipe,
Calculate the battery outlet temperature range that is the target value of the oxidizing gas from the oxidizing gas supply, battery inlet of the exhaust pipe, the signal from the gas temperature detector at the outlet, the current of the load device, and the voltage signal. Based on the temperature, the cell inlet temperature of the oxidant gas is controlled to be constant by a gas temperature controller installed in the oxidant gas recirculation piping system, and the cell outlet temperature of the oxidant gas is controlled by controlling the oxidant gas flow rate to the cell. A method of operating a fuel cell power generation facility, comprising adjusting the temperature to fall within the above temperature range. ”.

〔作 用〕[For production]

燃料電池の運転温度は電池内の最高、最低温度と電池の
平均温度とによって決まる。電池の最高温度は電解質の
許容蒸発量、腐食速度、材料強度などによって決められ
、最低温度は電解質板の作動限界温度、例えば、溶融炭
酸塩であればその融点により決まる。また、平均温度は
性能に直接関係することから、できればより高温にした
いが上記のような問題点があるため、ホットスポットが
許容される最高温度になるようなできるだけ高い平均温
度が設定されることになる。電池温度は電池内を流れる
電流、運転電圧、電池回路電圧、ガス流量、入口ガス温
度などによって決まることになるが、電池内では電池性
能によって発熱量が変化することと、電池の燃料ガス入
口から出口にわたって発電量、すなわち発熱分布も変化
し、電池内に温度分布が発生する。
The operating temperature of a fuel cell is determined by the maximum and minimum temperatures within the cell and the average temperature of the cell. The maximum temperature of a battery is determined by the allowable evaporation amount of the electrolyte, corrosion rate, material strength, etc., and the minimum temperature is determined by the operating limit temperature of the electrolyte plate, for example, the melting point of molten carbonate. Also, since the average temperature is directly related to performance, it would be better to set it higher if possible, but due to the problems mentioned above, the average temperature should be set as high as possible so that the hot spot reaches the maximum allowable temperature. become. Battery temperature is determined by the current flowing inside the battery, operating voltage, battery circuit voltage, gas flow rate, inlet gas temperature, etc. Inside the battery, the amount of heat generated changes depending on the battery performance, and the amount of heat generated from the fuel gas inlet of the battery changes. The amount of power generated, that is, the distribution of heat generation, also changes across the outlet, creating a temperature distribution within the battery.

そこで、電池温度を最適な状態で運転するためには負荷
と電池性能に応じて入口ガス温度、ガス流量を変化させ
なければならないが、上記のように、酸化剤ガスの再循
環系に電池入口の酸化剤ガス温度調節器を設けるととも
に、酸化剤ガスの給。
Therefore, in order to operate the battery at an optimal temperature, it is necessary to change the inlet gas temperature and gas flow rate depending on the load and battery performance. In addition to installing an oxidizing gas temperature controller, the oxidizing gas is supplied.

排気管の電池入口、出口部に設けたガス温度検出器から
の信号、負荷装置の電流、電圧信号とから酸化剤ガスの
目標値となる電池出口温度範囲を計算し、この計算温度
に基づき、酸化剤ガスの電池入口温度を前記酸化剤ガス
再循環配管系に設けたガス温度調節器で一定に制御し、
電池への酸化剤ガス流量制御により酸化剤ガスの電池出
口ガス温度を前記温度範囲となるように調節することに
より、負荷が変化しても電池は常に最適温度で運転され
るため、負荷が変化した場合にも性能の不安定、温度変
動にともなう低サイクルの熱疲労などが発せず、負荷特
性の良い、高性能、高信頼性の電池運転が行える。
The battery outlet temperature range, which is the target value of the oxidant gas, is calculated from the signals from the gas temperature detectors installed at the battery inlet and outlet of the exhaust pipe, the current and voltage signals of the load device, and based on this calculated temperature, Controlling the cell inlet temperature of the oxidant gas to a constant value with a gas temperature controller provided in the oxidant gas recirculation piping system;
By controlling the oxidizing gas flow rate to the battery and adjusting the temperature of the oxidizing gas at the battery outlet so that it falls within the above temperature range, the battery will always be operated at the optimum temperature even when the load changes. Even under such conditions, performance instability and low-cycle thermal fatigue due to temperature fluctuations do not occur, and battery operation with good load characteristics, high performance, and high reliability can be achieved.

