JPS6394449A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS6394449A
JPS6394449A JP24010686A JP24010686A JPS6394449A JP S6394449 A JPS6394449 A JP S6394449A JP 24010686 A JP24010686 A JP 24010686A JP 24010686 A JP24010686 A JP 24010686A JP S6394449 A JPS6394449 A JP S6394449A
Authority
JP
Japan
Prior art keywords
transition metal
metal layer
film
magneto
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24010686A
Other languages
Japanese (ja)
Inventor
Junichi Iwai
順一 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24010686A priority Critical patent/JPS6394449A/en
Publication of JPS6394449A publication Critical patent/JPS6394449A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a medium having an excellent reproduction characteristic of a large signal quantity by laminating a transition metal layer having <=50Angstrom thickness and perpendicularly magnetized film consisting of a rare earth element and transition metal on a substrate and reading signals by the photoirradiation from the transition metal layer side. CONSTITUTION:The transition metal layer 2 consisting of Fe, Co, etc., is deposited by sputtering on one face of the transparent substrate 3 consisting of glass, etc., while the thickness thereof is adjusted to <=50Angstrom . The perpendicularly magnetized film 1 consisting of the rare earth element such as Gd, Tb, Dy or Ho and the transition metal layer of Fe, Co or the like is laminated by sputter vapor deposition thereon. The magneto-optical recording medium is constituted in the above-mentioned manner and is subjected to recording and reproduction by projecting laser light to the medium from the rear surface side of the substrate 3. The Kerr rotating angle or Faraday rotating angle of the plane of polarization is increased if the medium is constituted in the above-mentioned manner. In addition, the signal quantity increases, because the transition metal layer is the good perpendicularly magnetized film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学効果を利用してレーザ光等により情
報の記録、再生を行う光磁気記録媒体に関するものであ
り、特に希土類元素−遷移金属系非晶質合金を光記録層
とする光磁気記録媒体の改良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magneto-optical recording medium that records and reproduces information using a laser beam or the like by utilizing the magneto-optic effect. This invention relates to the improvement of a magneto-optical recording medium having an optical recording layer made of a metal-based amorphous alloy.

〔発明の概要〕[Summary of the invention]

本発明は、希土類元素と遷移金属よりなる垂直磁化膜を
光記録層とする光磁気記録媒体において、上記垂直磁化
膜の少なくとも信号読み出し側に厚さ50Å以下の遷移
金属層を設けることにより、反射率の低下を伴うことな
くカー回転角を大きなものとし、再生特性に優れた光磁
気記録媒体を実現しようとするものである。
The present invention provides a magneto-optical recording medium having a perpendicularly magnetized film made of a rare earth element and a transition metal as an optical recording layer. The purpose of this invention is to increase the Kerr rotation angle without reducing the ratio, and to realize a magneto-optical recording medium with excellent reproduction characteristics.

〔従来の技術〕[Conventional technology]

近年、書き換え可能な高@度記録方式として、磁気光学
効果を利用し半扉体レーザ光により記録。
In recent years, a rewritable high-degree recording method uses the magneto-optic effect to record with a half-door laser beam.

再生を行う光磁気記録方式が注目されている。Magneto-optical recording methods for reproduction are attracting attention.

そして、この光磁気記録方式において記録層に使用され
る記録材料としては、Tb、 Gd等の希土類元素とF
e、 Co等の遷移金属とを主体とする非晶質合金膜が
開発されており、なかでもTbFeCo、TbFe。
In this magneto-optical recording method, the recording materials used for the recording layer include rare earth elements such as Tb and Gd, and F.
Amorphous alloy films mainly composed of transition metals such as e, Co, etc. have been developed, and among them, TbFeCo, TbFe.

GdFe、 GdTbFeなどの材料は、感度、読み出
し特性の点でかなり良好な特性が得られることが報告さ
れている。
It has been reported that materials such as GdFe and GdTbFe provide fairly good characteristics in terms of sensitivity and readout characteristics.

