JPS6367599A - Method of washing spent fuel aggregate - Google Patents
Method of washing spent fuel aggregateInfo
- Publication number
- JPS6367599A JPS6367599A JP21303586A JP21303586A JPS6367599A JP S6367599 A JPS6367599 A JP S6367599A JP 21303586 A JP21303586 A JP 21303586A JP 21303586 A JP21303586 A JP 21303586A JP S6367599 A JPS6367599 A JP S6367599A
- Authority
- JP
- Japan
- Prior art keywords
- spent fuel
- fuel assembly
- tank
- cleaning
- preheating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002915 spent fuel radioactive waste Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title description 31
- 238000005406 washing Methods 0.000 title 1
- 238000004140 cleaning Methods 0.000 claims description 58
- 239000011734 sodium Substances 0.000 claims description 42
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 38
- 229910052708 sodium Inorganic materials 0.000 claims description 38
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims description 7
- 239000000446 fuel Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 6
- 238000010407 vacuum cleaning Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000006837 decompression Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000010795 gaseous waste Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 239000002901 radioactive waste Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 108010063955 thrombin receptor peptide (42-47) Proteins 0.000 description 2
- 239000013543 active substance Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
この発明は、1次冷却材としてナトリウム等の液体金属
を使用する高速増殖炉の使用済燃料集合体を対象とした
使用済燃料集合体の洗浄装置に関する。The present invention relates to a spent fuel assembly cleaning apparatus for spent fuel assemblies of fast breeder reactors that use liquid metal such as sodium as a primary coolant.
周知のように頭記した原子炉から取出した使用済燃料集
合体は、燃料貯蔵プール内に保管する前段階の工程で燃
料集合体に付着しているナトリウム等の液体金属を洗浄
することが一般に行われている。
この場合の使用済燃料集合体の洗浄法として、従来では
使用済燃料集合体を洗浄槽内に収容した状態で使用済燃
料集合体に蒸気を含む湿潤ガスを吹付け、さらに水で洗
浄した後に、燃料集合体を温風等で乾燥させる蒸気−水
洗浄法が一般に採用されている。しかしてかかる蒸気−
水洗浄法は1本の使用済燃料集合体の洗浄に1.5時間
にも及ぶ長時間を要する他、さらに洗浄に伴って使用済
燃料集合体1本当たりで約1.5トンにも及ぶ放射性ク
ランド、放射性腐食生成物等を含む多量の放射性洗浄廃
液が発生するために、廃液処理系設備の大形化、および
放射能汚染の増加などの廃棄物処理上での厄介な問題が
派生する。
一方、前記した従来の蒸気−水洗浄方式に代わるものと
して、放射性廃液の発生を伴わずに使用済燃料集合体に
付着している液体金属を排除する乾式減圧洗浄方式が提
唱されている。この乾式減圧洗浄方式は、使用済燃料集
合体をナトリウム等の液体金属の溶融温度以上の温度ま
で昇温して予熱し、この予熱済みの使用済燃料集合体を
洗浄槽内に収容した状態で洗浄槽内の雰囲気を前記の予
熱温度に対する液体金属の飽和蒸気圧以下に減圧させる
ことにより、燃料集合体に付着している液体金属を蒸発
させて排除するようにした方式である。かかる乾式減圧
洗浄方式によれば洗浄過程で蒸気、水等を使用しないの
で洗浄に伴う放射性廃液の発生が無く、少ない量の排ガ
スを気体廃棄物処理系で処理するだけで使用済燃料集合
体を効果的に洗浄することが可能となる。
一方、前記した乾式減圧洗浄方式における使用済燃料集
合体の予熱方法として、発明者は使用済燃料集合体自ら
発生する崩壊熱で予熱温度まで昇温させる方法、使用済
燃料集合体を収容した洗浄槽に対して外部より高温加熱
した不活性ガスを使用済燃料集合体ヘブローする高温ガ
ス予熱方法、および洗浄槽の周域に加熱ヒータを配備し
、洗浄槽内に封入した不活性ガスを熱媒として間接的に
使用済燃料集合体を加熱するヒータ予熱方法等の各種予
熱方法を試みた。しかして燃料集合体は周知のように崩
壊熱を発熱する燃料ピンと、これを取り巻く上下のブラ
ケット部、およびラッパ管等の非発熱部とからなる構造
体であり、前記した各予熱方法のうち自己崩壊熱による
予熱方法では、崩壊熱による発熱量が少なく加熱速度が
発熱部である燃料ビン近傍でも数℃/分程度で低く、し
がち燃料ピンは燃料集合体全長の4分の工程度であるた
めに燃料ピンから離れた非発熱部分の昇温が不充分とな
る。また高温ガスプロー予熱方法は大規模なガス循環ル
ープが必要である他に熱媒であるガスの熱容量が小さい
ので予熱に比較的長い時間がかかる。さらにヒータ予熱
方法は加熱効率が低く予熱に長時間を要する等の問題が
あり、短時間の内に効率よく使用済燃料集合体の全域を
均一に予熱することに難点のあることが判明した。しか
も使用済燃料集合体の予熱に長時間がかかると、次段の
減圧操作工程を含めてそれだけ洗浄の所要時間が長引く
ことから、使用済燃料取扱設備に設置して使用する場合
には原子炉の燃料交換作業の進行に対応し切れなくなる
問題が派生する。As is well known, spent fuel assemblies taken out from the above-mentioned nuclear reactors are generally cleaned of liquid metals such as sodium adhering to them in the process before being stored in a fuel storage pool. It is being done. In this case, the conventional method for cleaning spent fuel assemblies is to blow wet gas containing steam onto the spent fuel assemblies while they are housed in a cleaning tank, and then wash them with water. Generally, a steam-water cleaning method is employed in which the fuel assembly is dried with hot air or the like. However, the steam