〔実施例〕〔Example〕

以下、本願発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は燃料電池発電設備の系統図を示す。電池スタッ
ク10は格納容器1の中に設置され、電池のカソード側
には酸化剤ガスの給、排気管37.11が接続され、そ
の入口、出口部にはガス温度検出器15.16が取り付
けられている。酸化剤ガスの排気管は弁39により再循
環ライン41とタービン31の駆動源となる燃焼ガスの
酸化剤ガスライン19とに分岐される。酸化剤ガスの再
循環ラインには酸化剤ガスの入口温度制御用に燃焼器4
0が設けられ、燃料ライン34が流量調節弁42を介し
て取り付けられている。
Figure 1 shows a system diagram of the fuel cell power generation facility. The battery stack 10 is installed in the containment vessel 1, and an oxidant gas supply and exhaust pipe 37.11 is connected to the cathode side of the battery, and a gas temperature detector 15.16 is attached to the inlet and outlet portions. It is being The oxidizing gas exhaust pipe is branched by a valve 39 into a recirculation line 41 and an oxidizing gas line 19 for combustion gas that serves as a driving source for the turbine 31 . The oxidant gas recirculation line is equipped with a combustor 4 for controlling the oxidant gas inlet temperature.
0 is provided, and a fuel line 34 is attached via a flow rate control valve 42.

電池への酸化剤ガスの供給は電池からの排気酸化剤ガス
の一部と燃料とよりタービン用燃焼器30で高温の燃焼
ガスを発生し、それによりタービン31を駆動し、その
動力で圧縮機32により行なわれる。圧縮機32からの
空気は弁33により電池スタック用の酸化剤ガス35と
燃料改質器20の燃焼用空気36とに分岐される。酸化
剤ガス用35は電池に入る前で再循環ラインからのガス
43と燃料改質器20の燃焼ガス23とが混合される。
Oxidant gas is supplied to the battery by combining part of the exhaust oxidizing gas from the battery and fuel to generate high-temperature combustion gas in the turbine combustor 30, which drives the turbine 31, and uses the power to drive the compressor. 32. Air from the compressor 32 is branched by a valve 33 into oxidant gas 35 for the cell stack and combustion air 36 for the fuel reformer 20 . The oxidant gas 35 is mixed with the gas 43 from the recirculation line and the combustion gas 23 of the fuel reformer 20 before entering the cell.

電池への燃料ガスの供給は燃料改質器20へ原燃料24
が供給され、改質用触媒などの改質作用により行なわれ
る。原燃料の改質にここでは熱が必要な場合を示してい
るが、この熱源は電池へ供給された燃料ガスの排気ガス
12中に残っている燃料ガスを圧縮機からの空気36に
より燃焼させることにより得られる。燃料ガスの電池入
口部にはガス温度検出器16が設けられ、ガス温度が一
定となるように制御されている。また、燃料ガスの排気
ライン12は弁64が設けられ、再循環ライン65が設
置されている。
Fuel gas is supplied to the battery through raw fuel 24 to fuel reformer 20.
is supplied and is carried out by the reforming action of a reforming catalyst. Here, a case is shown in which heat is required for reforming the raw fuel, and this heat source uses air 36 from the compressor to combust the fuel gas remaining in the exhaust gas 12 of the fuel gas supplied to the battery. It can be obtained by A gas temperature detector 16 is provided at the cell inlet of the fuel gas, and the gas temperature is controlled to be constant. Further, the fuel gas exhaust line 12 is provided with a valve 64 and a recirculation line 65.

電池収納容器1の内部には電池内のガスがもれないよう
に不活性ガスが電池内ガス圧よりも少し高い圧力で給気
管13から供給され、ブロワ−14により循環され、常
に一定温度になるように調節されている。
Inert gas is supplied from the air supply pipe 13 at a pressure slightly higher than the gas pressure inside the battery to prevent the gas inside the battery from leaking into the inside of the battery storage container 1, and is circulated by a blower 14 to maintain a constant temperature at all times. It is adjusted so that

電池の負荷を変更するのは電池外に設けられたインバー
タ2により行なわれ、それに伴って、原燃料24、圧縮
機からの空気が弁62によって調節され、圧縮機32か
らの空気で弁62に通過したものは燃焼器30へ供給さ
れ、タービンの駆動源として利用され、図示されてはい
ないが、このタービンの出力は直接発電機を駆動して電
気を発生させることも行なえる。
The load on the battery is changed by the inverter 2 installed outside the battery, and accordingly, the raw fuel 24 and the air from the compressor are adjusted by the valve 62. What passes through is supplied to the combustor 30 and used as a driving source for a turbine. Although not shown, the output of this turbine can also directly drive a generator to generate electricity.

