JPH0750193B2 - Cleaning device for spent fuel assemblies - Google Patents
Cleaning device for spent fuel assembliesInfo
- Publication number
- JPH0750193B2 JPH0750193B2 JP21303286A JP21303286A JPH0750193B2 JP H0750193 B2 JPH0750193 B2 JP H0750193B2 JP 21303286 A JP21303286 A JP 21303286A JP 21303286 A JP21303286 A JP 21303286A JP H0750193 B2 JPH0750193 B2 JP H0750193B2
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- spent fuel
- fuel assembly
- gas
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Description
この発明は、1次冷却材としてナトリウム等の液体金属
を使用する高速増殖炉の使用済燃料集合体を対象とした
使用済燃料集合体の洗浄装置に関する。The present invention relates to a spent fuel assembly cleaning device for a spent fuel assembly of a fast breeder reactor using liquid metal such as sodium as a primary coolant.
周知のように頭記した原子炉から取出した使用済燃料集
合体は、燃料貯蔵プール内に保管する前段階の工程で燃
料集合体に付着しているナトリウム等の液体金属を洗浄
することが一般に行われている。 この場合の使用済燃料集合体の洗浄法として、従来より
使用済燃料集合体を洗浄槽内に収容した状態で使用済燃
料集合体に蒸気を含む湿潤ガスを吹付け、さらに水で洗
浄した後に、燃料集合体を温風等で乾燥させる蒸気−水
洗浄法が知られている。しかしてかかる蒸気−水洗浄法
は1本の使用済燃料集合体の洗浄に1.5時間にも及ぶ長
時間を要する他、さらに洗浄に伴って使用済燃料集合体
1本当たりで約1.5トンにも及ぶ放射性クラッド,放射
性腐食生成物等を含む多量の放射性洗浄廃液が発生する
ために、廃液処理系設備の大形化,および放射能汚染の
増加などの廃棄物処理上での厄介な問題がある。 一方、前記した従来の蒸気−水洗浄方式の難点を解消
し、放射性廃液の発生を伴わずに使用済燃料集合体に付
着している液体金属を排除する洗浄方式として、まず使
用済燃料集合体をナトリウム等の液体金属の溶融温度以
上の温度まで予熱昇温し、この予熱済みの使用済燃料集
合体を洗浄槽内に収容した状態で洗浄槽内の雰囲気を前
記の予熱温度に対する液体金属の飽和蒸気圧以下に減圧
させることにより、燃料集合体に付着している液体金属
を蒸発させて排除するようにした乾式減圧洗浄方式が提
唱されている。かかる乾式減圧洗浄方式によれば洗浄過
程で蒸気,水等を使用しないので洗浄に伴う放射性廃液
の発生が無く、比較的少ない量の排ガスを気体廃棄物処
理系で処理するだけで使用済燃料集合体を効果的に洗浄
することが可能となる。 次に1次冷却材としてナトリウムを使用した高速増殖炉
の使用済燃料集合体を対象とする前記乾式減圧洗浄方式
の概要を第2図により説明する。図において1は頂部に
ドアバルブ2を装備した洗浄槽、3が洗浄槽内に収容さ
れた使用済燃料集合体であり、ここで前記洗浄槽1に対
し、ブロア4,ガス加熱器5,ガス冷却器6,ベーパトラップ
7等を具備して洗浄槽1との間に接続配管した不活性ガ
ス循環ライン8、および該不活性ガス循環ライン8に接
続された例えばアルゴンガスの不活性ガス源9を含めた
使用済燃料集合体の予熱手段と、洗浄槽1より真空タン
ク10,真空ポンプ11,ベーパトラップ12等を経て気体廃棄
物処理系13に通じる減圧排気ライン14として成る減圧手
段が装備されている。さらに洗浄槽1および真空タンク
10にはその底部より引出して、ナトリウムのドレンタン
ク15,ナトリウム送液ポンプ16を経てナトリウム回収系1
7に通じるナトリウムのドレンライン18が接続配管され
ている。なお19〜29は前記したガス循環ライン,減圧排
気ライン,ドレンラインの系内に介挿した開閉バルブで
ある。 次に上記構成による使用済燃料集合体の洗浄操作の手順
に付いて説明する。まず原子炉より取り出した使用済燃
料集合体3をドアバルブ2を通じて洗浄槽1内に収容す
る。ここでバルブ19〜21を開放し、不活性ガス源9より
所定量のアルゴンガスを系内に導入し、さらにブロア4,
ガス加熱器5を始動して加熱されたガスを洗浄槽1内に
循環送流し、崩壊熱を発生する燃料ピン,および燃料ピ
ン以外の非発熱部を含む使用済燃料集合体3の全長域を
ナトリウムの溶融温度以上の所定の予熱温度(好ましく
は450〜550℃程度)まで加熱昇温させる。またこの予熱
工程の過程で使用済燃料集合体3の温度,特に崩壊熱を
発生する燃料ピンの表面温度が許容温度まで達するよう
になった場合には、一時的に不活性ガス循環ライン8の
ガス冷却器6を始動して循環ガス温度を下げ、使用済燃
料集合体3を所定の予熱温度に維持させるように温度調
節を行う。一方、この予熱工程を行っている期間にバル
ブ22,23を閉じたまま真空ポンプ11を始動して真空タン
ク10を減圧して置く。 ここで前記した予熱工程により使用済燃料集合体3が所
定の予熱温度に到達した時点でブロア4,ガス加熱器5を
停止し、かつバルブ19,20を閉じ、しかる後にまず真空
タンク10に通じるバルブ22を開放して洗浄槽1の内部を
急激に減圧させる。続いてバルブ22を閉じて真空タンク
10との間を切離した後に、バルブ23を開放して真空ポン
プ11により洗浄槽1内をさらに真空引きし、洗浄槽内の
内圧がその温度に対するナトリウム飽和蒸気圧以下,例
えば4〜10Torr程度となるように減圧排気させる。これ
により使用済燃料集合体3の表面,内部に付着していた
ナトリウムは蒸発促進され、ナトリウム蒸気,ミストの
形で使用済燃料集合体3より洗浄除去されるようにな
る。なおこの過程て生じたナトリウム蒸気,ミストは大
半が洗浄槽1,および真空タンク10の内部に移行して付着
し、残りの浮遊蒸気,ミストは排ガスに同伴して減圧排
気ライン14中のベーパートラップ12に吸着除去され、洗
浄槽1の内容積に見合う量の排ガスのみが気体廃棄物処
