JPS636839B2 - - Google Patents

Info

Publication number
JPS636839B2
JPS636839B2 JP11310381A JP11310381A JPS636839B2 JP S636839 B2 JPS636839 B2 JP S636839B2 JP 11310381 A JP11310381 A JP 11310381A JP 11310381 A JP11310381 A JP 11310381A JP S636839 B2 JPS636839 B2 JP S636839B2
Authority
JP
Japan
Prior art keywords
cleaning
tank
sodium
sodium hydroxide
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11310381A
Other languages
Japanese (ja)
Other versions
JPS5814100A (en
Inventor
Teruyuki Kyokawa
Yoshito Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11310381A priority Critical patent/JPS5814100A/en
Publication of JPS5814100A publication Critical patent/JPS5814100A/en
Publication of JPS636839B2 publication Critical patent/JPS636839B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、アルカリ金属、特に高速増殖炉の冷
却材として使用されるナトリウムの付着した機器
を洗浄する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cleaning equipment contaminated with alkali metals, particularly sodium used as a coolant in fast breeder reactors.

約98℃で溶融するナトリウムは、約300〜550℃
の範囲で高速増殖炉の冷却材として使用され、原
子炉容器、ポンプ、熱交換器又は蒸気発生器等の
中を流通する。
Sodium, which melts at about 98 degrees Celsius, melts at about 300 to 550 degrees Celsius.
It is used as a coolant in fast breeder reactors and flows through reactor vessels, pumps, heat exchangers, steam generators, etc.

前述のポンプや熱交換器等の機器は、かなり長
い期間使用されるものであるが、その間に定期的
若しくは必要に応じ点検し修理する場合がある。
そしてその後該機器は再使用するのが好ましい。
Equipment such as the pumps and heat exchangers mentioned above are used for quite a long time, and during that time they may be inspected and repaired periodically or as necessary.
Preferably, the device is then reused.

前記点検、修理は大気中で行なうのが一般的で
あるから、それに先立ち液体ナトリウムは排出さ
れるが、ナトリウムに触れていた部分には、なお
ナトリウムが付着している。外表面にナトリウム
が付着したまゝの前記機器の内部構造物(熱交換
器にあつては、伝熱管組立体等)を大気に直接曝
すと、湿分に反応して水素ガスを発生したり、水
酸化ナトリウムが表面に残存したりして前記点
検、修理上好ましくない。
Since the above-mentioned inspections and repairs are generally performed in the atmosphere, the liquid sodium is discharged beforehand, but sodium still adheres to the parts that were in contact with the sodium. If the internal structure of the above equipment (heat exchanger tube assembly, etc. in the case of a heat exchanger) is directly exposed to the atmosphere with sodium attached to its outer surface, it may react with moisture and generate hydrogen gas. , sodium hydroxide may remain on the surface, which is undesirable for inspection and repair.

このため、ナトリウム付着内部構造物を大気に
曝す前に洗浄(付着ナトリウムの除去)が行なわ
れているが、水蒸気、加湿ガス又はアルコール等
を用いて粗洗浄(一次洗浄)を行ない、その後二
次洗浄として構造物を純水中に浸漬してすすぎ洗
いを行なうのが従来の一般的洗浄プロセスであつ
た。
For this reason, cleaning (removal of adhering sodium) is performed before exposing sodium-adhered internal structures to the atmosphere, but rough cleaning (primary cleaning) is performed using water vapor, humidified gas, alcohol, etc., and then secondary cleaning is performed. A conventional general cleaning process has been to immerse the structure in pure water and rinse it.

しかるに、内部構造物は複雑な構造をしてお
り、その表面に200μm程度のせまい巾の入口をも
ち、内部で若干広くなつた盲空間(以下クレビス
という。)が存在するのが普通である。このよう
なクレビスがあると、前述の洗浄後においてもそ
の奥にナトリウムが残存し、入口部に水酸化ナト
リウムの水溶液が残存しやすい。
However, the internal structure has a complex structure, and it is normal for the surface to have a narrow entrance of about 200 μm and a blind space (hereinafter referred to as a clevis) that is slightly wider inside. When such a crevice exists, sodium remains deep inside the crevice even after the above-mentioned cleaning, and an aqueous solution of sodium hydroxide tends to remain at the inlet.

