JPS60119648A - Photo-magnetic recording medium - Google Patents

Photo-magnetic recording medium

Info

Publication number
JPS60119648A
JPS60119648A JP22815683A JP22815683A JPS60119648A JP S60119648 A JPS60119648 A JP S60119648A JP 22815683 A JP22815683 A JP 22815683A JP 22815683 A JP22815683 A JP 22815683A JP S60119648 A JPS60119648 A JP S60119648A
Authority
JP
Japan
Prior art keywords
film
light
reproduction
subject
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22815683A
Other languages
Japanese (ja)
Inventor
Koichi Aso
阿蘇 興一
Yoshitaka Ochiai
落合 祥隆
Giichi Sugiura
杉浦 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22815683A priority Critical patent/JPS60119648A/en
Publication of JPS60119648A publication Critical patent/JPS60119648A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To improve the S/N by forming a soft magnetic thin film through coating transparent to a reproduced light onto a magnetic recording layer. CONSTITUTION:A magnetic recording layer, i.e., a vertical magnetizing film 12 is formed on a base 11 and the soft magnetic thin film 13 transparent to the reproduced light is formed onto the film 12 by the vapor deposition or sputtering through film coating. A planer magnetization 15 having a pattern corresponding to the magnetizing distribution 14 of the film 12 is produced to the film 13 and a component 17 magnetized vertically from the relation of flow of magnetic flux exists at a part surrounded by a circle shown in broken lines. In irradiating a laser light to the part 16 surrounded by a circle in broken lines at reproduction while being subject to linear polarization 5 by a polarizer, the light is transmitted twice so as to be reciprocated through the film 13 at incidence and reflection and the light is subject to rotation twice by the Farady effect. Moreover, a reflected light 5' is reflected on the surface of the film 12 and subject to the rotation due to the magnetic Kerr effect. Thus, the polarized plane rotating angle theta as a whole is the sum of them above thereby improving the S/N at reproduction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気的又は光磁気的に記録された情報を光磁
気効果を利用して光再生するようにした光磁気記録媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magneto-optical recording medium in which information recorded magnetically or magneto-optically is optically reproduced using the magneto-optical effect.

背景技術とその問題点 近年、垂直磁化膜を用いた高密度光記録方式の研究が盛
んになされている。この方式は、例えば第1図に示すよ
うに基板(11上に垂直磁化膜(2)を形成してなる磁
気媒体(3)に対して、その垂直磁化膜(2)の面に光
を照射し部分的に加熱して垂直磁化膜(2)の一部を磁
気キューリ温度又は磁化補償温度以上にし、後冷却させ
ることによって周囲の磁化方向と逆方向の磁化領域を生
ぜしめ、結果的に光ビーム信号に対応する磁化反転領域
(4)を作ることによって情報を記録するというもので
ある。この原理は垂直磁化lll!+2)の抗磁力がL
記の温度前後で大幅に変化することを利用している。そ
して、このように記録された情報の再生は、例えばレー
ザ光を偏光子によって直線偏光(6)にして直接垂直磁
化膜(2)に照射し、膜面での反射によって偏光面が回
転するという所謂磁気カー効果を利用し、この反射光(
5′)を検光子を通じて検出するようになしている。そ
して、このときの再生された情@(光信号)のS/N比
はこの偏光面の回転角即ちカー回転角に比例することが
知られている。
BACKGROUND TECHNOLOGY AND PROBLEMS In recent years, research on high-density optical recording systems using perpendicularly magnetized films has been actively conducted. In this method, for example, as shown in Figure 1, a magnetic medium (3) consisting of a perpendicularly magnetized film (2) formed on a substrate (11) is irradiated with light onto the surface of the perpendicularly magnetized film (2). Then, by partially heating a part of the perpendicularly magnetized film (2) to a temperature higher than the magnetic Curie temperature or magnetization compensation temperature, and then cooling it, a magnetized region in the opposite direction to the surrounding magnetization direction is created, and as a result, light is emitted. Information is recorded by creating a magnetization reversal region (4) corresponding to the beam signal.The principle behind this is that the coercive force of perpendicular magnetization lll!+2) is L.
It takes advantage of the fact that the temperature changes significantly around the temperature shown below. To reproduce the information recorded in this way, for example, a laser beam is turned into linearly polarized light (6) by a polarizer and is irradiated directly onto the perpendicularly magnetized film (2), and the plane of polarization is rotated by reflection from the film surface. This reflected light (
5') is detected through an analyzer. It is known that the S/N ratio of the reproduced signal (optical signal) at this time is proportional to the rotation angle of this plane of polarization, that is, the Kerr rotation angle.

