JPS6394199A - Spent fuel treating facility for nuclear reactor facility - Google Patents

Spent fuel treating facility for nuclear reactor facility

Info

Publication number
JPS6394199A
JPS6394199A JP23861986A JP23861986A JPS6394199A JP S6394199 A JPS6394199 A JP S6394199A JP 23861986 A JP23861986 A JP 23861986A JP 23861986 A JP23861986 A JP 23861986A JP S6394199 A JPS6394199 A JP S6394199A
Authority
JP
Japan
Prior art keywords
spent fuel
cleaning
fuel
tank
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23861986A
Other languages
Japanese (ja)
Inventor
岡本 尚武
青木 法智嘉
和田 邦久
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Fuji Electric Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP23861986A priority Critical patent/JPS6394199A/en
Publication of JPS6394199A publication Critical patent/JPS6394199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、1次冷却材としてナトリウム等の液体金属
を使用する高速増殖炉を対象とした原子炉施設の使用済
燃料取扱設備に関する。
The present invention relates to spent fuel handling equipment for nuclear reactor facilities intended for fast breeder reactors that use liquid metals such as sodium as the primary coolant.

【従来技術とその問題点】[Prior art and its problems]

周知のように頭記した原子炉から取出した使用済燃料は
、まず使用済燃料に付着しているナトリウム等の液体金
属を洗浄した後に燃料貯蔵プール内に搬入して保管する
ことが一般に行われている。 この場合の使用済燃料の洗浄装置として、従来は使用済
燃料を洗浄槽内に収容した状態で使用済燃料に蒸気を含
む湿潤ガスを吹付け、さらに水で洗浄した後に、温風等
で乾燥させる蒸気−水洗浄方式による洗浄装置が一般に
採用されている。 ここで前記の蒸気−水洗浄方式の洗浄装置を組み込んだ
従来における使用済燃料の取扱設備を第4図、第5図に
示す0図において、1は原子炉、2は燃料貯蔵プール、
3が原子炉1と燃料貯蔵プール2との間の燃料移送経路
途上に設置された蒸気−水洗浄方式の使用済燃料洗浄装
置であり、該洗浄装置3は床面上に並ぶ複数基の洗浄槽
3a、 3bと、各洗浄槽に配管接続された洗浄廃液回
収タンク3cと、および図示されてない蒸気、水、不活
性ガス供給系の付属設備等から構成されている。 次に使用済燃料の取扱手順について説明すると、燃料取
扱8!4により原子炉1から取り出した使用済燃料5は
中継槽6へ搬出され、ここからインセルクレーン7によ
り使用済燃料洗浄装置2の洗浄槽内に搬入されて前記し
た蒸気−水洗浄方式で洗浄される。なお洗浄に伴って発
生した洗浄廃液は一旦廃液回収タンク3C内に貯留し、
ここから原子炉施設内の液体廃棄物処理系に送出して処
理される。一方、洗浄の済んだ使用済燃料は再びインセ
ルクレーン7により床面下の走行台車8へ受は渡し、さ
らに別なインセルクレーン9.水中走行台車10.プー
ル移送機11を経由して燃料貯蔵プール2内の貯蔵ラッ
ク2a内に収容して貯蔵される。 しかして前記の蒸気−水洗浄方式による使用済燃料洗浄
装置では、1本の使用済燃料を洗浄するのに1時間以上
にも及ぶ時間がかかることから、1基の洗浄槽では燃料
交換作業の進行に対応できず、原子炉の規模にもよるが
通常は複数本の使用済燃料を並行して洗浄できるように
複数基の洗浄槽を備えて対処している。さらに加えて前
記の蒸気−水洗浄では洗浄に伴い使用済燃料1本当たり
で約1.5トンにも及ぶ放射性クラッド、放射性腐食生
成物等を含む多量の放射性洗浄廃液が発生するために、
洗浄廃液回収タンク3c、および廃液処理系等を含めた
設備の大形化、および放射能汚染の増加などの廃棄物処
理上での厄介な問題が派生する。この結果として使用済
燃料取扱設備では、その洗浄設備の使用機器が増加し、
かつその配置スペースも多く必要とするようになる。 一方、前記した従来の蒸気−水洗浄方式に代わるものと
して、放射性廃液の発生を伴わずに使用済燃料を洗浄す
る乾式洗浄方式が新しく提唱されている。この乾式洗浄
方式の原理は、使用済燃料を洗浄槽内に収容した状態で
加熱昇温させることにより使用済燃料に付着しているナ
トリウムを熔融蒸発させて洗浄する方法である。さらに
具体的には前記の加熱工程で使用済燃料へ向けて加熱し
た不活性ガスをブローすることにより使用済燃料の表面
から蒸発したナトリウム渾気、ミストを排除する高温ガ
スプロー洗浄方式、あるいは前記の加熱工程で使用済燃
料を予熱した後に、さらに洗浄槽内の雰囲気を前記の予
熱温度に対するナトリウムの飽和蒸気圧以下に減圧させ
ることにより、使用済燃料に付着している液体金属を蒸
発促進させて洗浄する減圧洗浄方式等がある。 かかる乾式洗浄方式によれば洗浄過程で蒸気。 水等を使用しないので洗浄に伴う放射性廃液の発生が無
く、僅かな量の排ガスを処理するだけで使用済燃料を効
果的に洗浄することが可能であり、かつ蒸気−水洗浄方
式における洗浄廃液回収タンクが省略でき、この代わり
に洗浄槽内から排除したナトリウムを回収する小形のナ
トリウムドレンタンクを付設するだけで装置の小形化が
可能であり、さらに使用済燃料の洗浄に要する所要時間
も薄気−水洗浄方式と比べて大幅に短縮できることがl
1il認されている。
As is well known, spent fuel removed from the above-mentioned nuclear reactor is generally first cleaned of liquid metals such as sodium adhering to it, and then transported into a fuel storage pool and stored. ing. Conventionally, spent fuel cleaning equipment in this case sprays wet gas containing steam onto the spent fuel while it is housed in a cleaning tank, then washes it with water and then dries it with warm air, etc. A cleaning device using a steam-water cleaning method is generally employed. Here, conventional spent fuel handling equipment incorporating the above-mentioned steam-water cleaning system is shown in Figs. 4 and 5. In Fig. 0, 1 is a nuclear reactor, 2 is a fuel storage pool,
3 is a spent fuel cleaning device using a steam-water cleaning method installed on the fuel transfer path between the reactor 1 and the fuel storage pool 2, and the cleaning device 3 has multiple cleaning units lined up on the floor. It consists of tanks 3a and 3b, a cleaning waste liquid recovery tank 3c connected to each cleaning tank via piping, and auxiliary equipment (not shown) such as a steam, water, and inert gas supply system. Next, to explain the procedure for handling spent fuel, the spent fuel 5 taken out from the reactor 1 by fuel handling 8!4 is carried out to the relay tank 6, and from there the spent fuel cleaning equipment 2 is cleaned by the incel crane 7. It is carried into a tank and cleaned using the steam-water cleaning method described above. The cleaning waste liquid generated during cleaning is temporarily stored in the waste liquid recovery tank 3C.