理系13に送出されて処理される。 なお上記の洗浄操作を必要により数回繰り返して行い、
使用済燃料集合体3を充分に洗浄して一連の洗浄工程が
終了する。また前記の洗浄に伴って洗浄槽1,真空タンク
10に蒸着したナトリウムは、洗浄槽,真空タンクに装備
した図示されてない加熱ヒータ,および使用済燃料集合
体自身の崩壊発熱により加熱してナトリウムを溶融させ
た上で、バルブ26,27を開放してナトリウムをドレンタ
ンク15へ排出し、ここからナトリウム送液ポンプ16によ
りナトリウム回収系17に送出して回収する。 ところで上記した乾式減圧洗浄方式では、蒸気−水洗浄
方式のように多量の洗浄廃液が発生することは無いが、
それでも洗浄の都度洗浄槽の減圧排気操作に伴って比較
的少ない量の廃ガスが発生するために、この廃ガスを気
体廃棄物処理系にて処理することが避けられないし、か
つこの消費分のガス量を次回の洗浄時には新たに不活性
ガス源から不活性ガス循環ラインへ補給する必要があ
り、このために洗浄運転費が嵩むことになる。As is well known, the spent fuel assemblies taken out from the reactor described above are generally washed with liquid metal such as sodium adhering to the fuel assemblies in the process of the previous stage of storing in the fuel storage pool. Has been done. As a method of cleaning the spent fuel assembly in this case, conventionally, after the spent fuel assembly is accommodated in the cleaning tank, a wet gas containing steam is sprayed onto the spent fuel assembly, and after cleaning with water, A steam-water washing method is known in which a fuel assembly is dried with warm air or the like. However, such a steam-water cleaning method requires a long time of 1.5 hours for cleaning one spent fuel assembly, and the cleaning also requires about 1.5 tons per spent fuel assembly. Since a large amount of radioactive cleaning waste liquid containing radioactive clad and radioactive corrosion products, etc., is generated, there is a problem in waste disposal such as enlargement of waste liquid treatment system equipment and increase of radioactive contamination. . On the other hand, as a cleaning method that eliminates the above-mentioned drawbacks of the conventional steam-water cleaning method and eliminates liquid metal adhering to the spent fuel assembly without generating radioactive waste liquid, first, the spent fuel assembly is used. Is preheated to a temperature equal to or higher than the melting temperature of the liquid metal such as sodium, and the atmosphere in the cleaning tank is stored in the cleaning tank after the preheated spent fuel assembly is stored in the cleaning tank. A dry reduced pressure cleaning method has been proposed in which the liquid metal adhering to the fuel assembly is evaporated and eliminated by reducing the pressure to a saturated vapor pressure or lower. According to such a dry vacuum cleaning method, since no steam, water, etc. are used in the cleaning process, there is no generation of radioactive waste liquid due to cleaning, and a relatively small amount of exhaust gas is simply treated in the gaseous waste treatment system to spend spent fuel assembly. It becomes possible to wash the body effectively. Next, the outline of the dry vacuum cleaning method for the spent fuel assembly of the fast breeder reactor using sodium as the primary coolant will be outlined with reference to FIG. In the figure, 1 is a cleaning tank equipped with a door valve 2 on the