ところで、この光磁気記録方式では、垂直磁化膜である
希土類元素−遷移金属非晶質合金膜における磁気光学効
果(いわゆるカー効果、ファラデー効果、)を用いて信
号を記録しているが、一般に希土類元素−遷移金属非晶
質合金膜のカー回転角(ファラデー回転角)は極めて小
さいのが実情である。
By the way, in this magneto-optical recording method, signals are recorded using the magneto-optical effect (so-called Kerr effect, Faraday effect) in a rare earth element-transition metal amorphous alloy film, which is a perpendicularly magnetized film. The reality is that the Kerr rotation angle (Faraday rotation angle) of an element-transition metal amorphous alloy film is extremely small.

したがって、かかる光磁気記録媒体の実用化を進めるに
あたっては、例えば透明誘電体層を用い多重反射を利用
して前述の回転角を増大させているものが多い。
Therefore, in order to put such magneto-optical recording media into practical use, in many cases, for example, a transparent dielectric layer is used to utilize multiple reflections to increase the above-mentioned rotation angle.

しかしながら、このように多重反射を利用した方法では
、必然的に反射率の低下を生じ、信号量改善の点では自
ずと限界がある。
However, such a method using multiple reflections inevitably causes a decrease in reflectance, and there is a limit in terms of signal amount improvement.

そこでさらに従来、反射率を下げずにカー回転角を大き
くする方法として、通常用いられる垂直磁化膜の上にM
nB1のようにカー回転角が非常に大きい膜を設け、磁
性膜を2層構造とすることが考えられているが、MnB
1膜に結晶粒界が存在すること、MnB1!I!は垂直
磁化膜にはなり難いこと、等の問題を抱えている。
Therefore, as a method of increasing the Kerr rotation angle without lowering the reflectance, we have developed a method to increase the Kerr rotation angle without lowering the reflectance.
It has been considered to provide a film with a very large Kerr rotation angle such as nB1 and make the magnetic film have a two-layer structure, but MnB
The presence of grain boundaries in one film, MnB1! I! has problems such as the fact that it is difficult to form a perpendicularly magnetized film.

あるいは、例えば特開昭61−51637号公報には、
光磁気記録媒体層と反射膜との間に膜厚100〜500
人のCo層を設け、みかけのカー回転角を大きくし再生
特性を向上する試みが開示されている。しかしながら、
本発明者の実験によれば、Co層の膜厚をこの程度の値
に設定した場合には垂直磁化膜にはならず、さらには読
み出し側にCo層がないのでカー回転角を大きくするこ
とにほとんど寄与しない、との結論を得るに至った。
Or, for example, in Japanese Patent Application Laid-open No. 61-51637,
A film thickness of 100 to 500 mm is provided between the magneto-optical recording medium layer and the reflective film.
An attempt has been made to provide a Co layer to increase the apparent Kerr rotation angle and improve the reproduction characteristics. however,
According to the inventor's experiments, when the thickness of the Co layer is set to this value, it does not become a perpendicularly magnetized film, and furthermore, since there is no Co layer on the readout side, the Kerr rotation angle cannot be increased. We came to the conclusion that it makes little contribution to

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、磁性膜を2層構造とすることによるカー
回転角増大の試みも、カー回転角の大きな膜を垂直磁化
膜とすることが難しいことから、あまり成果が上がって
いないのが現状である。
As mentioned above, attempts to increase the Kerr rotation angle by making the magnetic film have a two-layer structure have not yielded much success because it is difficult to make a film with a large Kerr rotation angle into a perpendicularly magnetized film. It is.

そこで本発明は、かかる従来の実情に鑑みて提寓された
ものであって、優れた垂直磁化特性を示すと同時に大き
なカー回転角を有し、且つ反射率の低下を招来すること
のない構造を有する光磁気記録媒体を提供し、再生特性
に優れた光磁気記録媒体を提供することを目的とする。
Therefore, the present invention has been proposed in view of the conventional situation, and has a structure that exhibits excellent perpendicular magnetization characteristics, has a large Kerr rotation angle, and does not cause a decrease in reflectance. An object of the present invention is to provide a magneto-optical recording medium having excellent reproduction characteristics.