The water cleaning method requires a long time of up to 1.5 hours to clean one spent fuel assembly, and the cleaning process also requires approximately 1.5 tons per spent fuel assembly. A large amount of radioactive cleaning waste liquid containing radioactive waste, radioactive corrosion products, etc. is generated, leading to troublesome problems in waste treatment such as increasing the size of waste liquid treatment equipment and increasing radioactive contamination. . On the other hand, as an alternative to the conventional steam-water cleaning method described above, a dry vacuum cleaning method has been proposed that removes liquid metal adhering to spent fuel assemblies without generating radioactive waste liquid. This dry vacuum cleaning method involves preheating the spent fuel assembly to a temperature higher than the melting temperature of liquid metal such as sodium, and placing the preheated spent fuel assembly in a cleaning tank. This method evaporates and eliminates the liquid metal adhering to the fuel assembly by reducing the pressure of the atmosphere in the cleaning tank below the saturated vapor pressure of the liquid metal at the preheating temperature. According to this dry vacuum cleaning method, no steam, water, etc. are used in the cleaning process, so there is no radioactive waste liquid generated during cleaning, and spent fuel assemblies can be disposed of by simply processing a small amount of exhaust gas in the gaseous waste treatment system. It becomes possible to wash effectively. On the other hand, as a method for preheating spent fuel assemblies in the dry vacuum cleaning method described above, the inventor proposed a method in which the temperature of the spent fuel assemblies is raised to the preheating temperature using decay heat generated by the spent fuel assemblies themselves, and A high-temperature gas preheating method blows inert gas heated from the outside to the spent fuel assembly into the spent fuel assembly, and a heater is installed around the cleaning tank, and the inert gas sealed in the cleaning tank is used as a heating medium. As a result, various preheating methods were tried, including a heater preheating method that indirectly heats the spent fuel assembly. As is well known, a fuel assembly is a structure consisting of a fuel pin that generates decay heat, surrounding upper and lower brackets, and non-heat generating parts such as a trumpet tube. In the preheating method using decay heat, the amount of heat generated by decay heat is small, and the heating rate is low at a few degrees Celsius/minute even near the fuel bottle, which is the heat generating part, and the fuel pin tends to have a stroke length of 4 minutes of the total length of the fuel assembly. Therefore, the temperature of the non-heat-generating portion away from the fuel pin is insufficiently raised. Furthermore, the high-temperature gas blower preheating method requires a large-scale gas circulation loop and also takes a relatively long time for preheating because the heat capacity of the gas as a heating medium is small. Furthermore, the heater preheating method has problems such as low heating efficiency and a long time required for preheating, and it has been found that it is difficult to efficiently and uniformly preheat the entire area of the spent fuel assembly within a short period of time. Moreover, if it takes a long time to preheat a spent fuel assembly, the time required for cleaning including the next depressurization operation process will be extended accordingly. The problem arises that it becomes impossible to keep up with the progress of the fuel exchange work.