従来このような記録媒体(3)に用いられる垂直磁化膜
(21はGdCo、 GdFe+ TbPe等が用いら
れているが、いずれもカー回転角θには0.3°〜0.
4° (18〜24分)程度である。従って再生された
情報のS/N比には限界があった。
Conventionally, the perpendicular magnetization film (21) used in such a recording medium (3) is made of GdCo, GdFe+TbPe, etc., but in each case, the Kerr rotation angle θ is 0.3° to 0.3°.
It is about 4° (18 to 24 minutes). Therefore, there is a limit to the S/N ratio of reproduced information.

一方、垂直磁化膜(21としてCoCr膜を用い、磁気
的に記録し、再生は上述のように光再生することも考え
られる。しかし、このcocr膜のカー回転角θには約
5分であり、S/N比は悪い。
On the other hand, it is also possible to use a CoCr film as the perpendicular magnetization film (21) for magnetic recording and optical reproduction as described above. However, the Kerr rotation angle θ of this CoCr film is approximately 5 minutes. , the S/N ratio is poor.

発明の目的 本発明は、上述の点に鑑み、記録された情報を大きなS
/N比で光再生することが出来る光磁気記録媒体を提供
するものである。
Purpose of the Invention In view of the above-mentioned points, the present invention provides a method for storing recorded information in a large S.
The object of the present invention is to provide a magneto-optical recording medium that can perform optical reproduction at a /N ratio.

発明のlll要 本発明は、磁気記録層(いわゆる垂直磁化膜)上に再生
光に対して透明な軟質磁性薄膜を被着形成して成る光磁
気記録媒体である。
Summary of the Invention The present invention is a magneto-optical recording medium comprising a magnetic recording layer (so-called perpendicular magnetization film) on which a soft magnetic thin film transparent to reproduction light is deposited.

この発明の光磁気記録媒体では光再生時に磁気記録層の
カー効果による偏光面の回転と、軟質磁性VW膜のファ
ラデー効果による偏光面の回転の相小口効果でS/N比
の向上が図れる。
In the magneto-optical recording medium of the present invention, during optical reproduction, the S/N ratio can be improved by the rotation of the plane of polarization due to the Kerr effect of the magnetic recording layer and the rotation of the plane of polarization due to the Faraday effect of the soft magnetic VW film.

実施例 以下、第2図及び第3図を用いて本発明による光磁気記
録媒体の実施例について説明しよう。
EXAMPLE Hereinafter, an example of the magneto-optical recording medium according to the present invention will be explained using FIGS. 2 and 3.

本発明においては、第2図にボずように、基扱(11)
上に磁気記録層即ち垂直磁化膜(12)を形成し、さら
にこの垂直磁化膜(2)上に例えば蒸着。
In the present invention, as shown in FIG. 2, basic treatment (11)
A magnetic recording layer, that is, a perpendicular magnetization film (12) is formed thereon, and further, for example, vapor deposition is performed on this perpendicular magnetization film (2).

スパッタ等により再生光に対して透明な軟質磁性薄膜(
13)を被着形成して構成する。垂直磁化膜(12)と
しては、光磁気記録の場合、例えばGdCo。
A soft magnetic thin film that is transparent to reproduction light by sputtering etc.
13) is formed by depositing. In the case of magneto-optical recording, the perpendicular magnetization film (12) is, for example, GdCo.

GdFe、 TbFe等の膜を用い得る。軟質磁性薄膜
(13)は、垂直磁化膜(12)に記録された磁化ビッ
ト情報に対応した磁化パターンを転写させるもので、例
えばFe、パーマロイ、 Co、 Co主体の非晶質金
属等の軟質磁性材料を用いる。軟質磁性薄膜(13)の
膜厚としては、金属の場合、光吸収係数が105cm−
1と極めて大きいため、再生光に対して透明であるため
には即ち偏光強度を適度に得るには100Å以下が望ま
しい。
A film of GdFe, TbFe, etc. can be used. The soft magnetic thin film (13) is used to transfer a magnetization pattern corresponding to the magnetization bit information recorded on the perpendicular magnetization film (12). Use materials. In the case of metal, the thickness of the soft magnetic thin film (13) is such that the light absorption coefficient is 105 cm-
1, which is extremely large, so in order to be transparent to reproduction light, that is, to obtain a suitable polarized light intensity, it is desirable that the thickness be 100 Å or less.