〔問題点を解決するための手段] 上述の目的を達成するために、本発明は、基板上に50
Å以下の厚みを有する遷移金I層と希土類元素と遷移金
属よりなる垂直磁化膜とが前記遷移金属層側からの光照
射により信号が読み出されるように積層されていること
を特徴とするものである。
[Means for solving the problems] In order to achieve the above-mentioned object, the present invention provides 50
A transition gold I layer having a thickness of Å or less and a perpendicular magnetization film made of a rare earth element and a transition metal are laminated so that a signal can be read out by light irradiation from the transition metal layer side. be.

希土類元素−遷移金属系合金膜では、カー効果を生じさ
せるのは遷移金属原子だと言われている。
In rare earth element-transition metal alloy films, transition metal atoms are said to cause the Kerr effect.

したがって、垂直磁化膜表面の遷移金属原子の面密度を
上げることにより、すなわち垂直磁化膜に重ねてFe、
 Co単体若しくはそれらを含む合金を主体とする遷移
金属層を形成することにより、偏光面の回転角が増加す
る。
Therefore, by increasing the areal density of transition metal atoms on the surface of the perpendicularly magnetized film, in other words, by superimposing Fe on the perpendicularly magnetized film,
By forming a transition metal layer mainly composed of Co alone or an alloy containing Co, the rotation angle of the plane of polarization is increased.

但し、遷移金属層の磁化容易軸の向きは、当該遷移金属
層の膜厚が薄い時には垂直磁化膜に従って垂直方向に向
くが、次第にll!l厚が厚くなると表面側は垂直異方
性を示さなくなる。第1図Aないし第1図Eは、垂直磁
化膜(1)上に遷移金属層(2)を被着した場合の各層
における磁化の向きを模式的に示すものであり、図中実
線の矢印は遷移金属による磁化の向きを、破線の矢印は
希土類元素による磁化の向きを示す、第1図Bに示すよ
うに、遷移金属層(2)の厚さが薄い時には、この遷移
金属層(2)は良好な垂直磁化膜となるが、第1図Cな
いし第1図Eと次第に遷移金属層(2)の厚さが増すに
つれ、その表面側の磁化の向きは横に寝てしまい、遂に
は面内方向に磁化されるようになる。
However, when the thickness of the transition metal layer is thin, the axis of easy magnetization of the transition metal layer is oriented in the perpendicular direction according to the perpendicular magnetization film, but gradually it becomes ll! As the l thickness increases, the surface side no longer exhibits vertical anisotropy. 1A to 1E schematically show the direction of magnetization in each layer when a transition metal layer (2) is deposited on a perpendicularly magnetized film (1), and the solid line arrows in the figures show the direction of magnetization in each layer. indicates the direction of magnetization due to the transition metal, and the dashed arrow indicates the direction of magnetization due to the rare earth element.As shown in Figure 1B, when the transition metal layer (2) is thin, the transition metal layer (2) ) becomes a good perpendicular magnetization film, but as the thickness of the transition metal layer (2) gradually increases from Figure 1C to Figure 1E, the direction of magnetization on the surface side shifts to the side, and finally becomes magnetized in the in-plane direction.

このことは、遷移金属層(2)の厚さが厚すぎるとカー
回転角が減少することを意味する。
This means that if the transition metal layer (2) is too thick, the Kerr rotation angle will decrease.

そこで、本発明においては、垂直磁化膜(1)上に被着
形成する遷移金属Fi(2)の膜厚を50Å以下とする
。遷移金!11(2)の膜厚が50人を越えると却って
カー回転角が減少する虞れがあり、希土類元素−遷移金
属系合金膜の単層膜よりもカー回転角が小さくなる虞れ
がある。また、この遷移金属13 (2)の膜厚が非常
に僅かなものであっても効果は得られるが、現実的には
5Å以上とするのが好ましい。
Therefore, in the present invention, the thickness of the transition metal Fi (2) deposited on the perpendicularly magnetized film (1) is set to 50 Å or less. Transition money! If the film thickness of 11(2) exceeds 50 layers, the Kerr rotation angle may actually decrease, and the Kerr rotation angle may become smaller than that of a single-layer rare earth element-transition metal alloy film. Further, although the effect can be obtained even if the thickness of the transition metal 13 (2) is very small, it is actually preferable to set it to 5 Å or more.