top, and 3 is a spent fuel assembly housed in the cleaning tank, where a blower 4, a gas heater 5, and a gas cooling are provided for the cleaning tank 1. An inert gas circulation line 8 equipped with a vessel 6, a vapor trap 7 and the like and connected and connected to the cleaning tank 1, and an inert gas source 9 of, for example, argon gas connected to the inert gas circulation line 8. It is equipped with a preheating means for the spent fuel assembly, including a decompression means, which is a decompression exhaust line 14 leading from the cleaning tank 1 through the vacuum tank 10, the vacuum pump 11, the vapor trap 12 and the like to the gaseous waste treatment system 13. There is. Cleaning tank 1 and vacuum tank
10 is drawn from the bottom of the sodium drainage tank 15, the sodium feed pump 16 and the sodium recovery system 1
A sodium drain line 18 leading to 7 is connected and connected. Reference numerals 19 to 29 are open / close valves inserted in the system of the gas circulation line, the reduced pressure exhaust line, and the drain line. Next, the procedure of the cleaning operation of the spent fuel assembly with the above configuration will be described. First, the spent fuel assembly 3 taken out of the nuclear reactor is housed in the cleaning tank 1 through the door valve 2. Here, the valves 19 to 21 are opened, a predetermined amount of argon gas is introduced into the system from the inert gas source 9, and the blower 4,
When the gas heater 5 is started, the heated gas is circulated and sent into the cleaning tank 1 to generate decay heat, and a full length region of the spent fuel assembly 3 including a non-heat generating portion other than the fuel pin. The temperature is increased by heating to a predetermined preheating temperature (preferably about 450 to 550 ° C.) that is equal to or higher than the melting temperature of sodium. In addition, when the temperature of the spent fuel assembly 3, especially the surface temperature of the fuel pin that generates decay heat, reaches the allowable temperature in the process of this preheating step, the inert gas circulation line 8 is temporarily cooled. The gas cooler 6 is started to lower the circulating gas temperature, and the temperature is adjusted so that the spent fuel assembly 3 is maintained at a predetermined preheating temperature. On the other hand, during the preheating process, the vacuum pump 11 is started with the valves 22 and 23 closed and the vacuum tank 10 is depressurized. Here, the blower 4 and the gas heater 5 are stopped and the valves 19 and 20 are closed when the spent fuel assembly 3 reaches a predetermined preheating temperature by the preheating process described above, and then the vacuum tank 10 is first connected to. The valve 22 is opened to rapidly reduce the pressure inside the cleaning tank 1. Then close the valve 22 and close the vacuum tank.