電池の運転は酸化剤ガスの電池入口温度を検出器15か
らコントローラ50へ信号を送り、コントローラ50か
らその信号による温度と設定値上のずれに応じた燃焼ガ
ス温度制御用信号を再循環用燃焼器40の燃料用バルブ
42へ送り、電池へ供給されるガス温度を一定温度に保
持する。同様に、電池への燃料ガス温度も電池入口のガ
ス温度検出器16からの信号と設置値との差に応じた信
号をコントローラ50から燃料改質器20の燃焼用燃料
弁53へ送り、燃料改質器そのものを負荷が変動しても
定温で運転でき、しかも電池への燃料ガスの供給温度も
一定とすることができる。
To operate the battery, the sensor 15 sends a signal indicating the battery inlet temperature of the oxidizing gas to the controller 50, and the controller 50 sends a signal for controlling the combustion gas temperature according to the difference between the temperature based on the signal and the set value for combustion for recirculation. The temperature of the gas supplied to the battery is maintained at a constant temperature. Similarly, the temperature of the fuel gas to the battery is determined by sending a signal corresponding to the difference between the signal from the gas temperature detector 16 at the battery inlet and the installed value from the controller 50 to the combustion fuel valve 53 of the fuel reformer 20. The reformer itself can be operated at a constant temperature even when the load fluctuates, and the temperature at which fuel gas is supplied to the battery can also be kept constant.

先に述べたように電池運転条件は電池温度が最適温度、
すなわち、最高、最低、平均温度などを考慮した温度と
なるように設計される。酸化剤ガスの電池入口温度、電
池周囲のブランケットガス温度をパラメータとし、ガス
の利用率(負荷によって決まる理論的に必要なガス流量
を実際に流しているガス流量で割った値)を燃料、酸化
剤ガスとも一定とし、さらに燃料ガス入口温度も一定に
した場合の電池最高、最低、平均温度を示したものが第
2図である。ガスの利用率は酸化剤ガス、燃料ガスがそ
れぞれ0.2.0.4であり、負荷100%の場合、電
池運転条件を最高、最低、平均温度の条件をすべて満足
している網目部分から、丸印の位置、すなわちブランケ
ットガス温度550℃、酸化剤ガスの電池入口温度55
0°Cと設定すれば、利用率一定(負荷が変化すればガ
ス流量は変化する。)であれば同図の結果からも判るよ
うに、負荷が50%のときには電池を最適温度に保つた
めには運転条件を網目部分に入るように、酸化剤ガスの
電池入口温度をより高温にし、600’Cにしなければ
ならない。酸化剤ガスの電池入口温度を600°Cまで
上昇させることは第1図の再循環用燃焼器40の出口ガ
ス温度を高くすることによって容易に達成することはで
きる。しかし、電池の入口ガス温度を変化させるという
ことは電池全体の温度分布が変化することになり、それ
にともない電池化学反応量も変化し、発熱分布も変化す
ることになる。燃料電池は単位面積あたりを流れるガス
の流量は非常に小さいため、発熱量が変化すると電池温
度がゆっくりと変化し始め、定常状態に達するまでに長
時間かかる。第3図は利用率を一定で負荷を変化させた
場合の電池温度変化を示す。この結果からも判るように
負荷が変化し、発熱量が変化すると電池温度は1〜2時
間では一定にはならず、電池温度が一定にならないと電
池性能も安定しない。
As mentioned earlier, the battery operating conditions are such that the battery temperature is the optimum temperature.
In other words, the temperature is designed taking into consideration the maximum, minimum, average temperature, etc. Using the cell inlet temperature of the oxidant gas and the blanket gas temperature around the cell as parameters, the gas utilization rate (the value obtained by dividing the theoretically required gas flow rate determined by the load by the actual gas flow rate) is determined for the fuel and oxidation gas. FIG. 2 shows the maximum, minimum, and average temperatures of the cell when both the agent gas and the fuel gas inlet temperature were held constant. The gas utilization rate is 0.2 and 0.4 for oxidizing gas and fuel gas, respectively, and when the load is 100%, the battery operating conditions are changed from the mesh part that satisfies all the maximum, minimum, and average temperature conditions. , the position of the circle mark, that is, the blanket gas temperature is 550°C, and the oxidizing gas cell inlet temperature is 55.
If it is set to 0°C, if the utilization rate is constant (if the load changes, the gas flow rate will change), then as you can see from the results in the same figure, when the load is 50%, the battery will be kept at the optimal temperature. To achieve this, the temperature at the cell inlet of the oxidant gas must be increased to 600'C so that the operating conditions fall within the mesh area. Increasing the cell inlet temperature of the oxidant gas to 600° C. can be easily achieved by increasing the outlet gas temperature of the recirculating combustor 40 of FIG. However, changing the inlet gas temperature of the battery means that the temperature distribution of the entire battery changes, and accordingly, the amount of battery chemical reaction changes, and the heat generation distribution also changes. In a fuel cell, the flow rate of gas per unit area is very small, so when the amount of heat generated changes, the cell temperature begins to change slowly, and it takes a long time to reach a steady state. FIG. 3 shows the battery temperature change when the load is changed while the utilization rate is constant. As can be seen from these results, if the load changes and the amount of heat generated changes, the battery temperature will not become constant within 1 to 2 hours, and unless the battery temperature becomes constant, the battery performance will not become stable.

