JPS6394031A - Control device for number of operating cylinders of engine - Google Patents

Control device for number of operating cylinders of engine

Info

Publication number
JPS6394031A
JPS6394031A JP61238223A JP23822386A JPS6394031A JP S6394031 A JPS6394031 A JP S6394031A JP 61238223 A JP61238223 A JP 61238223A JP 23822386 A JP23822386 A JP 23822386A JP S6394031 A JPS6394031 A JP S6394031A
Authority
JP
Japan
Prior art keywords
engine
cylinder
air
intake
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61238223A
Other languages
Japanese (ja)
Inventor
Seiji Makimoto
牧本 成治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61238223A priority Critical patent/JPS6394031A/en
Publication of JPS6394031A publication Critical patent/JPS6394031A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To reduce the pumping loss of an engine, by providing shutter valves for closing intake-air passages for engine cylinders on resting during the engine is operated with a reduced number of engine cylinders, and a control device for stopping assist air supply devices for the engine cylinders on resting. CONSTITUTION:Injectors 7 are provided in intake-air passages for engine cylinders 1a, 1b, downstream of a throttle valve 6. Assist air supply devices 10 for supplying air led from the upstream side of the throttle valve 6 are provided in the vicinity of the injectors 7, respectively. A shutter valve 16 is disposed in the intake-air branch passage 2b for the second engine cylinder 1b so that the shutter valve 16 closes the intake-air branch passage 2b to operate the engine with a reduced number of operating engine cylinders during low load operation. A control device 17 stops the assist air supply device 10 for the engine cylinder 1b on resting during the operation of the engine with the reduced number of operating engine cylinders. Thus, it is possible to aim at reducing the pumping loss of the engine in order to enhance the economy of fuel consumption.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの気筒数制御I装置に関し、特にイン
ジェクタの近(力にアシストエアを供給するようにした
ものにおいて減筒運転する場合のエンジンのポンピング
ロス低減対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an engine cylinder number control device, and particularly relates to an engine cylinder number control device for controlling the number of cylinders in an engine, especially when the engine is operated near an injector (in an engine in which assist air is supplied to the engine). Regarding pumping loss reduction measures.

(従来の技術) 従来、エンジンの減筒運転装置として、例えば特開昭6
0−11653号公報に開示されるように、エンジンの
各気筒の吸気通路にそれぞれ燃料を供給するインジェク
タを配置し、エンジン低負荷時に一部気筒のインジェク
タへの燃料供給を停止して減筒運転を行うことにより、
稼働気筒の燃焼性を高め、エンジンの燃費を低減するよ
うにしたものが知られている。
(Prior art) Conventionally, as an engine cylinder reduction operation device, for example,
As disclosed in Publication No. 0-11653, injectors that supply fuel to the intake passages of each cylinder of the engine are arranged, and when the engine is under low load, fuel supply to the injectors of some cylinders is stopped to perform reduced-cylinder operation. By doing
Engines are known that improve the combustibility of the operating cylinders and reduce the fuel consumption of the engine.

(発明が解決しようとする問題点) ところで、このようなエンジンでは、減筒運転時に休止
気筒の吸気通路をシャッターパルプで開じて休止気筒へ
の吸気の供給を停止することにより、エンジンのボンピ
ングロスを低減することが行われる。
(Problem to be Solved by the Invention) By the way, in such an engine, during cylinder reduction operation, the intake passage of the inactive cylinder is opened with a shutter pulp and the supply of intake air to the inactive cylinder is stopped, thereby reducing engine pumping. Gloss reduction is performed.

一方、エンジンの燃料供給装置として、例えば特開昭5
8−28588号公報に開示されるように、吸気通路に
燃料を噴削(ハ給するインジェクタを配置するとともに
、スロットル弁上流のエアをアシストエアとして上記イ
ンジェクタの噴孔付近に導くアシストエア通路を設け、
アシストエアによりインジェクタの噴射燃料を良好に霧
化するようにしたものが知られている。
On the other hand, as an engine fuel supply device, for example,
As disclosed in Japanese Patent Publication No. 8-28588, an injector for spraying (feeding) fuel is arranged in the intake passage, and an assist air passage is arranged to guide air upstream of the throttle valve to the vicinity of the nozzle hole of the injector as assist air. established,
A device is known in which the fuel injected by the injector is atomized well using assist air.