After disconnecting between 10 and 10, the valve 23 is opened and the inside of the cleaning tank 1 is further evacuated by the vacuum pump 11, and the internal pressure in the cleaning tank is equal to or lower than the saturated sodium vapor pressure for that temperature, for example, about 4 to 10 Torr. Evacuate under reduced pressure. As a result, the sodium adhering to the surface and inside of the spent fuel assembly 3 is promoted to be evaporated, and is removed by washing from the spent fuel assembly 3 in the form of sodium vapor and mist. Most of the sodium vapor and mist generated in this process are transferred to the inside of the cleaning tank 1 and the vacuum tank 10 and adhered thereto, and the remaining suspended vapor and mist are accompanied by the exhaust gas, and the vapor trap in the decompression exhaust line 14 is included. Only the amount of exhaust gas adsorbed and removed by 12 and commensurate with the internal volume of the cleaning tank 1 is sent to the gas waste processing system 13 for processing. The above washing operation is repeated several times if necessary,
The spent fuel assembly 3 is thoroughly washed and a series of washing steps is completed. Along with the above cleaning, cleaning tank 1, vacuum tank
The sodium vapor-deposited on 10 was heated by the heating heater (not shown) equipped in the cleaning tank and the vacuum tank, and the decay heat of the spent fuel assembly itself to melt the sodium, and then the valves 26 and 27 were opened. Then, the sodium is discharged to the drain tank 15, and from there, it is sent to the sodium recovery system 17 by the sodium feed pump 16 and recovered. By the way, in the dry vacuum cleaning method described above, a large amount of cleaning waste liquid is not generated unlike the steam-water cleaning method,
Even so, since a relatively small amount of waste gas is generated with the decompression operation of the cleaning tank each time cleaning is performed, it is unavoidable to treat this waste gas in the gaseous waste treatment system, and this consumption At the next cleaning, the amount of gas needs to be newly supplied from the inert gas source to the inert gas circulation line, which increases the cleaning operation cost.
この発明は上記の点にかんがみなされたものであり、前
記した乾式減圧洗浄装置を改良し、洗浄時における減圧
工程で生じた排ガスを廃棄処理すること無く、次回の洗
浄の際の予熱工程で再度活用して気体廃棄物の発生量,
および新たな不活性ガス補給量の大幅な削減化が図れる
ようにした運転経費が少なくて経済的効果の高い使用済
燃料集合体の洗浄装置を提供することを目的とする。The present invention has been made in view of the above points, and improved the dry type vacuum cleaning device described above, without exhaust gas generated in the depressurizing step at the time of cleaning, to be treated again in the preheating step in the next cleaning. Utilizing the amount of gas waste generated,
Another object of the present invention is to provide a cleaning device for a spent fuel assembly, which has a low operating cost and is highly economical, which is capable of significantly reducing the amount of new inert gas supply.
上記目的を達成するために、この発明は先記した乾式減
圧洗浄装置に対し、減圧排気ラインと不活性ガス循環ラ
インとの間を結んで排ガス戻しラインを接続配管し、該
排ガス戻しラインは、前記減圧排気ライからの排ガスを
一時貯留するガス貯留タンクと,ガス貯留タンク内の貯
留ガスを前記不活性ガス循環ラインへ供給するブロアと
を備えて成り、洗浄時の減圧工程で洗浄槽より排気され
た排ガスを前記排ガス戻しラインを通じて不活性ガス循
環ラインへ供給して次回の洗浄時における使用済燃料集
合体の予熱工程に用いることにより、気体廃棄物の発生
量,および新たに不活性ガス源から補給するガス補給量
の大幅な削減化を図るようにしたものである。In order to achieve the above object, the present invention is a dry type vacuum cleaning apparatus described above, connecting the exhaust gas return line connecting between the vacuum exhaust line and the inert gas circulation line, the exhaust gas return line, It comprises a gas storage tank for temporarily storing the exhaust gas from the reduced pressure exhaust gas line and a blower for supplying the stored gas in the gas storage tank to the inert gas circulation line, and exhausts it from the cleaning tank in the depressurization step during cleaning. The generated exhaust gas is supplied to the inert gas circulation line through the exhaust gas return line and used in the preheating process of the spent fuel assembly at the next cleaning, thereby generating the amount of gaseous waste and newly supplying the inert gas source. The amount of gas replenished from is remarkably reduced.