この発明は上記の点にかんがみなされたものであり、完
配の乾式減圧洗浄装置を対象に使用済燃料集合体を短時
間で所定の予熱温度まで均一に加熱できるようにした使
用済燃料集合体の洗浄装置を提供することを目的とする
。This invention has been made in consideration of the above points, and is a spent fuel assembly capable of uniformly heating the spent fuel assembly to a predetermined preheating temperature in a short period of time for a fully equipped dry vacuum cleaning device. The purpose of this invention is to provide a cleaning device for cleaning.
上記目的を達成するために、この発明は使用済燃料集合
体の予熱手段として、その内部に原子炉1次冷却材と同
じ液体金属を加熱溶融状態で満たした予熱タンクを備え
、該予熱タンク内で使用済燃料集合体を液体金属に浸漬
して予熱し、しかる後に減圧操作により使用済燃料集合
体に付着した液体金属を蒸発させて洗浄するようにした
ものである。In order to achieve the above object, the present invention includes a preheating tank filled with the same liquid metal as the reactor primary coolant in a heated molten state as means for preheating a spent fuel assembly. The spent fuel assembly is immersed in liquid metal to preheat it, and then the spent fuel assembly is cleaned by evaporating the liquid metal adhering to the spent fuel assembly using a vacuum operation.
第1図および第2図はそれぞれこの発明の異なる実施例
の洗浄装置を示すものであり、まず第1図の実施例にお
いて、1は燃料移送機、2は洗浄槽、3は洗浄槽2と独
立してその前段に配備された予熱手段としての予熱タン
ク、4が使用済燃料集合体である。ここで洗浄槽2はそ
の頂部にドアバルブ2aを備えた密封容器として成り、
かつ該洗浄槽2には真空タンク5.ベーパートラップ6
゜真空ポンプ7、およびバルブ8.9を介して気体廃棄
物処理系10に通じる減圧排気ライン11が接続配管さ
れている。なお12は洗浄工程に伴って洗浄槽2に付着
した液体金属ナトリウムを槽外のドレン回収タンク13
に排除する際に使用する加熱ヒータであり、同様な加熱
ヒータは真空タンク5にも装備されている。一方、予熱
タンク3はその頂部にドアバルブ3aを装備した密封容
器であり、その内部には原子炉の1次冷却材と同じナト
リウムNaで満たされている。また予熱タンク3の周域
にはナトリウムNaを加l!!!!溶融させる加熱ヒー
タ14が装備しである。なお洗浄槽2には槽内のガス置
換を行う不活性ガス源15が接続されている。
次に上記構成による使用済燃料集合体の洗浄操作の手順
に付いて説明する。まず待機状態ではヒータ14に通電
して予熱タンク3に収容したナトリウムNaを所定温度
に加熱昇温しで置く、ここで原子炉から取り出した使用
済燃料集合体4は、まず燃料移送機1によりドアバルブ
3aを通じて予熱タンク3内に搬入し、溶融加熱状態に
あるナトリウムNa内に浸漬させる。これにより自己の
崩壊熱により約150℃程度に昇温している使用済燃料
集合体4は発熱部、非発熱部を含めた全体の温度が短時
間の内に所定の予熱温度(好ましくは450〜550℃
程度)まで昇温するようになる。なおこの予熱工程と並
行して減圧排気ライン11のバルブ8を閉じた状態で真
空ポンプ7を始動して真空タンク5を充分に減圧して置
く。
上記した予熱工程が済むと、次に燃料移送機1の操作で
使用済燃料集合体4を予熱タンク3から引出して洗浄槽
2内に移し替え、さらに不活性ガス源15より例えばア
ルゴンガスの不活性を洗浄槽2内に導入してガス置換を
行う0次いで真空タンク5に通じるバルブ8を開放して
洗浄槽2の内部を急激に減圧させるとともに、さらに真
空ポンプ7により引続き洗浄N2内を真空引きし、洗浄
槽2の内圧がその温度に対するナトリウム飽和蒸気圧以
下1例えば4〜10Torr程度となるように減圧排気
させる。これにより使用済燃料集合体4の表面、内部に
付着したいたナトリウムは蒸発促進され、ナトリウム蒸
気、ミストの形で使用済燃料集合体4より洗浄除去され