しかし、このアシストエアを供給するようにしたエンジ
ンにおいて、上述したように休止気筒のインジェクタへ
の燃料供給の停止と、休止気筒の吸気通路のシャッター
バルブによる閉塞とを併用して減筒運転を行うようにし
た場合、インジェクタが吸気通路の吸気ボート近傍に配
置される関係上、シャッターバルブがインジェクタ上流
側に配置されるので、減筒運転時にシャッターバルブを
閉じてもインジェクタの噴孔付近に供給されたアシスト
エアが休止気筒に吸入され、エンジンのボンピンクロス
を十分に低減することができないという問題がある。
However, in an engine configured to supply this assist air, cylinder reduction operation is performed by simultaneously stopping the fuel supply to the injector of the idle cylinder and blocking the intake passage of the idle cylinder with a shutter valve, as described above. In this case, since the injector is placed near the intake boat in the intake passage, the shutter valve is placed upstream of the injector, so even if the shutter valve is closed during cylinder reduction operation, the injector is not supplied to the vicinity of the nozzle hole of the injector. There is a problem in that the assist air is sucked into the idle cylinder, making it impossible to sufficiently reduce the engine bumping loss.

しかも、排気通路に排気ガス中の酸素濃度成分によりエ
ンジンの空燃比を検出する空燃比センサを配置し、この
空燃比センサの出力に基づいて混合気の空燃比をフィー
ドバック制御するようにした場合には、上述したように
休止気筒に吸入され排気通路に排出されたアシストエア
によって混合気の空燃比のフィードバック制御を精度良
く行えなくなるという問題も生じる。
Moreover, if an air-fuel ratio sensor is placed in the exhaust passage to detect the air-fuel ratio of the engine based on the oxygen concentration component in the exhaust gas, and the air-fuel ratio of the mixture is feedback-controlled based on the output of this air-fuel ratio sensor. However, as described above, the problem arises that feedback control of the air-fuel ratio of the air-fuel mixture cannot be performed with high accuracy due to the assist air sucked into the deactivated cylinder and discharged into the exhaust passage.

本発明はかかる点に鑑みてなされたものであり、その目
的とするところは、エンジンの減筒運転時には休止気筒
のインジェクタ近傍にアシストエアを供給しないように
して、アシストエアが休止気筒に吸入されるのを防止す
ることにある。
The present invention has been made in view of the above problems, and its purpose is to prevent assist air from being supplied to the vicinity of the injector of the idle cylinder during cylinder reduction operation of the engine, so that the assist air is sucked into the idle cylinder. The purpose is to prevent

(問題点を解決するための手段) 上記目的を達成するため、本発明解決手段は、スロット
ルバルブ下流の各気筒の吸気通路にそれぞれ燃料を供給
するインジェクタと、該各インジェクタ近傍にそれぞれ
上記スロットルバルブ上流から導いたアシストエアを供
給するアシストエア供給[2と、エンジン低負荷時に一
部気筒の吸気通路を閉じて減筒運転させるシャッターバ
ルブとを備えたエンジンの気筒数制御ll8i置を前提
とする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention provides an injector that supplies fuel to the intake passage of each cylinder downstream of the throttle valve, and a throttle valve that is arranged in the vicinity of each injector. This assumes an engine cylinder number control ll8i configuration that is equipped with an assist air supply [2] that supplies assist air led from upstream, and a shutter valve that closes the intake passage of some cylinders to operate with reduced cylinders when the engine is under low load. .

そして、これに対し、上記減筒運転時に休止気筒のアシ
ストエア供給装置を停止させる制御装置を設ける構成と
したものである。
In response to this, a control device is provided to stop the assist air supply device of the idle cylinder during the cylinder reduction operation.

(作用) 上記の構成により、本発明では、全筒運転時、各気筒の
アシストエア供給装置により各インジェクタ近傍にアシ
ストエアが供給され、このアシストエアにより各インジ
ェクタの噴射燃料が良好に霧化される。
(Function) With the above configuration, in the present invention, during all-cylinder operation, assist air is supplied to the vicinity of each injector by the assist air supply device of each cylinder, and the injected fuel of each injector is atomized well by this assist air. Ru.