一方、垂直磁化膜(1)は、先の遷移金属層(2)と同
様の遷移金属と、希土類元素(Gd、 Tb、 oy、
 Ho等)の単体若しくはそれらを含む合金とを主体と
するもので、通常遷移金属の割合は90〜60原子%、
希土類元素の割合は10〜40原子%程度の範囲に設定
される。この垂直磁化膜(1)の膜厚としては、100
〜1000人の範囲である。
On the other hand, the perpendicular magnetization film (1) contains the same transition metal as the transition metal layer (2) and rare earth elements (Gd, Tb, oy,
(Ho, etc.) or an alloy containing them, and the proportion of transition metals is usually 90 to 60 at%,
The proportion of rare earth elements is set in a range of about 10 to 40 atomic %. The film thickness of this perpendicular magnetization film (1) is 100
~1000 people.

上記遷移金属層(2)は、第2図に示すように、垂直磁
化膜(1)の片側〔但し、この場合は遷移金属層(2)
は垂直磁化膜(1)の信号読み出し側に形成する。〕に
のみ設けてもよいし、第3図に示すように垂直磁化膜(
1)の両側に設けてもよい。遷移金属層(2)を片側に
のみ形成したときは、第4図に示すように、透明基板(
3)を遷移金属層(2)側に配し、この透明基板(3)
側からレーザ光を照射して信号を読み取るようにする。
As shown in FIG.
is formed on the signal read side of the perpendicular magnetization film (1). ) may be provided only on the perpendicular magnetization film (
It may be provided on both sides of 1). When the transition metal layer (2) is formed only on one side, the transparent substrate (
3) on the transition metal layer (2) side, and this transparent substrate (3)
A laser beam is irradiated from the side to read the signal.

遷移金属層(2)を垂直磁化膜(1)の両側に設ける場
合には、例えば第5図に示すように、さらに両側を透明
誘電体層(4)を介して透明基板(3)及び反射膜(5
)を配するようにすれば、ファラデー効果も寄与し、垂
直磁化膜(1)の両側に偏光面を増加する層を有するこ
とになり、効果は極めて大きなものとなる。
When the transition metal layer (2) is provided on both sides of the perpendicularly magnetized film (1), as shown in FIG. Membrane (5
), the Faraday effect also contributes, and layers for increasing the plane of polarization are provided on both sides of the perpendicularly magnetized film (1), resulting in an extremely large effect.

いずれにしても、遷移金属層(2)を形成するための工
程上の変更はほとんど必要なく、生産性の点でも本発明
は有利であると言える。
In any case, it can be said that the present invention is advantageous in terms of productivity since almost no changes in the process for forming the transition metal layer (2) are required.

すなわち、例えば垂直磁化膜を遷移金属ターゲットと希
土類元素ターゲットとを用いて2元同時スパッタを行う
場合、これら両ターゲットによる同時スパッタの前もし
くは前後に遷移金属ターゲットのみによるスパッタを行
えば遷移金属層(2)が垂直磁化膜(1)の片側もしく
は両側に形成される。この方法は工程土掻めて簡便で、
遷移金rXJI(2)と垂直磁化膜(1)との積層構造
が連続的に作製される。
That is, for example, when performing binary simultaneous sputtering on a perpendicularly magnetized film using a transition metal target and a rare earth element target, if sputtering using only the transition metal target is performed before or after the simultaneous sputtering using both targets, the transition metal layer ( 2) is formed on one or both sides of the perpendicularly magnetized film (1). This method is simple and easy to process,
A laminated structure of transition gold rXJI (2) and perpendicularly magnetized film (1) is continuously produced.