るようになる。なおこの過程で生じたナトリウム蒸気、
ミストの大半は洗浄槽2おおよび真空タンク5の内部に
移行して付着し、残りの浮遊蒸気、ミストは排ガスに同
伴して減圧排気ライン11に介挿したペーパートラップ
6に吸着除去されるようになり、洗浄槽2の内容積に見
合う量の排ガスのみが気体廃棄物処理系10に送出され
て浄化処理される。
また前記の洗浄に伴って洗浄槽2.真空タンク5に付着
したナトリウムは、洗浄槽、真空タンクに装備した加熱
ヒータ12により加熱してナトリウムを溶融させた上で
、ナトリウムをドレンタンク13へ排出して回収する。
なお回収されたナトリウムは必要により予熱タンク3へ
戻して再度使用される。
このようにして使用済燃料集合体4を加熱溶融したナト
リウム中に浸漬して予熱することにより、ナトリウムの
熱容量が不活性ガスに比べて大であるので使用済燃料集
合体を短時間の内に所定の予熱温度まで加熱昇温するこ
とができる。また予熱タンク3に収容した熱媒としての
ナトリウムは原子炉の1次冷却材と同一のものであるの
で何等問題はない、しかも予熱タンク3より使用済燃料
集合体を引き上げる際には、使用済燃料集合体が加熱昇
温状態にあるので付着ナトリウムの切れがよく、原子炉
から取り出した使用済燃料集合体を直接洗浄槽2内に収
容する場合に比べて付着ナトリウム量は少なくなる利点
が得られる。
次に第2図に別な実施例を示す、この実施例では第1図
で述べた予熱タンクと洗浄槽とを同一容器16で兼用し
ており、さらにこの容器16に対して一方では減圧排気
ライン11が接続配管され、さらに容器16とその下方
に配備した別置のナトリウム貯留タンク17との間がナ
トリウム給排用配管IBを介して相互接続されている。
なお、容器16にはその頂部にドアバルブ16a1周域
には加熱ヒータ14が装備されており、またナトリウム
貯留タンク17には貯留ナトリウムの加熱溶融用ヒータ
19が、さらにナトリウム給排用配管18にはパルプ2
0.およびナトリウム送液用のtmポンプ21が設置さ
れている。
かかる構成による使用済燃料集合体の洗浄操作は、まず
電磁ポンプ21を運転してナトリウム貯留タンク17内
に貯留されているナトリウムを容器16へ汲み上げ、さ
らに加熱ヒータ14を通電して容器15を満たしたナト
リウムを所定温度に加熱して置く、この状態で燃料移送
機1の操作により原子炉より取り出した使用済燃料集合
体4をドアパルプを通じて容器16内に搬入し、加熱溶
融状態のナトリウム中に浸漬させる。ここで使用済燃料
集合体4が所定の予熱温度に昇温すると、次にパルプ2
0を開放して容器16内のナトリウムをナトリウム貯留
タンク17へ全て排出し、代わりに不活性ガス源15よ
り容器16内に不活性ガスを送り込んでガス置換する。
続いて減圧工程に移行し、あらかじめ減圧していた真空
タンク5と容器16との間のパルプ8を開放して容器1
6内を減圧排気することにより前記実施例と同様に使用
済燃料集合体4に付着していたナトリウムを蒸発させて
洗浄する。また洗浄が済めば使用済燃料集合体4を搬出
し、続いて電磁ポンプ21を始動してナトリウム貯留タ
ンク17からナトリウムを容器16へ汲み上げて次回の
洗浄に備える。1 and 2 each show a cleaning device according to a different embodiment of the present invention. First, in the embodiment shown in FIG. 1, 1 is a fuel transfer device, 2 is a cleaning tank, and 3 is a cleaning tank 2. A preheating tank 4 serving as a preheating means independently provided in the preceding stage is a spent fuel assembly. Here, the cleaning tank 2 is a sealed container equipped with a door valve 2a at the top,
In addition, the cleaning tank 2 includes a vacuum tank 5. vapor trap 6
A vacuum pump 7 and a reduced pressure exhaust line 11 leading to a gaseous waste treatment system 10 via a valve 8.9 are connected. In addition, 12 is a drain collection tank 13 outside the tank to remove liquid metal sodium that has adhered to the cleaning tank 2 during the cleaning process.