From there, it is sent to the liquid waste treatment system within the nuclear reactor facility for treatment. On the other hand, the spent fuel that has been cleaned is transferred again to the traveling trolley 8 under the floor by the incel crane 7, and then transferred to another incel crane 9. Underwater traveling trolley 10. The fuel is stored in the storage rack 2a in the fuel storage pool 2 via the pool transfer device 11. However, in the spent fuel cleaning equipment using the steam-water cleaning method described above, it takes more than an hour to clean one spent fuel, so one cleaning tank is sufficient for fuel exchange work. Depending on the size of the reactor, it is usually possible to deal with this situation by equipping multiple cleaning tanks so that multiple spent fuel can be cleaned in parallel. In addition, in the steam-water cleaning described above, a large amount of radioactive cleaning waste liquid containing about 1.5 tons of radioactive crud, radioactive corrosion products, etc. is generated per spent fuel.
Troublesome problems arise in waste treatment, such as an increase in the size of equipment including the cleaning waste liquid collection tank 3c and a waste liquid treatment system, and an increase in radioactive contamination. As a result, in spent fuel handling facilities, the number of cleaning equipment used has increased.
Moreover, a large amount of space is required for its arrangement. On the other hand, as an alternative to the conventional steam-water cleaning method described above, a new dry cleaning method has been proposed for cleaning spent fuel without generating radioactive waste liquid. The principle of this dry cleaning method is to heat and raise the temperature of spent fuel while it is housed in a cleaning tank, thereby melting and evaporating the sodium adhering to the spent fuel and cleaning it. More specifically, there is a high-temperature gas blow cleaning method that removes evaporated sodium vapor and mist from the surface of the spent fuel by blowing heated inert gas toward the spent fuel in the heating process, or the above-mentioned method. After preheating the spent fuel in the heating process, the atmosphere in the cleaning tank is further reduced in pressure to below the saturated vapor pressure of sodium relative to the preheating temperature, thereby promoting evaporation of the liquid metal adhering to the spent fuel. There are vacuum cleaning methods for cleaning. According to this dry cleaning method, steam is generated during the cleaning process. Since no water is used, there is no generation of radioactive waste liquid due to cleaning, and it is possible to effectively clean spent fuel by treating only a small amount of exhaust gas. The recovery tank can be omitted, and the equipment can be made more compact by simply installing a small sodium drain tank to recover the sodium removed from the cleaning tank, and the time required to clean the spent fuel can also be reduced. Compared to the air-water cleaning method, the time can be significantly reduced.
1il approved.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、従
来における使用済燃料取扱設備の難点を解消し、大規模
な廃液処理設備を必要とせず、しかも設備全体の所要ス
ペースを縮小して小形、コンパクトな配置を可能とした
原子炉施設の使用済燃料取扱設備を提供することを目的
とする。
This invention was developed in consideration of the above points, and eliminates the difficulties of conventional spent fuel handling equipment, does not require large-scale waste liquid treatment equipment, and moreover reduces the space required for the entire equipment, making it compact and compact. The purpose is to provide spent fuel handling equipment for nuclear reactor facilities that can be installed compactly.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は先記した乾式洗
浄方式では洗浄に伴う洗浄廃液の発生の無いこと、およ
び洗浄時間が短時間で済むことに着目し、原子炉と燃料
貯蔵プールとの間の使用済燃料移送経路の途上に使用済
燃料を加熱昇温することにより使用済燃料に付着してい
るナトリウム等を溶融蒸発させる乾式洗浄方式の使用済
燃料洗浄装置を配備して使用済燃料取扱設備の簡略、小
形化を図るようにしたものである。
In order to achieve the above object, the present invention focuses on the fact that the dry cleaning method described above does not generate cleaning waste liquid due to cleaning, and that the cleaning time is short. A dry-cleaning type spent fuel cleaning device is installed on the spent fuel transfer route that heats the spent fuel to raise its temperature to melt and evaporate sodium, etc. attached to the spent fuel. This is designed to simplify and downsize the handling equipment.