あるいは、希土類元素−遷移金属合金ターゲットを用い
る場合には、この合金ターゲットとは別に遷移金属ター
ゲットを準備しておき、合金ターゲットによる成膜前も
しくは前後に遷移金属ターゲットによりスパッタを行え
ば良い。
Alternatively, when a rare earth element-transition metal alloy target is used, a transition metal target may be prepared separately from this alloy target, and sputtering may be performed using the transition metal target before or after film formation using the alloy target.

〔作用〕[Effect]

希土類元素−遷移金属系垂直磁化膜上に膜厚50Å以下
の遷移金属層を設けると、この遷移金属層は良好な垂直
磁化膜となる。
When a transition metal layer with a thickness of 50 Å or less is provided on a rare earth element-transition metal based perpendicular magnetization film, this transition metal layer becomes a good perpendicular magnetization film.

そして、この遷移金属層を形成することにより垂直磁化
膜表面での遷移金属原子の面密度が上がり、希土類元素
−遷移金属系垂直磁化膜のカー効果を生じせしめるのは
遷移金属原子であると言われていることから、偏光面の
回転角(カー回転角及びファラデー回転角)が増加する
By forming this transition metal layer, the areal density of transition metal atoms on the surface of the perpendicularly magnetized film increases, and it is said that it is the transition metal atoms that cause the Kerr effect in the rare earth element-transition metal based perpendicularly magnetized film. As a result, the rotation angles (Kerr rotation angle and Faraday rotation angle) of the plane of polarization increase.

〔実施例〕〔Example〕

以下、本発明を具体的な実験例により説明する。 The present invention will be explained below using specific experimental examples.

先ず、本実験例では第6図に示すようなスパッタ装置を
使用して垂直磁化膜及び遷移金属層を形成した。
First, in this experimental example, a perpendicular magnetization film and a transition metal layer were formed using a sputtering apparatus as shown in FIG.

このスパッタ装置においては、ベルジャ(図示せず、)
内には軸心X−X゛を中心として回転する基台(11)
が設けられ、この基台(11)の例えば下面に目的とす
る光磁気記録媒体を構成するガラス板、樹脂板等よりな
る基体(12)が配置される。そして、この基体(12
)に対向して軸心x−x’を中心に等間隔、すなわち1
80°の角間隔を保持して2個のスパッタ源(13) 
、 (14)が置かれている。さらに、これらスパッタ
源(13) 、 (14) と基体(12)との間には
、スパッタ源(13)及びスパッタa<X4>よりそれ
ぞれスパッタされる金属のスパッタ位置を規制するマス
ク(15)が設けられている。また、スパッタ源(13
)は希土類元素(例えばTb)の板状体より成るターゲ
ット(16)を有し、一方スパフタ源(14)は遷移金
II(例えばFe、Co等)の板状体より成るターゲッ
ト(17)を有している。
In this sputtering apparatus, a bell jar (not shown) is used.
Inside is a base (11) that rotates around the axis X-X゛.
A base body (12) made of a glass plate, a resin plate, etc. constituting the intended magneto-optical recording medium is placed, for example, on the lower surface of this base (11). And this base (12
) at equal intervals around the axis x-x', that is, 1
Two sputter sources (13) maintaining an angular spacing of 80°
, (14) is placed. Furthermore, between these sputtering sources (13), (14) and the substrate (12), there is a mask (15) for controlling the sputtering position of the metal sputtered from the sputtering source (13) and the sputter a<X4>, respectively. is provided. In addition, a sputter source (13
) has a target (16) made of a plate of a rare earth element (e.g. Tb), while the spafter source (14) has a target (17) made of a plate of transition gold II (e.g. Fe, Co, etc.). have.

マスク(15)には、例えば第7図に示すように、ター
ゲラ) (16)及びターゲット(17)に対向する部
分にそれぞれ略々扇形(いわゆる銀杏の葉形)の窓(1
8)、 (19)が穿設されており、上記基台(11)
を回転させながらターゲラ) (16) 、 (IT)
を負極側としてスパッタを行うことにより、基板(12
)上にはターゲット(16)を構成する金属とターゲラ
) (17)を構成する金属の合金膜が形成されるよう
になっている。
For example, as shown in FIG. 7, the mask (15) has approximately fan-shaped (so-called ginkgo leaf-shaped) windows (1) in the portions facing the target (16) and the target (17), respectively.
8), (19) are drilled, and the base (11) is
(16), (IT)
The substrate (12
) An alloy film of the metal constituting the target (16) and the metal constituting the target (17) is formed on the target (16).