A similar heater is also installed in the vacuum tank 5. On the other hand, the preheating tank 3 is a sealed container equipped with a door valve 3a at its top, and its interior is filled with sodium Na, which is the same as the primary coolant of the nuclear reactor. Also, add sodium Na to the area around the preheating tank 3! ! ! ! It is equipped with a heater 14 for melting. Note that the cleaning tank 2 is connected to an inert gas source 15 for replacing gas in the tank. Next, the procedure for cleaning the spent fuel assembly with the above configuration will be explained. First, in the standby state, the heater 14 is energized to heat the sodium Na stored in the preheating tank 3 to a predetermined temperature. It is carried into the preheating tank 3 through the door valve 3a and immersed in sodium Na which is in a molten and heated state. As a result, the spent fuel assembly 4, whose temperature has risen to approximately 150°C due to its own decay heat, is brought to a predetermined preheating temperature (preferably 450°C) within a short time, including the heat generating and non-heating parts. ~550℃
temperature). In addition, in parallel with this preheating process, the vacuum pump 7 is started with the valve 8 of the decompression exhaust line 11 closed to sufficiently reduce the pressure in the vacuum tank 5. After the above-mentioned preheating process is completed, the spent fuel assembly 4 is pulled out from the preheating tank 3 by operating the fuel transfer device 1 and transferred into the cleaning tank 2. The active substance is introduced into the cleaning tank 2 to perform gas replacement. Then, the valve 8 leading to the vacuum tank 5 is opened to rapidly reduce the pressure inside the cleaning tank 2, and the vacuum pump 7 continues to vacuum the inside of the cleaning tank 2. Then, the cleaning tank 2 is depressurized and evacuated so that the internal pressure of the cleaning tank 2 becomes less than the sodium saturated vapor pressure at that temperature, for example, about 4 to 10 Torr. As a result, the sodium adhering to the surface and inside of the spent fuel assembly 4 is promoted to evaporate, and is washed away from the spent fuel assembly 4 in the form of sodium vapor and mist. In addition, the sodium vapor generated in this process,
Most of the mist migrates and adheres to the inside of the cleaning tank 2 and the vacuum tank 5, and the remaining floating vapor and mist are absorbed and removed by the paper trap 6 inserted in the decompression exhaust line 11 along with the exhaust gas. Then, only the exhaust gas in an amount corresponding to the internal volume of the cleaning tank 2 is sent to the gaseous waste treatment system 10 to be purified. Also, along with the above-mentioned cleaning, the cleaning tank 2. The sodium adhering to the vacuum tank 5 is heated by a heater 12 installed in the cleaning tank and the vacuum tank to melt the sodium, and then the sodium is discharged to the drain tank 13 and recovered. Note that the recovered sodium is returned to the preheating tank 3 and used again if necessary. By preheating the spent fuel assembly 4 by immersing it in heated and molten sodium in this way, the spent fuel assembly 4 can be heated in a short time because the heat capacity of sodium is larger than that of inert gas. The temperature can be increased to a predetermined preheating temperature. In addition, the sodium used as a heating medium stored in the preheating tank 3 is the same as the primary coolant of the reactor, so there is no problem. Since the fuel assembly is heated to an elevated temperature, the adhering sodium can be easily removed, and the advantage is that the amount of adhering sodium is smaller than when the spent fuel assembly taken out from the reactor is placed directly in the cleaning tank 2. It will be done. Next, FIG. 2 shows another embodiment. In this embodiment, the same container 16 is used as the preheating tank and the cleaning tank described in FIG. A line 11 is connected thereto, and the container 16 and a separate sodium storage tank 17 arranged below the container 16 are interconnected via a sodium supply/discharge pipe IB. The container 16 is equipped with a heater 14 in the area surrounding the door valve 16a1 at the top, the sodium storage tank 17 is equipped with a heater 19 for heating and melting the stored sodium, and the sodium supply and discharge piping 18 is equipped with a heater 14. pulp 2
0. A tm pump 21 for feeding sodium is also installed. In the cleaning operation of a spent fuel assembly with this configuration, first, the electromagnetic pump 21 is operated to pump up the sodium stored in the sodium storage tank 17 into the container 16, and then the heater 14 is energized to fill the container 15. In this state, the spent fuel assembly 4 taken out from the reactor by operating the fuel transfer device 1 is carried into the container 16 through the door pulp and immersed in the heated and molten sodium. let When the spent fuel assembly 4 is heated to a predetermined preheating temperature, the pulp 2
0 is opened to discharge all the sodium in the container 16 to the sodium storage tank 17, and instead, inert gas is sent into the container 16 from the inert gas source 15 for gas replacement. Next, the process moves to a depressurization process, in which the pulp 8 between the vacuum tank 5 and the container 16, which had been depressurized in advance, is opened and the container 1 is removed.