内部構造物を大気中で点検、修理するに際し、
クレビス入口部の水酸化ナトリウム水溶液は炭酸
ガスと反応して炭酸ナトリウムになるのである
が、炭酸ナトリウムが封栓として作用し、内部に
未反応の水酸化ナトリウム水溶液が残存する。
When inspecting or repairing internal structures in the atmosphere,
The sodium hydroxide aqueous solution at the clevis inlet reacts with carbon dioxide gas to become sodium carbonate, but the sodium carbonate acts as a seal and unreacted sodium hydroxide aqueous solution remains inside.

前述のように、内部構造物の表面のクレビスに
水酸化ナトリウム水溶液が残存していると、再使
用時の予熱の際に、アルカリ応力腐食割れが発生
するという不具合が生ずる。
As mentioned above, if an aqueous sodium hydroxide solution remains in the crevices on the surface of the internal structure, a problem arises in that alkaline stress corrosion cracking occurs during preheating for reuse.

本発明は、前記した再使用時のアルカリ応力腐
食割れを防止するためになされたものであり、最
終洗浄である二次洗浄として、減圧による沸騰気
泡の物理的排除と炭酸ガスとの反応による無害な
炭酸化物への化学的転換とを併用することにより
クレビス内の水酸化ナトリウムを完全に除去しう
る洗浄方法を提供することを目的とする。
The present invention was made in order to prevent the above-mentioned alkali stress corrosion cracking during reuse, and as the final cleaning, the secondary cleaning is performed by physically eliminating boiling bubbles by reducing pressure and by reacting with carbon dioxide gas to eliminate harmlessness. The purpose of the present invention is to provide a cleaning method that can completely remove sodium hydroxide in the crevice by using chemical conversion to carbonate.

以下、具体例について本発明方法を説明する。 The method of the present invention will be explained below with reference to specific examples.

第1図は、本発明の方法を実施する装置の系統
図である。
FIG. 1 is a system diagram of an apparatus implementing the method of the invention.

第1図において、ポツト状の洗浄槽10の下部
には、機器の内部構造物すなわち被洗浄物1を載
せる多孔支持板11が架設され、その外周にはヒ
ータ13が添設されている。
In FIG. 1, a porous support plate 11 on which the internal structure of the device, that is, the object to be cleaned 1 is placed, is installed at the bottom of a pot-shaped cleaning tank 10, and a heater 13 is attached to the outer periphery of the porous support plate 11.

被洗浄物1が挿入されて置かれた後、洗浄槽1
0の上部開口は蓋15で閉じられるが、蓋15に
は弁21を備えた排気管22が連結している。弁
24を具えた排水管25が洗浄槽10の底部に連
絡し、他方真空ポンプ27と弁28を具えた真空
排気管29がその上部に連絡している。
After the object to be cleaned 1 is inserted and placed, the cleaning tank 1
The upper opening of 0 is closed with a lid 15, and an exhaust pipe 22 equipped with a valve 21 is connected to the lid 15. A drain pipe 25 with a valve 24 leads to the bottom of the cleaning tank 10, while an evacuation pipe 29 with a vacuum pump 27 and a valve 28 leads to its top.

又、水蒸気や純水等の洗浄剤を導入する供給管
31,33が図示のように連結され、夫々に弁3
5,36が設けられている。
In addition, supply pipes 31 and 33 for introducing cleaning agents such as steam and pure water are connected as shown in the figure, and valves 3 and 33 are connected to each other as shown in the figure.
5 and 36 are provided.

図示した装置において、被洗浄物1を洗浄する
過程を説明すると、図示のように被洗浄物1をセ
ツトし蓋15を取りつける。
In the illustrated apparatus, the process of cleaning the object 1 to be cleaned will be explained. As shown in the figure, the object 1 to be cleaned is set and the lid 15 is attached.

第一次洗浄としてまず弁28を開け、真空ポン
プ27を起動して洗浄槽10内の空気を真空排気
管29を通して排出し、次いで弁28を閉として
からヒータ13により洗浄槽10内を予熱する。
しかる後弁35,36を開放し、供給管31,3
3から水蒸気等を注入する。排気管22からは連
続的に水素ガスを含む水蒸気の排気を行なう。操
作終了後、弁24を開いて除去されたナトリウム
(化合物)を含む水蒸気の凝縮水を排水管25を
通じて図示しない廃水タンクへ排出する。
As the first cleaning, first open the valve 28, start the vacuum pump 27 to exhaust the air inside the cleaning tank 10 through the vacuum exhaust pipe 29, then close the valve 28 and preheat the inside of the cleaning tank 10 with the heater 13. .
After that, the valves 35 and 36 are opened, and the supply pipes 31 and 3 are opened.
Inject water vapor etc. from step 3. Water vapor containing hydrogen gas is continuously exhausted from the exhaust pipe 22. After the operation is completed, the valve 24 is opened and the condensed water containing the removed sodium (compound) is discharged through the drain pipe 25 to a waste water tank (not shown).