第1図はこの発明の実施例による洗浄設備の系統図を示
すものであり、第2図に対応する部分には同じ符号が付
してある。ここでこの発明により減圧排気ライン14にお
ける真空ポンプ11の下流側地点と不活性ガス循環ライン
8との間を結んでガス貯留タンク30,ブロア31,開閉バル
ブ32〜34を装備した排ガス戻しライン35が接続配管され
ている。 次に上記構成による洗浄操作の手順について説明する
と、まず被洗浄物である使用済燃料集合体3を洗浄槽1
内に収容した状態で行う使用済燃料集合体の予熱工程,
減圧工程が第2図と同様に進められる。ここで洗浄槽1
内の減圧排気を行う際には、通常は気体排気物処理系13
に通じるバルブ25を閉じるとともに、排ガス戻しライン
35における入口側のバルブ32を開放し、減圧工程で減圧
排気ライン14を通じて洗浄槽1内より排気された排ガス
を全てガス貯留タンク30内に回収して貯留させて置く。
なお排ガス戻しライン35に回収される排ガスはその途中
でベーパートラップ12により排ガス中に含まれているナ
トリウム蒸気,ミストが除去されている。 続いて次回の洗浄サイクルの予熱工程に移行する際には
バルブ33,34を開放し、かつブロア31を運転することに
より、ガス貯留タンク30内に貯留されてた不活性ガスを
不活性ガス循環ライン8および洗浄槽1内に送り込み、
この状態で先記した予熱工程,減圧工程を行って使用済
燃料集合体を洗浄する。不活性ガスの繰り返し使用によ
り放射能汚染が非常に高レルになった場合,あるいは洗
浄設備の運転を停止する場合には系内に残留しているガ
スを減圧排気ラインを通じて気体廃棄物処理系に送出し
て処理し、再度洗浄を再開する際には不活性ガス源9よ
り不活性ガスを新たに補給する。 上記の説明で明らかなように、前回の洗浄時における減
圧工程で洗浄槽1より排気された排ガスはそのまま気体
廃棄物処理系13へ送出して処理することなく、排ガス戻
しライン35のガス貯留タンク30内に回収し、次回の洗浄
時の予熱工程の際に不活性ガス循環ライン8へ戻して再
度活性することにより、通常の洗浄サイクルでは気体廃
棄物の発生量,並びに不活性ガス源9より不活性ガス循
環ラインへ新たに補給するガス補給量を殆ど無くし、気
体廃棄物処理系の負荷軽減化を含めて経済運転が達成で
きるようになる。 なお図示実施例に対し、洗浄槽の前段に使用済燃料集合
体のプレ加熱装置を別置することにより、洗浄槽内に収
容した状態で行う予熱工程の熱負荷を軽減して洗浄時間
をより短縮化することが可能となる。FIG. 1 shows a system diagram of a cleaning equipment according to an embodiment of the present invention, and parts corresponding to those in FIG. 2 are designated by the same reference numerals. Here, according to the present invention, an exhaust gas return line 35 equipped with a gas storage tank 30, a blower 31, and opening / closing valves 32 to 34 is connected between the downstream side point of the vacuum pump 11 in the decompression exhaust line 14 and the inert gas circulation line 8. Is connected to the pipe. Next, the procedure of the cleaning operation with the above-described configuration will be described. First, the spent fuel assembly 3 as the object to be cleaned is cleaned with the cleaning tank 1.
Preheating process of spent fuel assembly, which is carried out in the
The depressurization process proceeds in the same manner as in FIG. Wash tank 1 here
When decompressing the inside of the chamber, the exhaust gas treatment system 13 is usually used.
Close the valve 25 leading to the exhaust gas return line
The valve 32 on the inlet side of 35 is opened, and all the exhaust gas exhausted from the cleaning tank 1 through the depressurization exhaust line 14 in the depressurization step is collected and stored in the gas storage tank 30.
In the exhaust gas recovered in the exhaust gas return line 35, sodium vapor and mist contained in the exhaust gas are removed by the vapor trap 12 on the way. Then, when shifting to the preheating step of the next cleaning cycle, the valves 33 and 34 are opened and the blower 31 is operated to circulate the inert gas stored in the gas storage tank 30 with the inert gas. Sent into line 8 and cleaning tank 1,
In this state, the preheating process and the depressurizing process described above are performed to wash the spent fuel assembly. When radioactive contamination becomes extremely high due to repeated use of inert gas, or when the operation of cleaning equipment is stopped, the gas remaining in the system is transferred to the gas waste treatment system through the decompression exhaust line. When the cleaning process is restarted after being sent out, the inert gas source 9 newly supplies the inert gas. As is clear from the above description, the exhaust gas exhausted from the cleaning tank 1 in the depressurizing step during the previous cleaning is directly sent to the gas waste processing system 13 without being processed, and the gas storage tank of the exhaust gas return line 35 is processed. It is recovered in 30 and returned to the inert gas circulation line 8 in the preheating step for the next cleaning to be activated again, so that the amount of gas waste generated in the normal cleaning cycle and the inert gas source 9 The amount of gas replenished newly to the inert gas circulation line is almost eliminated, and economical operation can be achieved including reduction of the load on the gas waste treatment system. In comparison with the illustrated embodiment, a preheating device for the spent fuel assembly is separately provided in the preceding stage of the cleaning tank to reduce the heat load of the preheating process performed in the state of being housed in the cleaning tank, and to improve the cleaning time. It can be shortened.