電池温度を負荷が変化した場合にも最適温度に維持し、
性能も安定させるために、電池入口ガス温度を一定に保
つと同時に、第4図に示すようにあらかじめ負荷に対し
て電池の平均温度が最適条件になるような酸化剤ガス利
用率とそのときの酸化剤ガス出口温度上昇との関係を設
計しておき、負荷変動に応じて電池出口の酸化剤ガス温
度検出器からの信号をコントローラ50へ送り、第1図
の圧縮機32からのバイパス流路63の流量調節弁62
にコントローラ50から電池が平均温度が一定になるよ
うな流量信号を送り、電池への流量を制御する。
Maintains battery temperature at optimal temperature even when load changes,
In order to stabilize the performance, while keeping the battery inlet gas temperature constant, we also set the oxidizing gas utilization rate and the oxidizing gas utilization rate so that the average temperature of the battery is optimal for the load as shown in Figure 4. The relationship with the temperature rise at the oxidizing gas outlet is designed, and a signal from the oxidizing gas temperature detector at the battery outlet is sent to the controller 50 according to load fluctuations, and the bypass flow path from the compressor 32 in FIG. 63 flow control valve 62
The controller 50 sends a flow rate signal such that the average temperature of the battery becomes constant, thereby controlling the flow rate to the battery.

このように酸化剤ガスの電池入口温度を一定に保持し、
負荷に応じて酸化剤ガス流量をあらかじめ電池平均温度
が最適温度となるように酸化剤ガス出口温度検出して制
御することによ°す、第3図の破線のように電池温度は
ほとんど変化することなく負荷を変えることができ負荷
変更にともなう性能の不安定、低サイクルの熱疲労、ホ
ットスポットの発生による寿命低下などを防止すること
ができ、電池を高性能、高信頼性で運転することができ
、電池の長寿命化を達成できる。
In this way, the cell inlet temperature of the oxidant gas is kept constant,
By detecting the oxidizing gas outlet temperature and controlling the oxidizing gas flow rate according to the load so that the battery average temperature becomes the optimum temperature, the battery temperature almost changes as shown by the broken line in Figure 3. The battery can be operated with high performance and reliability by preventing unstable performance due to load changes, thermal fatigue due to low cycles, shortened lifespan due to the occurrence of hot spots, etc. This makes it possible to achieve longer battery life.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電池の負荷が変化しても電池温度をほ
とんど変化させることなく運転できるため、負荷変化に
よる性能不安定、低サイクル熱疲労、高温部の発生など
を防止でき、負荷応答性の良い発電ができ、高性能、高
信頼性でかつ長寿命の燃料電池発電を達成できる効果が
ある。
According to the present invention, even if the battery load changes, the battery can be operated with almost no change in battery temperature, so it is possible to prevent performance instability, low cycle thermal fatigue, and the occurrence of high temperature parts due to load changes, and improve load response. This has the effect of achieving high performance, high reliability, and long-life fuel cell power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の発電設備系統図を示し、第
2図は負荷変動による電池運転範囲の変化、第3図は負
荷変動による電池温度変化、第4図は電池温度を一定に
した負荷と電池温度、ガス利用率との関係を示す。 1・・・電池収納容器、2・・・負荷、10・・・電池
スタック、11・・・酸化剤ガス排気管、12・・・燃
料ガス排気管、13・・・プラッケットガス給気管、1
5・・・酸化剤ガスの電池入口温度検出器、16・・・
燃料ガス電池入口温度検出器、20・・・燃料改質器、
21・・・改質器バーナ、22・・・燃料ガス給気管、
23・・・改質器バーナ排気ガス、24・・・原燃料、
30・・・タービン用燃焼器、31・・・タービン、3
2・・・圧縮機、40・・・再循環用燃焼器、42・・
・再循環用燃焼器燃料弁、50・・・コントローラ、6
2・・・圧縮空気バイパス用弁。
Figure 1 shows a power generation equipment system diagram of an embodiment of the present invention, Figure 2 shows changes in battery operating range due to load fluctuations, Figure 3 shows changes in battery temperature due to load fluctuations, and Figure 4 shows battery temperature kept constant. The relationship between the load, battery temperature, and gas utilization rate is shown below. DESCRIPTION OF SYMBOLS 1... Battery storage container, 2... Load, 10... Battery stack, 11... Oxidizing gas exhaust pipe, 12... Fuel gas exhaust pipe, 13... Placket gas supply pipe, 1
5... Oxidizing gas battery inlet temperature detector, 16...
Fuel gas cell inlet temperature detector, 20... fuel reformer,
21... Reformer burner, 22... Fuel gas supply pipe,
23...Reformer burner exhaust gas, 24...Raw fuel,
30... Turbine combustor, 31... Turbine, 3
2... Compressor, 40... Recirculation combustor, 42...
・Combustor fuel valve for recirculation, 50...controller, 6
2... Compressed air bypass valve.