なお、水蒸気の代りに、加湿ガス、アルコール
等を使用して第一次洗浄を行なつてもよい。
Note that the primary cleaning may be performed using humidified gas, alcohol, or the like instead of water vapor.

次に、被洗浄物1のクレビス内の状態を示した
第2図を参照して、第二次洗浄を説明する。
Next, the secondary cleaning will be explained with reference to FIG. 2 showing the state inside the clevis of the object 1 to be cleaned.

第1次洗浄後、供給管31は、図示しない弁に
より切換えて炭酸ガスの供給源に接続する。
After the first cleaning, the supply pipe 31 is connected to a carbon dioxide gas supply source by being switched by a valve (not shown).

しかる後に (イ) 弁21,24,35,36を閉じ、弁28を
開け真空ポンプ27を起動して洗浄槽10内を
真空引し、目標値まで減圧する。
After that, (a) the valves 21, 24, 35, and 36 are closed, the valve 28 is opened, and the vacuum pump 27 is started to evacuate the inside of the cleaning tank 10 to reduce the pressure to the target value.

第2図イは、ステツプ(イ)により減圧の状態に
おかれたときの被洗浄物1のクレビス3の内部
を拡大して模式的に示したものである。すなわ
ち、減圧されたために、いわゆる減圧沸騰が起
り、水酸化ナトリウム水溶液A内に水蒸気泡D
が生じて、これはクレビス3外へ離脱してい
く。同時に水溶液Aの一部も押し出される。
FIG. 2A schematically shows an enlarged view of the inside of the clevis 3 of the object to be cleaned 1 when the pressure is reduced in step (A). That is, due to the reduced pressure, so-called reduced pressure boiling occurs, and water vapor bubbles D are created in the sodium hydroxide aqueous solution A.
occurs, and this leaves the clevis 3. At the same time, part of the aqueous solution A is also pushed out.

(ロ) 減圧後、弁28を閉じ弁36を開けて供給管
33から純水を洗浄槽10の中に注入し、洗浄
物1をその中に没したまま適当時間保持する。
(b) After the pressure is reduced, the valve 28 is closed, the valve 36 is opened, pure water is injected into the cleaning tank 10 from the supply pipe 33, and the cleaning object 1 is kept immersed therein for an appropriate period of time.

減圧下で水が充填されつつあるときは、クレ
ビス3の外部からの水の供給によつて残存ナト
リウムBも水と反応して、水素ガスと水酸化ナ
トリウムに変化する。
When water is being filled under reduced pressure, residual sodium B also reacts with water due to the supply of water from the outside of the clevis 3 and changes into hydrogen gas and sodium hydroxide.

水素ガスは、水蒸気泡Dと同様に外部へ脱出
していく。
Hydrogen gas escapes to the outside in the same way as water vapor bubbles D.

このようにしてステツプ(ロ)の終了時には第2
図ロのように相当に稀釈された低濃度の水酸化
ナトリウム水溶液Aのみがクレビス3の中に残
る。しかし、クレビス3の外部に対しての濃度
拡散は低速でしか行なわれないので、長時間か
けても水酸化ナトリウム濃度は殆んど低減され
ない。
In this way, at the end of step (b), the second
As shown in the figure, only a considerably diluted low concentration sodium hydroxide aqueous solution A remains in the clevis 3. However, since the concentration diffusion to the outside of the clevis 3 is performed only at a low speed, the sodium hydroxide concentration is hardly reduced even if it takes a long time.

(ハ) 次に弁24を開き、純水を洗浄槽10から排
出すると同時に弁35を開いて供給管31から
炭酸ガス(炭酸ガスと不活性ガスの混合気でも
よい。)を洗浄槽10内に導入し、炭酸ガスで
満したまゝ保持する。
(c) Next, open the valve 24 to discharge the pure water from the cleaning tank 10, and at the same time open the valve 35 to supply carbon dioxide (a mixture of carbon dioxide and inert gas) from the supply pipe 31 into the cleaning tank 10. and keep it filled with carbon dioxide gas.