以上述べたようにこの発明によれば、洗浄槽に接続され
た減圧排気ラインと不活性ガス循環ラインとの間を結ん
で排ガス戻しラインを接続配管し、該排ガス戻しライン
は、前記減圧排気ラインからの排ガスを一時貯留するガ
ス貯留タンクと,ガス貯留タンク内の貯留ガスを前記不
活性ガス循環ラインへ供給するブロアを備えて成り、洗
浄時の減圧工程で洗浄槽より排気された排ガスを前記排
ガス戻しライを通じて不活性ガス循環ラインへ供給する
ようにしたことにより、使用済燃料集合体の洗浄に伴う
気体廃棄物の発生量,並びに予熱の際に不活性ガス源よ
り新たに補給するガス量を大幅に削減することができ、
かくして気体廃棄物処理の負荷軽減化と併せてより経済
的な運転を行うことができる。As described above, according to the present invention, the exhaust gas return line is connected to connect the decompression exhaust line connected to the cleaning tank and the inert gas circulation line, and the exhaust gas return line is the decompression exhaust line. A gas storage tank for temporarily storing the exhaust gas from the gas storage tank and a blower for supplying the stored gas in the gas storage tank to the inert gas circulation line, and the exhaust gas exhausted from the cleaning tank in the depressurizing step during cleaning is By supplying to the inert gas circulation line through the exhaust gas return line, the amount of gas waste generated by cleaning the spent fuel assembly and the amount of gas newly replenished from the inert gas source during preheating Can be significantly reduced,
In this way, more economical operation can be performed while reducing the load of gas waste treatment.
第1図は本発明の実施例による使用済燃料集合体の洗浄
設備の系統図、第2図は従来における乾式減圧洗浄設備
の系統図である。図において、 1:洗浄槽、3:使用済燃料集合体、4:ブロア、5:ガス加熱
器、8:不活性ガス循環ライン、通風手段を兼用した加熱
不活性ガスの循環ライン、9:不活性ガス源、14:減圧排
気ライン、18:ナトリウムのドレンライン、30:ガス貯留
タンク、31:ブロア、35:排ガス戻しライン。FIG. 1 is a system diagram of a spent fuel assembly cleaning facility according to an embodiment of the present invention, and FIG. 2 is a conventional dry reduced pressure cleaning facility system diagram. In the figure, 1: cleaning tank, 3: spent fuel assembly, 4: blower, 5: gas heater, 8: inert gas circulation line, heated inert gas circulation line that also serves as ventilation means, 9: non Active gas source, 14: decompression exhaust line, 18: sodium drain line, 30: gas storage tank, 31: blower, 35: exhaust gas return line.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 修 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 藤沢 盛夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭57−86800(JP,A) 特開 昭55−46122(JP,A) 特開 昭57−146199(JP,A) 特開 昭57−86799(JP,A) 実開 昭54−111967(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kobayashi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 within Fuji Electric Co., Ltd. (56) Reference JP-A-57-86800 (JP, A) JP-A-55-46122 (JP, A) JP-A-57-146199 (JP, A) JP-A-57- 86799 (JP, A) Actual development Sho 54-111967 (JP, U)
Claims (1)
る原子炉の使用済燃料集合体の洗浄装置であって、使用
済燃料集合体を収容する洗浄槽に対し、該洗浄槽内に加
熱した不活性ガスを通風して使用済燃料集合体を所定温
度に昇温予熱する不活性ガス循環ライン,および洗浄槽
内の雰囲気を減圧させる減圧排気ラインとを接続配管し
て成り、前記洗浄槽内に収容した使用済燃料集合体を予
熱した後に洗浄槽内を減圧排気することにより、使用済
燃料集合体に付着している液体金属を蒸発,除去して洗
浄するようにしたものにおいて、前記の減圧排気ライン
と不活性ガス循環ラインとの間を結んで排ガス戻しライ
ンを接続配管し、該排ガス戻しラインは、前記減圧排気
ラインからの排ガスを一時貯留するガス貯留タンクと,
ガス貯留タンク内の貯留ガスを前記不活性ガス循環ライ
ンへ供給するブロアとを備えて成り、洗浄時の減圧工程
で洗浄槽より排気された排ガスを前記排ガス戻しライン
を通じて不活性ガス循環ラインへ供給するようにしたこ
とを特徴とする使用済燃料集合体の洗浄装置。1. A cleaning device for a spent fuel assembly of a nuclear reactor, which uses a liquid metal such as sodium as a primary coolant, which is provided in a cleaning tank for containing the spent fuel assembly. The cleaning is carried out by connecting an inert gas circulation line that preheats the spent fuel assembly to a predetermined temperature by ventilating a heated inert gas and a decompression exhaust line that decompresses the atmosphere in the cleaning tank. In the one in which the liquid metal adhering to the spent fuel assembly is vaporized and removed for cleaning by preheating the spent fuel assembly housed in the tank and then decompressing the inside of the cleaning tank, An exhaust gas return line is connected to connect the reduced pressure exhaust line and the inert gas circulation line, and the exhaust gas return line is a gas storage tank for temporarily storing the exhaust gas from the reduced pressure exhaust line,