このように垂直磁化膜(12)上に蒸着、スパッタ等で
軟質磁性wt膜(13)を形成すると、この膜(13)
に垂直磁化膜(12)の磁化分布(14)に対応したパ
ターンの平面内磁化(15)が生じる。同特に第2図の
破線の円で囲んだ部分(16)は磁束線の流れの関係か
ら垂直に磁化した成分(17)が存在する。そこで、再
生時にはこの破線の円で囲まれた部分(16)にレーザ
光を偏光子で直線偏光にして入射させ、その反射光を検
光子を通して検出する。このとき、直線偏光(5)は第
3図に示すように入射と反射で軟質磁性*膜(13)を
往復するように2回透過することになりファラデー効果
による回転を2回受ける。また反射光(5′)は垂直磁
化IQ(12)の表面で反射するために磁気カー効果に
よる回転を受ける。従って全体としての偏光面回転角θ
は θ=θに+2θF (但し、θには垂直磁化膜(12)のカー回転角。
When the soft magnetic wt film (13) is formed on the perpendicularly magnetized film (12) by vapor deposition, sputtering, etc., this film (13)
A pattern of in-plane magnetization (15) corresponding to the magnetization distribution (14) of the perpendicularly magnetized film (12) is generated. In particular, in the portion (16) surrounded by the broken line circle in FIG. 2, there is a perpendicularly magnetized component (17) due to the flow of magnetic flux lines. Therefore, during reproduction, the laser beam is linearly polarized by a polarizer and incident on the area (16) surrounded by the broken line circle, and the reflected light is detected through an analyzer. At this time, as shown in FIG. 3, the linearly polarized light (5) passes through the soft magnetic* film (13) twice by being incident and reflected back and forth, and is thus rotated twice by the Faraday effect. Further, the reflected light (5') is reflected by the surface of the perpendicular magnetization IQ (12) and is therefore rotated by the magnetic Kerr effect. Therefore, the overall polarization plane rotation angle θ
is θ=θ+2θF (where θ is the Kerr rotation angle of the perpendicularly magnetized film (12)).

θFは軟質磁性薄膜(13)のファラデー回転角である
。つとなる。
θF is the Faraday rotation angle of the soft magnetic thin film (13). It becomes one.

ト記表に波長500〜546nmの光に対するFe、パ
ーマロイ及びCoの各膜のファラデー回転角θFをポす
The Faraday rotation angle θF of each film of Fe, permalloy, and Co with respect to light with a wavelength of 500 to 546 nm is shown in the table.

表 一− この表から明らかなように軟質磁性薄膜(13)でのフ
ァラデー回転角2θFは、例えばFeの場合、100人
で0.8deg (48分)、50人で0.4deg 
(24分)となる。これらの2θドが垂直磁化ll1(
12)のカー回転角θKに付加されることになり、再生
時のS/N比が向上する。
Table 1 - As is clear from this table, the Faraday rotation angle 2θF in the soft magnetic thin film (13) is, for example, in the case of Fe, 0.8 deg (48 minutes) for 100 people and 0.4 deg for 50 people.
(24 minutes). These 2θ de are perpendicular magnetization ll1(
12) is added to the Kerr rotation angle θK, thereby improving the S/N ratio during reproduction.

尚、上側では垂直磁化1m(12)を(+dCo、 G
dFe。
In addition, on the upper side, the perpendicular magnetization 1m (12) is (+dCo, G
dFe.

TbFe等の光磁気記録材料で構成したが、その他Co
Cr等の磁気記録材料で構成してもよい。この場合には
記録を磁気で行い再生を光で行うようにするもので、非
接触再生となる。この場合も偏光面回転角はθ−θに+
2θFである。
It was composed of magneto-optical recording material such as TbFe, but other materials such as Co
It may also be made of a magnetic recording material such as Cr. In this case, recording is performed magnetically and reproduction is performed optically, resulting in non-contact reproduction. In this case as well, the polarization plane rotation angle is +
It is 2θF.

発明の効果 上述せる如く本発明によれば、垂直磁化股上に再生光に
対して透明な軟質磁性薄膜を被着形成したことにより、
光再生時に垂直磁化膜の磁気カー効果による回転及び軟
質磁性薄膜のファラデー効果による回転の相和で偏光面
回転角が大きくなり、S/N比の向上を図ることができ
る。また、CoCr膜のような垂直磁気記録の場合も、
光再生により比接触再生の改善を図ることができる。
Effects of the Invention As mentioned above, according to the present invention, by forming a soft magnetic thin film transparent to reproduction light on the perpendicular magnetization ridge,
During optical reproduction, the rotation angle of the plane of polarization increases due to the combination of the rotation due to the magnetic Kerr effect of the perpendicularly magnetized film and the rotation due to the Faraday effect of the soft magnetic thin film, making it possible to improve the S/N ratio. Also, in the case of perpendicular magnetic recording such as CoCr film,
Optical regeneration can improve specific contact regeneration.

【図面の簡単な説明】[Brief explanation of drawings]

一第1図は従来の光磁気記録媒体の例を示す断面図、第
2図は本発明による光磁気記録媒体の実施例を示す断面
図、第3図は本発明の動作説明に供する要部の断面図で
ある。 (11)は基板、(12)は磁気記録層、(13)は軟
質磁性薄膜である。
- Fig. 1 is a sectional view showing an example of a conventional magneto-optical recording medium, Fig. 2 is a sectional view showing an embodiment of a magneto-optical recording medium according to the present invention, and Fig. 3 is a main part for explaining the operation of the present invention. FIG. (11) is a substrate, (12) is a magnetic recording layer, and (13) is a soft magnetic thin film.