By evacuating the inside of the spent fuel assembly 6 under reduced pressure, the sodium adhering to the spent fuel assembly 4 is evaporated and cleaned as in the previous embodiment. When cleaning is completed, the spent fuel assembly 4 is carried out, and then the electromagnetic pump 21 is started to pump sodium from the sodium storage tank 17 into the container 16 in preparation for the next cleaning.
以上述べたようにこの発明によれば、使用済燃料集合体
の予熱手段としてその内部に原子炉1次冷却材と同じ液
体金属を加熱溶融状態で満たした予熱タンクを備え、該
予熱タンク内で使用済燃料集合体を液体金属に浸漬して
予熱し、しかる後に減圧操作によって使用済燃料集合体
を洗浄するようにしたことにより、使用済燃料集合体を
短時間の内に所定の予熱温度まで均一に加熱昇温するこ
とができ、従来の崩壊熱による予熱法、高温ガスプロー
予熱法1量接加熱によるヒータ予熱法等に比べて洗浄時
間の大幅な短縮化を図ることができる。As described above, according to the present invention, a preheating tank filled with the same liquid metal as the reactor primary coolant in a heated molten state is provided as a means for preheating a spent fuel assembly. By immersing the spent fuel assembly in liquid metal to preheat it, and then cleaning the spent fuel assembly using a decompression operation, the spent fuel assembly can be heated to a predetermined preheating temperature within a short period of time. It is possible to uniformly heat and raise the temperature, and the cleaning time can be significantly shortened compared to conventional preheating methods using decay heat, high-temperature gas blower preheating methods, heater preheating methods using single-volume indirect heating, and the like.
第1図、第2図はそれぞれこの発明の異なる実施例によ
る洗浄装置の系統図である。各図において、
2:洗浄槽、3:予熱タンク、4:使用済燃料集合体、
5:真空タンク、7:真空ポンプ、11:減圧排気ライ
ン、14:加熱ヒータ、16:予熱タンクと洗浄槽と兼
ねた容器、17:ナトリウム貯留タンク、18:ナトリ
ウム給排用配管。
第1図FIGS. 1 and 2 are system diagrams of cleaning apparatuses according to different embodiments of the present invention, respectively. In each figure, 2: cleaning tank, 3: preheating tank, 4: spent fuel assembly,
5: Vacuum tank, 7: Vacuum pump, 11: Decompression exhaust line, 14: Heater, 16: Container serving as preheating tank and cleaning tank, 17: Sodium storage tank, 18: Sodium supply and discharge piping. Figure 1
Claims (1)
の使用済燃料集合体の洗浄装置であって、予熱手段によ
り使用済燃料集合体を所定温度に加熱昇温して予熱し、
しかる後に使用済燃料集合体を洗浄槽内に収容した状態
で該洗浄槽内の雰囲気を減圧操作することにより、使用
済燃料集合体に付着している液体金属を蒸発、除去して
洗浄するようにしたものにおいて、前記の予熱手段とし
てその内部に原子炉1次冷却材と同じ液体金属を加熱溶
融状態で満たした予熱タンクを備え、該予熱タンク内で
使用済燃料集合体を液体金属に浸漬して予熱するように
したことを特徴とする使用済燃料集合体の洗浄装置。 2)特許請求の範囲第1項記載の洗浄装置において、予
熱タンクが洗浄槽と分離独立して液体金属を満たしたタ
ンクであり、かつ該予熱タンクに液体金属加熱用ヒータ
が装備されていることを特徴とする使用済燃料集合体の
洗浄装置。 3)特許請求の範囲第1項記載の洗浄装置において、予
熱タンクと洗浄槽とを同一容器で兼用し、かつ該容器に
液体金属加熱用ヒータを装備するとともに、容器と別置
の液体金属貯留タンクとの間が液体金属給排用配管を介
して接続されていることを特徴とする使用済燃料集合体
の洗浄装置。[Claims] 1) A spent fuel assembly cleaning device for a nuclear reactor using liquid metal such as sodium as a primary coolant, which heats and raises the spent fuel assembly to a predetermined temperature using a preheating means. and preheat it,
Thereafter, with the spent fuel assembly housed in the cleaning tank, the atmosphere in the cleaning tank is depressurized to evaporate and remove liquid metal adhering to the spent fuel assembly, thereby cleaning the spent fuel assembly. The preheating means is provided with a preheating tank filled with the same liquid metal as the reactor primary coolant in a heated molten state, and the spent fuel assembly is immersed in the liquid metal in the preheating tank. A spent fuel assembly cleaning device characterized in that the spent fuel assembly is preheated by heating the spent fuel assembly. 