A blower for supplying the stored gas in the gas storage tank to the inert gas circulation line, and supplying the exhaust gas exhausted from the cleaning tank in the depressurization step during cleaning to the inert gas circulation line through the exhaust gas return line. A cleaning device for a spent fuel assembly, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21303286A JPH0750193B2 (en) | 1986-09-10 | 1986-09-10 | Cleaning device for spent fuel assemblies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21303286A JPH0750193B2 (en) | 1986-09-10 | 1986-09-10 | Cleaning device for spent fuel assemblies |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6367596A JPS6367596A (en) | 1988-03-26 |
JPH0750193B2 true JPH0750193B2 (en) | 1995-05-31 |
Family
ID=16632379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21303286A Expired - Lifetime JPH0750193B2 (en) | 1986-09-10 | 1986-09-10 | Cleaning device for spent fuel assemblies |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0750193B2 (en) |
-
1986
- 1986-09-10 JP JP21303286A patent/JPH0750193B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6367596A (en) | 1988-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100286880B1 (en) | Solvent Refeed Method for Use in Carbon Dioxide Cleaning Systems | |
JPH07504359A (en) | Vacuum airlock for boundary-closed solvent retention systems | |
JP2807237B2 (en) | Method and equipment for treating solid organic waste contaminated by tritium | |
JPH0750193B2 (en) | Cleaning device for spent fuel assemblies | |
JP3393519B2 (en) | Method and apparatus for cleaning metal workpieces | |
JP2000237703A (en) | Vacuum washing/drying method and device | |
JPS6367597A (en) | Method of washing spent fuel aggregate | |
JPH0654991A (en) | Explosion preventing method of dry cleaning machine | |
JPH0682647B2 (en) | Processor | |
JP4528374B2 (en) | Steam cleaning equipment | |
JPS6367598A (en) | Method of washing spent fuel aggregate | |
JPS6394199A (en) | Spent fuel treating facility for nuclear reactor facility | |
JPS6367599A (en) | Method of washing spent fuel aggregate | |
JPS62129795A (en) | Method of washing spent fuel in fast breeder reactor | |
JPS6367600A (en) | Method of washing spent fuel aggregate | |
JPH07925A (en) | Method and device for cleaning and drying with vapor using nonaqueous solvent | |
JP2564132B2 (en) | Sodium removal treatment facility for fast reactor core components | |
JPH0358000A (en) | Washing spent fuel assembly and equipment therefor | |
JPS63235900A (en) | Method of cleaning spent fuel assembly | |
JPH06292871A (en) | Vapor washing and drying method using nonaqueous solvent and device therefor | |
JPH01189600A (en) | High temperature gas blow washing of spent fuel | |
JPS6382699A (en) | Dry cleaning device for nuclear power facility | |
JPS6358299A (en) | Pyrolytic processing method and pyrolytic processor for radioactive chemically decontaminated waste liquor | |
JPS5751297A (en) | Method and device for recovering and reusing liquid and heat of cleaning liquid in surface treating process for metal | |
JPH0331114B2 (en) |