Claims (1)

【特許請求の範囲】[Claims] 磁気記録層上に再生光に対して透明な軟質磁性薄躾が形
成されて成る光磁気記録媒体。
A magneto-optical recording medium in which a soft magnetic thin layer that is transparent to reproduction light is formed on a magnetic recording layer.
JP22815683A 1983-12-02 1983-12-02 Photo-magnetic recording medium Pending JPS60119648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22815683A JPS60119648A (en) 1983-12-02 1983-12-02 Photo-magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22815683A JPS60119648A (en) 1983-12-02 1983-12-02 Photo-magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60119648A true JPS60119648A (en) 1985-06-27

Family

ID=16872102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22815683A Pending JPS60119648A (en) 1983-12-02 1983-12-02 Photo-magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60119648A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394449A (en) * 1986-10-08 1988-04-25 Sony Corp Magneto-optical recording medium
JPS63160039A (en) * 1986-12-24 1988-07-02 Ricoh Co Ltd Magneto-optical recording medium
EP0509836A2 (en) * 1991-04-17 1992-10-21 Sharp Kabushiki Kaisha Magneto-optical recording medium
US5237548A (en) * 1988-06-01 1993-08-17 Hoechst Aktiengesellschaft Magneto-optic recording structure and method
EP0592199A2 (en) * 1992-10-06 1994-04-13 Sharp Kabushiki Kaisha Magneto-optical recording medium and method of recording and reproducing using same
US5457582A (en) * 1991-11-13 1995-10-10 Eastman Kodak Company Magneto-optical storage medium wherein heating a portion of a read layer changes the portion's magnetic orientation
US5486395A (en) * 1991-12-05 1996-01-23 Sharp Kabushiki Kaisha Magneto-optical disk

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394449A (en) * 1986-10-08 1988-04-25 Sony Corp Magneto-optical recording medium
JPS63160039A (en) * 1986-12-24 1988-07-02 Ricoh Co Ltd Magneto-optical recording medium
US5237548A (en) * 1988-06-01 1993-08-17 Hoechst Aktiengesellschaft Magneto-optic recording structure and method
EP0509836A2 (en) * 1991-04-17 1992-10-21 Sharp Kabushiki Kaisha Magneto-optical recording medium
US5707727A (en) * 1991-04-17 1998-01-13 Sharp Kabushiki Kaisha Magneto-optical recording medium
US5457582A (en) * 1991-11-13 1995-10-10 Eastman Kodak Company Magneto-optical storage medium wherein heating a portion of a read layer changes the portion's magnetic orientation
US5486395A (en) * 1991-12-05 1996-01-23 Sharp Kabushiki Kaisha Magneto-optical disk
EP0592199A2 (en) * 1992-10-06 1994-04-13 Sharp Kabushiki Kaisha Magneto-optical recording medium and method of recording and reproducing using same
EP0592199A3 (en) * 1992-10-06 1996-05-15 Sharp Kk Magneto-optical recording medium and method of recording and reproducing using same

Similar Documents

Publication Publication Date Title
KR960016891B1 (en) Magneto optical recording method
US4701881A (en) Magneto-optical recording medium
JPH06295479A (en) Magnetooptic recording medium and information reproducing method for the same
JPS61117747A (en) 2-layer-film optical magnetic recording medium
JP2579631B2 (en) Magneto-optical recording method
JPH07254175A (en) Magneto-optical recording medium and method for recording and reproducing information with same medium
EP0135322B2 (en) An optical magnetic recording member
JPS60119648A (en) Photo-magnetic recording medium
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
JPS63239637A (en) Magneto-optical recording medium and recording method thereof
JPH0863810A (en) Magnetooptical recording medium and information reproducing method therefor
JPH0522303B2 (en)
KR100271114B1 (en) Magneto-optical recording medium and information reproducing method using this medium
EP0668585B1 (en) Information recording method and system using a magneto-optical medium
JPH0395745A (en) Magneto-optical recording method and recording device
JPS60119649A (en) Photo-magnetic recording medium
JPS59168954A (en) Optical magnetic recording medium
JPH02227847A (en) Magneto-optical recording medium
US5532984A (en) High resolution read-only magneto-optical disk and method and apparatus for reproducing information therefrom
JPH06243522A (en) Magneto-optical disk and its reproducing method
JPH0350343B2 (en)
JPS61188762A (en) Photomagnetic recording medium
JPS607634A (en) Photothermomagnetic recording medium
JPS62219203A (en) Optical modulation overwriting system for photomagnetic recording device
JPH07254176A (en) Magneto-optical recording medium and method for reproducing information with same medium