本実施例では、希土類元素のターゲット(16)として
Tbターゲットを用い、遷移金属のターゲット(17)
としてFe −Co合金ターゲット(Fe:95原子%
In this example, a Tb target is used as the rare earth element target (16), and a transition metal target (17) is used.
As a Fe-Co alloy target (Fe: 95 atomic%
.

Co:5原子%)を用いた。Co: 5 atomic %) was used.

そして、先ずFe −Co合金ターゲットのみを用いて
スパッタを行い、Fe及びCoをたたき出し、基板(1
2)上に遷移金属層を形成した。
First, sputtering was performed using only a Fe-Co alloy target to knock out Fe and Co, and the substrate (1
2) A transition metal layer was formed thereon.

次に、両方のターゲフ) (16) 、 (17)を用
いて2光間時スパッタを行い、Tb、。Fet*Coa
  (但し、数値は原子%を表す。)なる組成を有する
希土類元素−遷移金属系垂直磁化膜を被着形成した。
Next, two-light time sputtering was performed using both target films (16) and (17) to obtain Tb. Fet*Coa
(However, the numerical values represent atomic %.) A rare earth element-transition metal-based perpendicular magnetization film having the following composition was deposited and formed.

次いで、再びFe −Co合金ターゲットのみを用いて
スパッタを行い、上記垂直磁化膜上に遷移金属層を形成
した。
Next, sputtering was performed again using only the Fe--Co alloy target to form a transition metal layer on the perpendicularly magnetized film.

以上により、第3図に示したものと同様の構成を有する
光磁気記録媒体を作製した。
Through the above steps, a magneto-optical recording medium having a configuration similar to that shown in FIG. 3 was manufactured.

ここで、上記希土類元素−遷移金属系垂直磁化膜の膜厚
ay及び遷移金属層の膜厚dxを変え、得られた各光磁
気記録媒体についてカー回転角(θk)を測定した。な
お、測定に際しては、波長780rvの半導体レーザを
使用した。結果を第8図に示す。
Here, the thickness ay of the rare earth element-transition metal perpendicularly magnetized film and the thickness dx of the transition metal layer were varied, and the Kerr rotation angle (θk) was measured for each of the obtained magneto-optical recording media. Note that in the measurement, a semiconductor laser with a wavelength of 780 rv was used. The results are shown in FIG.

この第8図は、希土類元素−遷移金属系垂直磁化膜の膜
厚dyをd y= 300人、 500人、800人と
変え、さらに遷移金属層の膜厚dxを0〜150人に変
えたときのカー回転角(θk)の変化を示すもので、図
中丸印「○」はdx=Q人を、四角形の印r口」はdx
−30人を、三角形の印「Δ」はdx−60人を、逆三
角形の印「」はdX−100人を、菱形の印「◇」はd
x−150人をそれぞれ表す。また、横軸は希土類元素
−遷移金属系垂直磁化膜の膜厚と遷移金属層の膜厚とを
合わせたトータルの膜厚(dY+2dx)を表す。
In this figure, the thickness dy of the rare earth element-transition metal perpendicular magnetization film was changed to dy=300, 500, and 800, and the thickness dx of the transition metal layer was changed from 0 to 150. It shows the change in the Kerr rotation angle (θk) when
- 30 people, the triangle mark "Δ" means dx - 60 people, the inverted triangle mark "" means dX - 100 people, the diamond mark "◇" means d
x-150 people each. Further, the horizontal axis represents the total film thickness (dY+2dx), which is the sum of the film thickness of the rare earth element-transition metal based perpendicular magnetization film and the film thickness of the transition metal layer.