一方、減筒運転時、上記シャッターバルブが閉じて休止
気筒に吸気が供給されないとともに休止気筒のアシスト
エア供給装置が停止して休止気筒のインジェクタ近1力
にアシストエアが供給されないので、休止気筒にはエア
が全く供給されず、エンジンのポンピングロスが@効に
低減されるとともに排気通路へのエアの排気が阻止され
て空燃比のリーン検出が防止される。
On the other hand, during cylinder reduction operation, the shutter valve is closed and intake air is not supplied to the idle cylinder, and the assist air supply device of the idle cylinder is stopped, so assist air is not supplied to the injector of the idle cylinder. Since no air is supplied at all, the pumping loss of the engine is effectively reduced, and air is prevented from being discharged to the exhaust passage, thereby preventing detection of a lean air-fuel ratio.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例に係る気筒数t、II til
l装置を備えたエンジンを示す。同図において、1は2
0−タタイプのロータリピストンエンジン、2は一端が
エアクリーナ3を介して大気に開口し他端が分岐し吸気
ボート4を介して各気筒1a、1bの作動室に開口する
吸気通路、5は一端が排気ポート6を介して各気筒1a
、1bの作動室に開口し他端が大気に間口してエンジン
1からの排気を排出する排気通路である。
FIG. 1 shows the number of cylinders t, II til according to the embodiment of the present invention.
1 shows an engine equipped with a l device. In the same figure, 1 is 2
0-ta type rotary piston engine, 2 is an intake passage whose one end opens to the atmosphere via an air cleaner 3, the other end branches, and opens into the working chambers of each cylinder 1a, 1b via an intake boat 4; 5, one end of which opens to the atmosphere; Each cylinder 1a via exhaust port 6
, 1b, and the other end thereof is open to the atmosphere to discharge exhaust gas from the engine 1.

また、上記吸気通路2のうち、分岐部上流側の主吸気通
路2aには吸気量を調節するスロットルバルブ6が配置
されている。一方、第2図に示すようにスロットルバル
ブ6下流において、分岐部下流側の分岐吸気通路2aの
吸気ボート4付近には、該各分岐吸気通路2aに燃料を
噴射供給するインジェクタ7が配置されている。
Further, in the intake passage 2, a throttle valve 6 for adjusting the amount of intake air is arranged in the main intake passage 2a on the upstream side of the branch portion. On the other hand, as shown in FIG. 2, on the downstream side of the throttle valve 6, an injector 7 for injecting fuel into each branch intake passage 2a is arranged near the intake boat 4 of the branch intake passage 2a on the downstream side of the branch part. There is.

さらに、8aは一端がメタリングオイルポンプ9に接続
され他端が各分岐吸気通路2bに間口し各分岐吸気通路
2bにオイルを供給する第1オイル通路、8bは一端が
メタリングオイルポンプ9に接続され他端が各気筒1a
、1bの作動室に間口し8気rfJ1a、1bにオイル
を供給する第2オイル通路であり、該各オイル通路8a
 、Qbによって各気筒1a、1bの1I21滑性を確
保するようにしている。
Furthermore, 8a is a first oil passage which has one end connected to the metering oil pump 9 and the other end opens to each branch intake passage 2b and supplies oil to each branch intake passage 2b, and 8b has one end connected to the metering oil pump 9. connected and the other end is connected to each cylinder 1a
, 1b, and supplies oil to the 8 air rfJs 1a, 1b, each oil passage 8a.
, Qb ensure 1I21 slipperiness of each cylinder 1a, 1b.