2) In the cleaning device according to claim 1, the preheating tank is a tank filled with liquid metal that is separate and independent from the cleaning tank, and the preheating tank is equipped with a heater for heating the liquid metal. A spent fuel assembly cleaning device characterized by: 3) In the cleaning device according to claim 1, the same container serves as both the preheating tank and the cleaning tank, and the container is equipped with a heater for heating the liquid metal, and a liquid metal storage space is provided separately from the container. A spent fuel assembly cleaning device, characterized in that it is connected to a tank via a liquid metal supply and discharge pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21303586A JPS6367599A (en) | 1986-09-10 | 1986-09-10 | Method of washing spent fuel aggregate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21303586A JPS6367599A (en) | 1986-09-10 | 1986-09-10 | Method of washing spent fuel aggregate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6367599A true JPS6367599A (en) | 1988-03-26 |
Family
ID=16632433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21303586A Pending JPS6367599A (en) | 1986-09-10 | 1986-09-10 | Method of washing spent fuel aggregate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6367599A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5786799A (en) * | 1980-11-20 | 1982-05-29 | Tokyo Shibaura Electric Co | Sodium instrument cleaning device |
-
1986
- 1986-09-10 JP JP21303586A patent/JPS6367599A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5786799A (en) * | 1980-11-20 | 1982-05-29 | Tokyo Shibaura Electric Co | Sodium instrument cleaning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05121390A (en) | Removing method for acid | |
KR20100123696A (en) | Method for cleaning a heat exchanger | |
US4828760A (en) | Method of cleaning a spent fuel assembly | |
JPH0199000A (en) | Method and equipment for processing solid organic waste polluted by tritium | |
JPS6367599A (en) | Method of washing spent fuel aggregate | |
JP2000237703A (en) | Vacuum washing/drying method and device | |
JPS6367600A (en) | Method for cleaning spent fuel assemblies | |
JPS6367597A (en) | Method for cleaning spent fuel assemblies | |
JPS6367598A (en) | Method of washing spent fuel aggregate | |
JPS62279877A (en) | Washer | |
JPH0358000A (en) | Spent fuel assembly cleaning method and cleaning device | |
JPS6394199A (en) | Spent fuel handling equipment at nuclear reactor facilities | |
JPS63235900A (en) | Method of cleaning spent fuel assembly | |
JPS6367596A (en) | Washer for spent fuel aggregate | |
JPH0682647B2 (en) | Processor | |
JPS6134116B2 (en) | ||
JPH06100675B2 (en) | Cleaning method of spent fuel in fast breeder reactor | |
JPS6263898A (en) | Method and device for processing chemical decontaminated waste liquor | |
JPH01189600A (en) | High temperature gas blow washing of spent fuel | |
JPS5945032B2 (en) | Sensible heat recovery equipment for coke oven gas | |
JPS636839B2 (en) | ||
JPS5896300A (en) | Cleaning system for equipment contaminated with sodium | |
JPS639193B2 (en) | ||
JPH11281792A (en) | Decontamination method for radioactive waste | |
JPS6363879B2 (en) |