Claims (1)

【特許請求の範囲】 1、電解質板、電極、及びセパレータ板から構成され、
電極とセパレータ板との間に燃料、酸化剤ガス用の流路
が形成される単位電池を複数枚積層した電池スタックと
このスタックを格納する容器と上記スタックに燃料、酸
化剤ガスの給、排気を行なう配管系とスタックを格納す
る容器内にガスを給、排気する配管系と電池の外部負荷
装置、酸化剤ガス供給装置、燃料改質器とからなる燃料
電池発電設備において、前記酸化剤ガスの給、排気管の
電池入口、出口部ガス温度検出器を設け、酸化剤ガスの
排気管と給気管との間を連結する酸化剤ガス再循環配管
系を設け、前記配管系の途中に前記検出器によって検出
された電池入口温度に基づいて酸化剤ガスの電池入口温
度を制御するガス温度調節器を設け、さらに、前記酸化
剤ガス給気配管系に前記検出器によって検出された電池
出口温度に基づいて酸化剤ガスのガス流量を制御するガ
ス流量制御装置を設けたことを特徴とする燃料電池発電
設備。 2、酸化剤ガス再循環配管系に設けたガス温度調節器が
再循環用燃焼器であることを特徴とする特許請求の範囲
第1項記載の燃料電池発電設備。 3、燃料電池発電設備において、酸化剤ガスの排気管と
給気管との間を連結する酸化剤ガス再循環配管系を設け
、酸化剤ガスの給、排気管の電池入口、出口部ガス温度
の検出器からの信号、負荷装置の電流、電圧信号とから
酸化剤ガスの目標値となる電池出口温度範囲を計算し、
この計算温度に基づき、酸化剤ガスの電池入口温度を前
記酸化剤ガス再循環配管系に設けたガス温度調節器で一
定に制御し、電池への酸化剤ガス流量制御により酸化剤
ガスの電池出口温度を前記温度範囲となるように調節す
ることを特徴とする燃料電池発電設備の運転方法。 4、酸化剤ガス再循環配管系に設けたガス温度調節器が
再循環用燃焼器であり、前記再循環用燃焼器へ電池から
の排気酸化剤ガスと、燃料ガスとを供給し、前記酸化剤
ガスの再循環流量の割合は一定に制御し、燃料ガスの流
量制御により電池への酸化剤ガス供給温度を一定に調節
することを特徴とする特許請求の範囲第3項記載の燃料
電池発電設備の運転方法。
[Claims] 1. Consisting of an electrolyte plate, an electrode, and a separator plate,
A battery stack consisting of a plurality of stacked unit cells in which a flow path for fuel and oxidant gas is formed between the electrode and the separator plate, a container for storing this stack, and supply and exhaust of fuel and oxidant gas to the stack. In a fuel cell power generation facility, which includes a piping system for supplying and exhausting gas into a container storing a stack, an external load device for the battery, an oxidizing gas supply device, and a fuel reformer, the oxidizing gas is Gas temperature detectors are provided at the battery inlet and outlet portions of the supply and exhaust pipes, and an oxidant gas recirculation piping system is provided that connects the oxidant gas exhaust pipe and the supply pipe, and the A gas temperature regulator is provided to control the battery inlet temperature of the oxidant gas based on the battery inlet temperature detected by the detector, and the battery outlet temperature detected by the detector is further provided in the oxidant gas supply piping system. A fuel cell power generation facility characterized by being provided with a gas flow rate control device that controls the gas flow rate of an oxidant gas based on. 2. The fuel cell power generation equipment according to claim 1, wherein the gas temperature regulator provided in the oxidant gas recirculation piping system is a recirculation combustor. 3. In fuel cell power generation equipment, an oxidant gas recirculation piping system is installed to connect the oxidant gas exhaust pipe and the air supply pipe, and the gas temperature is Calculate the battery outlet temperature range that is the target value of the oxidant gas from the signal from the detector, the current of the load device, and the voltage signal,
Based on this calculated temperature, the temperature at the battery inlet of the oxidant gas is controlled to be constant by a gas temperature controller installed in the oxidant gas recirculation piping system, and the oxidant gas is controlled at the battery outlet by controlling the oxidant gas flow rate to the battery. A method for operating a fuel cell power generation facility, comprising adjusting the temperature to fall within the above temperature range. 4. A gas temperature regulator installed in the oxidant gas recirculation piping system is a recirculation combustor, and supplies exhaust oxidant gas from the battery and fuel gas to the recirculation combustor, and The fuel cell power generation according to claim 3, characterized in that the rate of recirculation flow rate of the oxidizing agent gas is controlled to be constant, and the temperature at which the oxidizing agent gas is supplied to the cell is adjusted to be constant by controlling the flow rate of the fuel gas. How to operate the equipment.
JP62290644A 1987-11-19 1987-11-19 Fuel cell power generating facility and its operating method Pending JPH01134869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290644A JPH01134869A (en) 1987-11-19 1987-11-19 Fuel cell power generating facility and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290644A JPH01134869A (en) 1987-11-19 1987-11-19 Fuel cell power generating facility and its operating method