また、上記インジェクタ7と第1オイル通路8aと第2
オイル通路8bとには、各気筒ごとにアシストエア供給
装置10が設けられている。該アシストエア供給装置i
10は、一端がスロットルバルブ6上流の吸気通路2に
間口し他端が三つに分岐してそれぞれインジェクタ7の
噴孔側方と第1オイル通路8aの吸気通路側開口と第2
オイル通路8bの吸気通路側開口とに開口したアシスト
エア通路11と、インジェクタ7の噴孔側に配置され該
噴孔周囲に上記アシストエア通路11に連通する環状空
間13を形成するソケット12と、上記スロットルバル
ブ6上流から環状空間13に導いたアシストエアをイン
ジェクタ7の噴孔近傍に供給するようソケット12に形
成されたボート14.14・・・とからなり、アシスト
エアによりインジェクタ7の噴射燃料の霧化を促進する
とともに、第1オイル通路8a及び第2オイル通路8b
から供給されるオイルの霧化を促進するようにしている
。そして、第2気@1bのアシスト17通路11には該
アンス1〜1フ通路11を開閉するエア弁15が介設さ
れている。
Furthermore, the injector 7, the first oil passage 8a and the second
An assist air supply device 10 is provided in the oil passage 8b for each cylinder. The assist air supply device i
10 has one end opening into the intake passage 2 upstream of the throttle valve 6, and the other end branching into three parts, one opening on the side of the nozzle hole of the injector 7, the opening on the intake passage side of the first oil passage 8a, and the second opening on the intake passage side.
an assist air passage 11 that opens to the intake passage side opening of the oil passage 8b; a socket 12 that is arranged on the nozzle hole side of the injector 7 and forms an annular space 13 around the nozzle hole that communicates with the assist air passage 11; Boats 14, 14, etc. are formed in the socket 12 to supply assist air led from upstream of the throttle valve 6 to the annular space 13 to the vicinity of the nozzle hole of the injector 7, and the assist air injects fuel into the injector 7. The first oil passage 8a and the second oil passage 8b
This is to promote atomization of the oil supplied from the tank. An air valve 15 is interposed in the second air @ 1b assist 17 passage 11 for opening and closing the first to first air passages 11.

さらに、第2気筒1bの第1オイル通路上流の分岐吸気
通路2bには、エンジン低負荷時に該分岐吸気通路2b
を閉じτ減筒運転させるシャッターバルブ16が配置さ
れている。
Further, in the branch intake passage 2b upstream of the first oil passage of the second cylinder 1b, when the engine is under low load, the branch intake passage 2b is
A shutter valve 16 is disposed to close the cylinder and perform cylinder reduction operation.

そして、上記各インジェクタ7とエア弁15とシャッタ
ーバルブ16とはコントロールユニット17により作動
制御される。該コントロールユニット17には、スロッ
トル弁6上流の主吸気通路2aに配置され吸気量を検出
するエアフローセンサ18と、スロットル弁6間度を検
出するスロットルセンサ19と、スロットルバルブ6下
流の主吸気通路28に配置され吸気圧力を検出する圧力
センサ20と、排気通路5に配置され排気ガス中の酸素
濃度成分によりエンジン1の空燃比を検出する空燃比セ
ンサ21と、エンジン1の回転数を検出する回転数セン
サ22との各信号が入力されている。
The operation of each injector 7, air valve 15, and shutter valve 16 is controlled by a control unit 17. The control unit 17 includes an air flow sensor 18 arranged in the main intake passage 2a upstream of the throttle valve 6 to detect the intake air amount, a throttle sensor 19 arranged in the main intake passage 2a downstream of the throttle valve 6, and a throttle sensor 19 arranged in the main intake passage 2a downstream of the throttle valve 6. A pressure sensor 20 is placed in the exhaust passage 5 and detects the intake pressure; an air-fuel ratio sensor 21 is placed in the exhaust passage 5 and detects the air-fuel ratio of the engine 1 based on the oxygen concentration component in the exhaust gas; Each signal from the rotation speed sensor 22 is input.

次に、上記コントロールユニット17の作動を第3図の
フローチャートに基づいて説明する。同図において、先
ずステップS+でエンジン回転数、スロットル弁開度等
を読込み、ステップS2で第4図に示すマツプに基づき
エンジン1が減筒運転領域にあるか否かを判別する。
Next, the operation of the control unit 17 will be explained based on the flowchart shown in FIG. In the figure, first, in step S+, the engine speed, throttle valve opening, etc. are read, and in step S2, it is determined based on the map shown in FIG. 4 whether or not the engine 1 is in the reduced-cylinder operation region.