【発明の実施例】 第1図、第2図はこの発明の実施例による使用済燃料取
扱設備の全体構成図、第3図は乾式減圧洗浄方式による
使用済燃料洗浄装置の系統図を示すものであり、第4図
、第5図と同一部材には同じ符号が付しである。すなわ
ち第1図、第2図においてこの発明により、原子炉1と
燃料貯蔵プール2との間の使用済燃料移送経路の途上に
は、使用済燃料の洗浄装置として符号12で示す乾式洗
浄方式の使用済燃料洗浄装置が設置されている。この洗
浄装置12は床面上に臨むドアパルプ13付きの洗浄槽
14.洗浄槽14より排出したナトリウムドレンを回収
する小形容積のドレンタンク15.および後記する付属
設備等から構成されている。また使用済燃料の移送経路
は第4図、第5図と殆ど同様であり、燃料交換機4で原
子炉1から取り出された使用済燃料5はインセルクレー
ン7により洗浄装置12の洗浄槽14内に搬入され、こ
こで乾式洗浄(乾式洗浄方式に付いては詳細を後述する
)が行われる。ここで洗浄が済むと、使用済燃料5はイ
ンセルクレーン7、走行台車8.インセルクレーン9.
水中走行台車10.プール移送機11を経て燃料貯蔵プ
ール2の貯蔵ラック2aへ移送される。 次に前記した乾式洗浄方式、特に減圧洗浄方式による使
用済燃料洗浄装置の構成、洗浄操作の概要を第3図によ
り説明すると、頂部にドアパルプ13を装備した洗浄槽
14に対して、一方ではプロア16、ガス加熱器17.
ガス冷却器18.ベーパトラップ19等を具備して洗浄
槽1との間に接続配管したガス循環ライン20.および
該ガス循環ライン20に接続された例えばアルゴンガス
の不活性ガスi1!21を含めた使用済燃料集合体の予
熱手段と、洗浄槽14より真空タンク22.真空ポンプ
23.ベーパトラップ24等を経て気体廃棄物処理系2
5に通じる減圧排気ライン26として成る減圧手段が付
属設備されている。さらに洗浄槽14および真空タンク
22にはその底部より引出して、ナトリウムのドレンタ
ンク15が接続配管されている。 次に上記構成による使用済燃料の洗浄操作の手順に付い
て説明すると、まず原子炉より取り出した使用済燃料5
をドアパルプ13を通じて洗浄槽14内に収容する。こ
こでガス循環ライン20のパルプを開放し、不活性ガス
源21より所定量のアルゴンガスを系内に導入し、さら
にブロア16.ガス加熱器17を始動して加熱されたガ
スを洗浄槽14内に循環送流し、崩壊熱を発生する燃料
ピン、および燃料ピン以外の非発熱部を含む使用済燃料
5の全域をナトリウムの溶融、蒸発温度以上の所定予熱
温度(好ましくは450〜550℃程度)まで加熱昇温
させる。またこの予熱工程の過程で使用済燃料5の温度
、特に崩壊熱を発生する燃料ピンの表面温度が許容温度
まで達するようになった場合には、一時的にガス循環ラ
イン20のガス冷却器18を始動して循環ガス温度を下
げ、使用済燃料5を所定の予熱温度に維持させるように
温度111節を行う、一方、この予熱工程を行うている
期間に減圧排気ライン26側では洗浄槽14との間のパ
ルプを閉じたまま真空ポンプ23を始動して真空タンク
22の内部を減圧して置く。 ここで前記した予熱工程により使用済燃料5が所定の予
熱温度に到達すると、一旦洗浄槽14とガス循環ライン
20との間を切離し、しかる後にまず真空タンク22に
通じるパルプを開放して洗浄槽14の内部を急激に減圧
させ、続いて真空ポンプ23により洗浄槽14内をさら
に真空引きし、洗浄槽内の内圧がその温度に対するナト
リウム飽和蒸気圧以下1例えば4〜10Torr程度と
なるように減圧排気させる。これにより使用済燃料5の
表面、内部に付着したいたナトリウムは蒸発促進され、
ナトリウム蒸気、ミストの形で使用済燃料より洗浄除去
されるようになる。なおこの過程で生じたナトリウム薫
気、ミストは大半が洗浄槽14.および真空タンク22
の内部に移行して付着し、残りの浮遊弯気、ミストは排
ガスに同伴して減圧排気ライン26中のベーパートラッ
プ24に吸着除去され、洗浄槽14の内容積に見合う量
の排ガスのみが気体廃棄物処理系25に送出されて処理
される。また浄化処理された不活性ガスは再び不活性ガ
ス源に戻して再度使用済燃料の予熱に使用される。 なお上記の洗浄操作を必要により数回繰り返して行い、
使用済燃料集合体3を充分に洗浄して一連の洗浄工程が
終了する。また前記の洗浄に伴って洗浄槽14.真空タ
ンク22内に薄着したナトリウムは、洗浄槽、真空タン
クに装備した図示されてない加熱ヒータ、および使用済
燃料集合体自身の崩壊発熱により加熱してナトリウムを
熔融させた上で、ナトリウムをドレンタンク15へ排出
、貯留し、ここから図示されてないナトリウム回収系に
送出される。この場合にナトリウムの回収量は使用済燃
料1本当たりで約0.5kgであり、したがってナトリ
ウムのドレンタンク15の容積は蒸気−水洗浄方式にお
ける洗浄廃液回収タンクの容積に比べてはるかに小形な
もので済む、また洗浄の所要時間も従来の洗浄方式と比
べて略半分程度の時間で済むので第1図に示すように使
用済燃料取扱設備に1基の洗浄装置を設置するだけで燃
料交換作業を支障なく進めることができるようになる。 なお先述した高温ガスブロー洗浄方式は、第3図に示し
た乾式減圧洗浄装置における減圧排気ライン26が無く
、ガス循環ライン20のみで使用済燃料5の加熱昇温お
よび高温ガスのブローを行って使用済燃料の付着ナトリ
ウムを蒸発除去して洗浄するように構成されたものであ
る。
[Embodiments of the Invention] Figures 1 and 2 are overall configuration diagrams of spent fuel handling equipment according to embodiments of the present invention, and Figure 3 is a system diagram of spent fuel cleaning equipment using a dry vacuum cleaning method. The same members as in FIGS. 4 and 5 are given the same reference numerals. That is, in FIGS. 1 and 2, according to the present invention, a dry cleaning method designated by 12 is installed as a spent fuel cleaning device on the spent fuel transfer path between the reactor 1 and the fuel storage pool 2. A spent fuel cleaning device is installed. This cleaning device 12 has a cleaning tank 14 with a door pulp 13 