第8図より、垂直磁化膜の膜厚dyにかかわらず、遷移
金属層を50Å以下の膜厚で形成したときにカー回転角
θkが一様に大きくなっていることがわかる。特に、遷
移金属層の膜厚dx=0人としたときの膜厚増加に伴う
カー回転角θにの変化(図中曲線A)と、遷移金属層の
膜厚dx=30人としたときの膜厚増加に伴うカー回転
角θにの変化(図中曲!IB)との間には、およそ0.
05°の明白な相違が認められ、遷移金属層の形成がカ
ー回転角増加に有効であることが実証された。
It can be seen from FIG. 8 that the Kerr rotation angle θk uniformly increases when the transition metal layer is formed with a thickness of 50 Å or less, regardless of the thickness dy of the perpendicularly magnetized film. In particular, the change in the Kerr rotation angle θ as the film thickness increases when the transition metal layer thickness dx = 0 people (curve A in the figure), and the change when the transition metal layer thickness dx = 30 people. There is a difference of approximately 0.0% between the change in Kerr rotation angle θ (curve IB in the figure) due to the increase in film thickness.
A clear difference of 0.05° was observed, demonstrating that the formation of the transition metal layer was effective in increasing the Kerr rotation angle.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においては、
希土類元素と遷移金属とからなる垂直磁化膜の少なくと
も信号読み出し側に膜厚50Å以下の遷移金vsNを設
けているので、偏光面の回転角(カー回転角あるいはフ
ァラデー回転角)を太き(することができる、加えて、
上記遷移金属層が良好な垂直磁化膜であること、多重反
射を利用するもの等と異なり反射率の低下がほとんど無
いこと等から、信号量が大で優れた再生特性を有する光
磁気記録媒体を実現することが可能である。
As is clear from the above description, in the present invention,
Since transition gold vsN with a film thickness of 50 Å or less is provided at least on the signal readout side of the perpendicularly magnetized film made of a rare earth element and a transition metal, the rotation angle of the polarization plane (Kerr rotation angle or Faraday rotation angle) can be increased. can, in addition,
Because the transition metal layer is a perpendicularly magnetized film with good perpendicular magnetization, and unlike those that use multiple reflection, there is almost no decrease in reflectance, magneto-optical recording media with large signal amounts and excellent reproduction characteristics are used. It is possible to achieve this.

また、本発明の光磁気記録媒体の構成は、例えば多重反
射構造と併用でき、カー回転角のより一層の増加を図る
ことも可能である。
Further, the configuration of the magneto-optical recording medium of the present invention can be used in combination with, for example, a multiple reflection structure, and it is also possible to further increase the Kerr rotation angle.

さらに、本発明の光磁気記録媒体の作製にあたっては、
工程の変更が殆ど必要なく、生産性や設備投資等の点で
も実用性は高い。
Furthermore, in producing the magneto-optical recording medium of the present invention,
There is almost no need to change the process, and it is highly practical in terms of productivity and capital investment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aないし第1図Eは遷移金属層の膜厚の増加に伴
う磁化状態の変化の様子を示す模式図である。 第2図は垂直磁化膜と遷移金属層との積層状態の一例を
示す要部拡大断面図、第3図は垂直磁化膜と遷移金属層
との積層状態の他の例を示す要部拡大断面図である。 第4図は本発明を適用した光磁気記録媒体の構成例を示
す要部拡大断面図であり、第5図は本発明を適用した光
磁気記録媒体の他の構成例を示す要部拡大断面図である
。 第6図は本発明の光磁気記録媒体を作製する際に使用さ
れるスパッタ装置の一例を示す概略構成図であり、第7
図はスパッタ装置に設けられるマスクの要部平面図であ
る。 第8図は垂直磁化膜の膜厚dyを変えたときの遷移金属
層の膜厚の変化に伴うカー回転角θにの変化の様子を示
す特性図である。 1・・・垂直磁化膜 2・・・遷移金属層 3・・・透明基板
FIGS. 1A to 1E are schematic diagrams showing how the magnetization state changes as the thickness of the transition metal layer increases. FIG. 2 is an enlarged cross-sectional view of a main part showing an example of a stacked state of a perpendicular magnetization film and a transition metal layer, and FIG. 3 is an enlarged cross-sectional view of a main part showing another example of a stacked state of a perpendicular magnetization film and a transition metal layer. It is a diagram. FIG. 4 is an enlarged cross-sectional view of a main part showing an example of the configuration of a magneto-optical recording medium to which the present invention is applied, and FIG. 5 is an enlarged cross-sectional view of a main part showing another example of the structure of a magneto-optical recording medium to which the invention is applied. It is a diagram. FIG. 6 is a schematic configuration diagram showing an example of a sputtering apparatus used in manufacturing the magneto-optical recording medium of the present invention, and FIG.
The figure is a plan view of a main part of a mask provided in a sputtering apparatus. FIG. 8 is a characteristic diagram showing how the Kerr rotation angle θ changes with the change in the thickness of the transition metal layer when the thickness dy of the perpendicularly magnetized film is changed. 1... Perpendicular magnetization film 2... Transition metal layer 3... Transparent substrate