ステツプ(ハ)の操作を行なつた後は、大むね第
2図ハの状況、すなわち入口部には炭酸ナトリ
ウムCが生成するが、奥の方では依然水酸化ナ
トリウム水溶液Aが残る。
After carrying out the operation in step (c), the situation is generally as shown in FIG.

更に再びステツプ(イ)の操作を行なうと、第2
図ニのように水蒸気泡Dが発生し離脱するた
め、水酸化ナトリウム水溶液Aおよび炭酸ナト
リウムCの大部分も押し出されることになり、
ステツプ(ロ)の状態では第2図ホのように小量の
炭酸ナトリウムCと一層稀薄になつた水酸化ナ
トリウム水溶液Aとが残存する。ここで更にス
テツプ(ハ)の操作を行なうと、第2図ヘのように
炭酸ナトリウムCは入口部で粗に生成されかつ
奥でもかなり底部近くまで生成される。これ
は、第2図ホにて既に水溶液Aの濃度が稀薄な
ために、ステツプ(ハ)の操作において水酸化ナト
リウムと炭酸ガスとの反応よりも、水の炭酸ガ
ス雰囲気への蒸発が先行するためである。この
ため、奥に残存する水酸化ナトリウム水溶液A
は僅小化する。このように、ステツプ(イ)〜(ハ)の
操作を反復すると、最終的には第2図トのよう
にクレビス3の中には小量の炭酸ナトリウムC
だけが残るのみで、水酸化ナトリウム水溶液A
は皆無となり、再使用時に予熱を行なつてもア
ルカリ応力腐食割れは生じない。
If you repeat step (a) again, the second
As water vapor bubbles D are generated and separated as shown in Figure D, most of the sodium hydroxide aqueous solution A and sodium carbonate C are also pushed out.
In the state of step (B), a small amount of sodium carbonate C and a more dilute aqueous sodium hydroxide solution A remain as shown in FIG. 2E. If step (c) is further performed here, as shown in FIG. 2, sodium carbonate C is produced coarsely at the inlet, and even at the back, it is produced quite close to the bottom. This is because the concentration of aqueous solution A is already dilute in Figure 2 (e), so the evaporation of water into the carbon dioxide atmosphere precedes the reaction between sodium hydroxide and carbon dioxide gas in step (c). It's for a reason. For this reason, the sodium hydroxide aqueous solution A remaining deep inside
becomes negligible. By repeating steps (a) to (c) in this way, a small amount of sodium carbonate (C) will eventually be found in the clevis 3, as shown in Figure 2 (g).
Sodium hydroxide aqueous solution A remains.
This means that no alkaline stress corrosion cracking occurs even if preheating is performed during reuse.

本発明者の実験によれば、実機において前記ス
テツプ(イ)、(ロ)、(ハ)を少くとも3回繰返せば、第2
図トの状態になることが確認された。
According to the inventor's experiments, if steps (a), (b), and (c) are repeated at least three times on an actual machine, the second
It was confirmed that the situation as shown in the figure was reached.

なお前記具体例のステツプ(ハ)において、炭酸ガ
スを導入後そのまゝ保持したが、排水完了後真空
ポンプ27により炭酸ガスを吸引排出して洗浄槽
10内を一旦減圧し、しかる後に再度炭酸ガスを
供給管31より導入して保持すると、第2図ロの
状態で減圧沸騰が生じ、迅速に水酸化ナトリウム
水溶液Aをなくして第2図トの状態にすることも
できる。
Note that in step (c) of the above specific example, carbon dioxide gas was introduced and held as it was, but after completion of drainage, the vacuum pump 27 sucked and discharged carbon dioxide gas to once reduce the pressure inside the cleaning tank 10, and then the carbon dioxide gas was introduced again. When gas is introduced through the supply pipe 31 and maintained, boiling under reduced pressure occurs in the state shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施する装置の系統
図、第2図イ〜トは本発明方法の各ステツプにお
ける状態説明図である。 1……被洗浄物、10……洗浄槽、15……
蓋、21,24,28,35,36……弁、22
……排気管、25……排水管、27……真空ポン
プ、29……真空排気管、31,33……供給
管、A……水酸化ナトリウム水溶液、B……残存
ナトリウム、C……炭酸ナトリウム、D……水蒸
気泡。
FIG. 1 is a system diagram of an apparatus for carrying out the method of the present invention, and FIG. 2 is a diagram explaining the state at each step of the method of the present invention. 1...Object to be cleaned, 10...Cleaning tank, 15...
Lid, 21, 24, 28, 35, 36...Valve, 22
... Exhaust pipe, 25 ... Drain pipe, 27 ... Vacuum pump, 29 ... Vacuum exhaust pipe, 31, 33 ... Supply pipe, A ... Sodium hydroxide aqueous solution, B ... Residual sodium, C ... Carbonic acid Sodium, D... water vapor bubbles.