facing above the floor. A small-capacity drain tank 15 for collecting sodium drain discharged from the cleaning tank 14. It consists of additional equipment, etc., which will be described later. The spent fuel transfer route is almost the same as that shown in FIGS. 4 and 5, and the spent fuel 5 taken out from the reactor 1 by the fuel exchanger 4 is transferred into the cleaning tank 14 of the cleaning device 12 by the in-cell crane 7. It is carried in, and dry cleaning is performed here (details of the dry cleaning method will be described later). After the cleaning is completed here, the spent fuel 5 is transferred to the incel crane 7, the traveling truck 8. Incel crane9.
Underwater traveling trolley 10. The fuel is transferred to the storage rack 2a of the fuel storage pool 2 via the pool transfer device 11. Next, the configuration and cleaning operation of the spent fuel cleaning system using the dry cleaning method, especially the vacuum cleaning method, will be explained with reference to FIG. 3. 16. Gas heater 17.
Gas cooler18. A gas circulation line 20 equipped with a vapor trap 19 and the like and connected to the cleaning tank 1. and means for preheating the spent fuel assembly including an inert gas i1!21, such as argon gas, connected to the gas circulation line 20, and a vacuum tank 22. Vacuum pump 23. Gaseous waste treatment system 2 via vapor trap 24 etc.
A decompression means in the form of a decompression exhaust line 26 leading to 5 is additionally provided. Furthermore, a sodium drain tank 15 is connected to the cleaning tank 14 and the vacuum tank 22 by connecting piping to the bottom thereof. Next, the procedure for cleaning spent fuel with the above configuration will be explained. First, the spent fuel 5 taken out from the reactor
is accommodated in the cleaning tank 14 through the door pulp 13. At this point, the pulp in the gas circulation line 20 is opened, a predetermined amount of argon gas is introduced into the system from the inert gas source 21, and the blower 16. The gas heater 17 is started, the heated gas is circulated into the cleaning tank 14, and the entire area of the spent fuel 5, including the fuel pin that generates decay heat and non-heat generating parts other than the fuel pin, is melted with sodium. , the temperature is raised to a predetermined preheating temperature (preferably about 450 to 550°C) that is higher than the evaporation temperature. Additionally, if the temperature of the spent fuel 5, especially the surface temperature of the fuel pin that generates decay heat, reaches a permissible temperature during this preheating process, the gas cooler 18 of the gas circulation line 20 temporarily is started to lower the circulating gas temperature, and temperature 111 is performed to maintain the spent fuel 5 at a predetermined preheating temperature.Meanwhile, while this preheating process is being performed, the cleaning tank 14 is The vacuum pump 23 is started to reduce the pressure inside the vacuum tank 22 while the pulp between the two is