Claims (1)

【特許請求の範囲】[Claims] 基板上に50Å以下の厚みを有する遷移金属層と希土類
元素と遷移金属よりなる垂直磁化膜とが前記遷移金属層
側からの光照射により信号が読み出されるように積層さ
れていることを特徴とする光磁気記録媒体。
A transition metal layer having a thickness of 50 Å or less and a perpendicular magnetization film made of a rare earth element and a transition metal are laminated on a substrate so that signals can be read out by light irradiation from the transition metal layer side. Magneto-optical recording medium.
JP24010686A 1986-10-08 1986-10-08 Magneto-optical recording medium Pending JPS6394449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24010686A JPS6394449A (en) 1986-10-08 1986-10-08 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24010686A JPS6394449A (en) 1986-10-08 1986-10-08 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS6394449A true JPS6394449A (en) 1988-04-25

Family

ID=17054578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24010686A Pending JPS6394449A (en) 1986-10-08 1986-10-08 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS6394449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893746B1 (en) 1999-10-29 2005-05-17 Hitachi Maxell, Ltd. Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119649A (en) * 1983-12-02 1985-06-27 Sony Corp Photo-magnetic recording medium
JPS60119648A (en) * 1983-12-02 1985-06-27 Sony Corp Photo-magnetic recording medium
JPS6243848A (en) * 1985-08-20 1987-02-25 Seiko Epson Corp Photomagnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119649A (en) * 1983-12-02 1985-06-27 Sony Corp Photo-magnetic recording medium
JPS60119648A (en) * 1983-12-02 1985-06-27 Sony Corp Photo-magnetic recording medium
JPS6243848A (en) * 1985-08-20 1987-02-25 Seiko Epson Corp Photomagnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893746B1 (en) 1999-10-29 2005-05-17 Hitachi Maxell, Ltd. Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
JPS61117747A (en) 2-layer-film optical magnetic recording medium
JPH039545B2 (en)
JPH0566661B2 (en)
JPH0467263B2 (en)
US4777082A (en) Optical magnetic recording medium
JPH0519213B2 (en)
JPS6394449A (en) Magneto-optical recording medium
JPS61258353A (en) Photomagnetic recording medium
JPS6122455A (en) Magnetooptic recording medium
JPS6029996A (en) Photomagnetic recording carrier
JPS6057556A (en) Photomagnetic multi-layered film medium
JP2539401B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPH0350343B2 (en)
JP2921794B2 (en) Magneto-optical disk
JPH0660452A (en) Magneto-optical recording medium
JPH0458662B2 (en)
JPS61117748A (en) Photomagnetic disk
JPS5996713A (en) Magnetic recording medium
JP2528088B2 (en) Magneto-optical recording medium manufacturing method and magneto-optical recording medium
JPS5960745A (en) Photomagnetic recording medium
JP2550698B2 (en) Magneto-optical recording medium
JPS6189605A (en) Metal oxide magnetic substance and magnetic film
JPS62234253A (en) Magneto-optical recording medium and its production
JP2846872B2 (en) Method for manufacturing magneto-optical storage element
JP3148017B2 (en) Magneto-optical recording medium and method of manufacturing the same