Claims (1)

【特許請求の範囲】[Claims] 1 洗浄槽内に収容した被洗浄物を一次洗浄した
後洗浄廃液を前記槽から排出し、しかる後前記槽
内を減圧し、前記槽内に純水を注入し、前記被洗
浄物を前記純水内に没して保持し、更に前記槽内
の純水を炭酸ガスで置換して保持する二次洗浄を
所定回数繰返すことを特徴とするアルカリ金属付
着構造物の洗浄方法。
1 After the object to be cleaned stored in the cleaning tank is primarily washed, the cleaning waste liquid is discharged from the tank, and then the pressure inside the tank is reduced, pure water is injected into the tank, and the object to be cleaned is washed with the purified water. 1. A method for cleaning an alkali metal-adhered structure, which comprises repeating a predetermined number of secondary cleaning steps in which the structure is immersed in water and held, and the pure water in the tank is replaced with carbon dioxide gas and held.
JP11310381A 1981-07-20 1981-07-20 Method of cleaning structure adhered with alkali metal Granted JPS5814100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11310381A JPS5814100A (en) 1981-07-20 1981-07-20 Method of cleaning structure adhered with alkali metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11310381A JPS5814100A (en) 1981-07-20 1981-07-20 Method of cleaning structure adhered with alkali metal

Publications (2)

Publication Number Publication Date
JPS5814100A JPS5814100A (en) 1983-01-26
JPS636839B2 true JPS636839B2 (en) 1988-02-12

Family

ID=14603553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11310381A Granted JPS5814100A (en) 1981-07-20 1981-07-20 Method of cleaning structure adhered with alkali metal

Country Status (1)

Country Link
JP (1) JPS5814100A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933227B1 (en) * 2008-06-25 2010-07-30 Commissariat Energie Atomique PROCESS FOR TREATING A STRUCTURE CONTAINING SODIUM AND A RADIOACTIVE MATERIAL
JP6696441B2 (en) * 2017-01-12 2020-05-20 株式会社デンソー Wet etching equipment

Also Published As

Publication number Publication date
JPS5814100A (en) 1983-01-26

Similar Documents

Publication Publication Date Title
US4647425A (en) Method of vacuum degassing and refilling a reactor coolant system
US4820473A (en) Method of reducing radioactivity in nuclear plant
US3132975A (en) Process for pickling and passivating enclosed structures
US8266909B2 (en) Air vent in main steam duct of steam turbine
JPS636839B2 (en)
EP0048230B1 (en) Procedure for chemical, automatic dissolution of molybdenum core wire in tungsten filament coil and a device for implementing the procedure
US4257819A (en) Method for flushing out a narrow gap
JP4167920B2 (en) Chemical decontamination method
JPS62129795A (en) Method of washing spent fuel in fast breeder reactor
JP2001349983A (en) Method for operating boiling water nuclear power plant
EP1060476B1 (en) Method and installation for decontaminating metallic surfaces
EP0281680A1 (en) Method of cleaning a spent fuel assembly
JPS59143996A (en) Method of operating early oxydation of atomic power plant
JPS6367597A (en) Method of washing spent fuel aggregate
JP2011158374A (en) Method and system for decontaminating tritium contaminant
Jambunathan et al. Experience on sodium removal from FBTR components in its operating phase
JPS5896300A (en) Cleaning system for equipment contaminated with sodium
JP3143058B2 (en) Nuclear power plant, hydrogen peroxide decomposer, and inspection method of nuclear power plant
GRABON et al. SODIUM CLEANING IN PHENIX STEAM GENERATOR MODULES
Gastaldi et al. Sodium cleaning in Phenix steam generator modules
Steele et al. Summary of sodium removal and decontamination programs in the USA
JP2000077376A (en) Ultrasonic cleaning method and its device
JP3900338B2 (en) Radioactive noble gas recovery method
JP4193441B2 (en) Treatment method of residual harmful gas in tower tanks
JP2003035796A (en) Boiling water reactor power plant, method for deaerating reactor pressure vessel in the plant and method for inspecting pressure resistance and leakage