closed. When the spent fuel 5 reaches a predetermined preheating temperature through the preheating process described above, the cleaning tank 14 and the gas circulation line 20 are once disconnected, and then the pulp leading to the vacuum tank 22 is opened and the cleaning tank 14 is opened. The pressure inside the cleaning tank 14 is rapidly reduced, and then the inside of the cleaning tank 14 is further evacuated by the vacuum pump 23, so that the internal pressure in the cleaning tank is lower than the sodium saturated vapor pressure at that temperature, for example, about 4 to 10 Torr. Exhaust. This accelerates the evaporation of the sodium adhering to the surface and inside of the spent fuel 5.
Sodium vapor and mist are cleaned and removed from the spent fuel. Note that most of the sodium fumes and mist generated during this process are in the cleaning tank 14. and vacuum tank 22
The remaining floating air and mist are adsorbed and removed by the vapor trap 24 in the vacuum exhaust line 26 along with the exhaust gas, and only the exhaust gas in an amount corresponding to the internal volume of the cleaning tank 14 is converted into gas. The waste is sent to the waste treatment system 25 and processed. In addition, the purified inert gas is returned to the inert gas source and used again to preheat the spent fuel. Please repeat the above cleaning procedure several times as necessary.
The spent fuel assembly 3 is thoroughly cleaned and the series of cleaning steps is completed. Also, along with the above-mentioned cleaning, the cleaning tank 14. The sodium deposited in the vacuum tank 22 is heated by a cleaning tank, a heater (not shown) installed in the vacuum tank, and the heat generated by the collapse of the spent fuel assembly itself to melt the sodium, and then drain the sodium. It is discharged and stored in the tank 15, from which it is sent to a sodium recovery system (not shown). In this case, the amount of sodium recovered is approximately 0.5 kg per spent fuel, and therefore the volume of the sodium drain tank 15 is much smaller than the volume of the cleaning waste liquid recovery tank in the steam-water cleaning method. Also, the time required for cleaning is approximately half that of conventional cleaning methods, so as shown in Figure 1, fuel exchange can be done by simply installing one cleaning device in the spent fuel handling facility. You will be able to proceed with your work without any problems. Note that the high-temperature gas blow cleaning method described above does not include the vacuum exhaust line 26 in the dry vacuum cleaning device shown in FIG. 3, and uses only the gas circulation line 20 to heat the spent fuel 5 and blow out the high-temperature gas. The system is designed to evaporate and remove adhering sodium from burned fuel.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、原子炉と燃料貯蔵
プールとの間の使用済燃料移送経路の途上に乾式洗浄方
式の使用済燃料洗浄装置を配備したことにより、蒸気−
水洗浄方式の洗浄装置を採用して設備内に配備した従来
の使用済燃料取扱設備と比べて、使用済燃料の洗浄に伴
う処理の厄介な廃液の発生がなく、かつ大規模な廃液処
理設備も不要となり、しかも実用的には1基の洗浄槽で
支障なく燃料交換作業に対応できる。したがって従来設