Publications (1)

Publication Number Publication Date
JPH01134869A true JPH01134869A (en) 1989-05-26

Family

ID=17758633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290644A Pending JPH01134869A (en) 1987-11-19 1987-11-19 Fuel cell power generating facility and its operating method

Country Status (1)

Country Link
JP (1) JPH01134869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032262A (en) * 2004-07-21 2006-02-02 Tokyo Gas Co Ltd Fuel cell system and control method
JP2007194005A (en) * 2006-01-18 2007-08-02 Hitachi Ltd Solid oxide fuel cell power generation system and its operation control method
JP2007287580A (en) * 2006-04-19 2007-11-01 Central Res Inst Of Electric Power Ind Power generation facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032262A (en) * 2004-07-21 2006-02-02 Tokyo Gas Co Ltd Fuel cell system and control method
JP2007194005A (en) * 2006-01-18 2007-08-02 Hitachi Ltd Solid oxide fuel cell power generation system and its operation control method
JP2007287580A (en) * 2006-04-19 2007-11-01 Central Res Inst Of Electric Power Ind Power generation facility

Similar Documents

Publication Publication Date Title
CN110414157B (en) Multi-target sliding mode control method for proton exchange membrane fuel cell system
JP2004179149A (en) Fuel cell system
CN103339773B (en) Control the method and apparatus of the running status in fuel cell device
JP2005100873A (en) Fuel cell system
JP6826436B2 (en) Fuel cell system and its operation method
JP2008251247A (en) Fuel cell gas turbine compound power generation system and its control method
US10854897B2 (en) Temperature control system and method for fuel cell system and fuel cell system
JPH01134869A (en) Fuel cell power generating facility and its operating method
JPS6356672B2 (en)
JP2003282108A (en) Fuel cell system
JP3208970B2 (en) Fuel cell temperature control method and apparatus
JP2004164951A (en) Fuel cell system
JP3513933B2 (en) Fuel cell power generator
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JPH05190189A (en) Operation of fuel cell type power generation device
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same
JP7195196B2 (en) Unburned gas monitoring method and fuel cell system
JP2006100153A (en) Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPH11329469A (en) Fuel cell generating facility having differential pressure self-controlling function
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH03149760A (en) Solid electrolyte type fuel cell generating system
JP2002364312A (en) Coal gasification fuel cell combined power generating plant and operating method thereof
JPS62119869A (en) Control system for fuel cell power generation plant
JPS6340269A (en) Cooling line control device of fuel cell power generating plant