そして、減筒運転領域にないNoのときには、ステップ
$3で燃料噴射量を決定する最終噴射パルスのパルスf
%王を、基本噴射パルス幅Tpとバッテリ電圧補正値τ
BATとの和で計咋する。ここで基本噴射パルス幅TI
)は、吸気量をエンジン回転数で割った値に基づいて定
められ、さらに、空燃比センサ21の出力に塁づいて混
合気の空燃比が所定値になるよう補正される。そして、
ステップS4でこの最終噴射パルスを出力し、このパル
ス幅に応じた燃料を第1気筒1aと第2気筒1bとの双
方のインジェクタ7がら噴乍して全問運転を行う。
If the result is No, which is not in the cylinder reduction operation region, the pulse f of the final injection pulse that determines the fuel injection amount is determined in step $3.
% King, basic injection pulse width Tp and battery voltage correction value τ
Calculate the sum with BAT. Here, the basic injection pulse width TI
) is determined based on the value obtained by dividing the intake air amount by the engine speed, and is further corrected based on the output of the air-fuel ratio sensor 21 so that the air-fuel ratio of the air-fuel mixture becomes a predetermined value. and,
In step S4, this final injection pulse is output, and fuel corresponding to this pulse width is injected from the injectors 7 of both the first cylinder 1a and the second cylinder 1b, and a full-time operation is performed.

さらに、ステップS5でエア弁15を問いてアシストエ
アによりインジェクタ7の噴射燃料の霧化促進及び第1
.第2オイル通路8a 、8bからの供給オイルの霧化
促進を図る。
Furthermore, in step S5, the air valve 15 is activated to promote the atomization of the injected fuel of the injector 7 and the first
.. Atomization of the oil supplied from the second oil passages 8a and 8b is promoted.

一方、減筒運転領域にあるYESのときには、ステップ
S6で最終噴射パルスのパルス幅Tを、基本噴射パルス
幅Tpとバッテリ電圧補正値τBへ丁との和で計惇する
。そして、ステップS7でこの最終噴射パルスを出力し
、このパルス幅に応じた燃料を第1気筒1aのインジェ
クタ7のみから噴射するとともに第2気W11bのイン
ジェクタ7を不作動にして第1気筒1aを稼動気筒とし
且つ第2気筒1bを休止気筒とした減筒運転を行う。
On the other hand, when the answer is YES in the cylinder reduction operation region, the pulse width T of the final injection pulse is calculated as the sum of the basic injection pulse width Tp and the battery voltage correction value τB. Then, in step S7, this final injection pulse is output, and fuel corresponding to this pulse width is injected only from the injector 7 of the first cylinder 1a, and the injector 7 of the second air W11b is deactivated, so that the first cylinder 1a is injected. A cylinder reduction operation is performed in which the cylinders are in operation and the second cylinder 1b is a dormant cylinder.

さらに、ステップS8で休止気筒である第2気筒1bの
エア弁15を閉じるとともに、ステップS9でシャッタ
ーバルブ16を閉じるようにしており、このステップS
8によって減筒運転時に休止気筒1bのアシストエア供
給装置10を停止させる制御¥R置23を構成している
。このシャッターバルブ16の閉作動により体止気筒1
bに吸気が供給されない上、エア弁15の閉作動により
休士気1ilbのインジェクタ7近傍にアシストエアが
供給されないので、休止気筒1bにエアが全く供給され
ず、エンジン1のボンピングロスが有効に低減される。
Further, in step S8, the air valve 15 of the second cylinder 1b, which is a dormant cylinder, is closed, and in step S9, the shutter valve 16 is closed.
8 constitutes a control position 23 for stopping the assist air supply device 10 of the idle cylinder 1b during cylinder reduction operation. Due to the closing operation of this shutter valve 16, the body stop cylinder 1 is closed.
In addition, intake air is not supplied to the cylinder 1b, and assist air is not supplied to the vicinity of the injector 7 at the idle cylinder 1ilb due to the closing operation of the air valve 15. Therefore, no air is supplied to the idle cylinder 1b, and the pumping loss of the engine 1 is effectively reduced. be done.

また、休止気筒1bを介して排気通路5にエアが排出さ
れることがないので、空燃比のリーン検出が防止され、
空燃比のフィードバック制御(Tpの制御)の精度が高
まり、燃費性が向上する。
Furthermore, since air is not discharged into the exhaust passage 5 via the idle cylinder 1b, lean detection of the air-fuel ratio is prevented.
The accuracy of air-fuel ratio feedback control (Tp control) is increased, and fuel efficiency is improved.