備と比較して使用済燃料取扱設備の構成機器、および配
置スペースを削減して設備全体の簡略化、小形コンパク
ト化を図ることができる。
As described above, according to the present invention, a dry cleaning type spent fuel cleaning device is installed in the middle of the spent fuel transfer route between the reactor and the fuel storage pool.
Compared to conventional spent fuel handling equipment that uses water cleaning equipment and is installed within the facility, there is no generation of waste liquid that is troublesome to process when cleaning spent fuel, and the waste liquid processing equipment is large-scale. Moreover, in practical terms, a single cleaning tank can handle fuel exchange operations without any problems. Therefore, compared to conventional equipment, the components and installation space of the spent fuel handling equipment can be reduced, and the entire equipment can be simplified and made smaller and more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の実施例による使用済
燃料取扱設備の構成配置を示す側視断面図および平面図
、第3図は第1図における乾式減圧洗浄方式の使用済燃
料洗浄装置の系統図、第4図、第5図は従来における使
用済燃料取扱設備の構成配置を示す側視断面図および平
面図である。 各図において、 1:原子炉、2:燃料貯蔵プール、4:燃料交換機、5
:使用済燃料、7.9:インセルクレーン、8,10:
移送台車、11:プール移送機、12:乾式洗浄装置、
14:洗浄槽、15:ドレンタンク。 第2図 第3図
1 and 2 are a side sectional view and a plan view showing the configuration and arrangement of spent fuel handling equipment according to an embodiment of the present invention, respectively, and FIG. 3 is a spent fuel cleaning method using the dry vacuum cleaning method in FIG. 1. The system diagram of the device, FIGS. 4 and 5, are a side sectional view and a plan view showing the configuration and arrangement of conventional spent fuel handling equipment. In each figure, 1: Nuclear reactor, 2: Fuel storage pool, 4: Fuel exchange machine, 5
: Spent fuel, 7.9: Incel crane, 8,10:
Transfer trolley, 11: Pool transfer machine, 12: Dry cleaning device,
14: Cleaning tank, 15: Drain tank. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)ナトリウム等の液体金属を1次冷却材とする原子炉
より取り出した使用済燃料を洗浄した後に燃料貯蔵プー
ルへ搬入する使用済燃料の取扱設備において、原子炉と
燃料貯蔵プールとの間の使用済燃料移送経路の途上に使
用済燃料を加熱昇温することにより使用済燃料に付着し
ているナトリウム等を溶融蒸発させる乾式洗浄方式の使
用済燃料洗浄装置を配備したことを特徴とする原子炉施
設の使用済燃料取扱設備。
1) In spent fuel handling equipment where spent fuel is taken out from a nuclear reactor that uses liquid metal such as sodium as the primary coolant and then transported to the fuel storage pool, The nuclear power plant is characterized by being equipped with a dry cleaning type spent fuel cleaning device that melts and evaporates sodium, etc. adhering to the spent fuel by heating the spent fuel and raising its temperature in the middle of the spent fuel transfer route. Spent fuel handling equipment for reactor facilities.
JP23861986A 1986-10-07 1986-10-07 Spent fuel treating facility for nuclear reactor facility Pending JPS6394199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23861986A JPS6394199A (en) 1986-10-07 1986-10-07 Spent fuel treating facility for nuclear reactor facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23861986A JPS6394199A (en) 1986-10-07 1986-10-07 Spent fuel treating facility for nuclear reactor facility

Publications (1)

Publication Number Publication Date
JPS6394199A true JPS6394199A (en) 1988-04-25

Family

ID=17032851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23861986A Pending JPS6394199A (en) 1986-10-07 1986-10-07 Spent fuel treating facility for nuclear reactor facility

Country Status (1)

Country Link
JP (1) JPS6394199A (en)

Similar Documents

Publication Publication Date Title
KR970027366A (en) Method and plant for extraction or recovery of acid from acid solution
KR100930225B1 (en) Reprocessing device and method for reprocessing paraffin concentrate solidification drum in nuclear power plant
JP2807237B2 (en) Method and equipment for treating solid organic waste contaminated by tritium
JPS6394199A (en) Spent fuel treating facility for nuclear reactor facility
JPH0269697A (en) Treatment of used fuel
JPS6367597A (en) Method of washing spent fuel aggregate
JP2000237703A (en) Vacuum washing/drying method and device
JPH0814637B2 (en) Cleaning method and cleaning device for spent fuel assembly
JPS6367599A (en) Method of washing spent fuel aggregate
JPS62129795A (en) Method of washing spent fuel in fast breeder reactor
JPS6367600A (en) Method of washing spent fuel aggregate
JPS6367598A (en) Method of washing spent fuel aggregate
JPS6263898A (en) Method and device for processing chemical decontaminated waste liquor
JPS63235900A (en) Method of cleaning spent fuel assembly
JPH01189600A (en) High temperature gas blow washing of spent fuel
JPH0750193B2 (en) Cleaning device for spent fuel assemblies
JP2564132B2 (en) Sodium removal treatment facility for fast reactor core components
JPH07925A (en) Method and device for cleaning and drying with vapor using nonaqueous solvent
JPH01308999A (en) Storage pretreatment for spent fuel
JPS6355499A (en) Pyrolytic processing method and device for chemically decontaminated waste resin
JPS6347341A (en) Method for recovering heat of metallic strip
JP2001033168A (en) Method and system for surface treatment
JPS5848215B2 (en) Method and device for removing adhering sodium
JPH06114277A (en) Condensate desalting device
JPS58184599A (en) Dry cleaning facility for atomic power plant