尚、上記実施例ではロータリピストンエンジンについて
説明したが、本発明はレシプロエンジンに対しても適用
することができる。
In the above embodiment, a rotary piston engine has been described, but the present invention can also be applied to a reciprocating engine.

(発明の効果) 以上説明したように、本発明のエンジンの気筒数制御1
1装置によれば、エンジンの減筒運転時、シャッターパ
ルプで休止気筒の吸気通路を閉じるとともにこの休止気
筒のインジェクタ近傍へのアシストエアの供給を停止す
るようにしたので、休止気筒にエアが供給されず、エン
ジンのボンピングロスの低減を有効に行うことができる
とともに、空燃比のリーン検出が防止され、空燃比のフ
ィードバック制御の精度を高めて燃費性の向上を図るこ
とができる。
(Effects of the Invention) As explained above, the engine cylinder number control 1 of the present invention
According to the first device, when the engine is operated with fewer cylinders, the shutter pulp closes the intake passage of the idle cylinder and stops the supply of assist air to the vicinity of the injector of the idle cylinder, so air is supplied to the idle cylinder. Therefore, it is possible to effectively reduce the pumping loss of the engine, prevent lean air-fuel ratio detection, and improve the accuracy of air-fuel ratio feedback control to improve fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体概略構成図
、第2図はその要部断面図、第3図はコントロールユニ
ットの作動を説明するフローチャート図、第4図は減筒
運転領域を示す説明図である。 1a・・・第1気筒、1b・・・第2気筒、2・・・吸
気通路、6・・・スロットルバルブ、7・・・インジェ
クタ、10・・・アシストエア供給装置、16・・・シ
ャッターバルブ、23・・・制御装置。 特許出願人    マツダ株式会社 5″′−一−1□ 代  理  人     弁理士  前  1)   
弘    、5−ノーニーζ・
The drawings show an embodiment of the present invention, in which Fig. 1 is a general schematic diagram, Fig. 2 is a sectional view of the main part thereof, Fig. 3 is a flowchart explaining the operation of the control unit, and Fig. 4 is a cylinder reduction operation. It is an explanatory diagram showing a field. 1a... First cylinder, 1b... Second cylinder, 2... Intake passage, 6... Throttle valve, 7... Injector, 10... Assist air supply device, 16... Shutter Valve, 23...control device. Patent applicant Mazda Motor Corporation 5″′-1-1□ Agent Patent attorney 1)
Hiroshi, 5-Nonie ζ・

Claims (1)

【特許請求の範囲】[Claims] (1)スロットルバルブ下流の各気筒の吸気通路にそれ
ぞれ燃料を供給するインジェクタと、該各インジェクタ
近傍にそれぞれ上記スロットルバルブ上流から導いたア
シストエアを供給するアシストエア供給装置と、エンジ
ン低負荷時に一部気筒の吸気通路を閉じて減筒運転させ
るシャッターバルブとを備えたエンジンの気筒数制御装
置において、上記減筒運転時に休止気筒のアシストエア
供給装置を停止させる制御装置が設けられていることを
特徴とするエンジンの気筒数制御装置。
(1) An injector that supplies fuel to the intake passage of each cylinder downstream of the throttle valve; an assist air supply device that supplies assist air guided from upstream of the throttle valve to the vicinity of each injector; In an engine cylinder number control device equipped with a shutter valve that closes the intake passage of a partial cylinder to perform a cylinder reduction operation, the engine cylinder number control device is provided with a control device that stops an assist air supply device of a dormant cylinder during the cylinder reduction operation. Characteristic engine cylinder number control device.
JP61238223A 1986-10-07 1986-10-07 Control device for number of operating cylinders of engine Pending JPS6394031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61238223A JPS6394031A (en) 1986-10-07 1986-10-07 Control device for number of operating cylinders of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61238223A JPS6394031A (en) 1986-10-07 1986-10-07 Control device for number of operating cylinders of engine

Publications (1)

Publication Number Publication Date
JPS6394031A true JPS6394031A (en) 1988-04-25

Family

ID=17026978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61238223A Pending JPS6394031A (en) 1986-10-07 1986-10-07 Control device for number of operating cylinders of engine

Country Status (1)

Country Link
JP (1) JPS6394031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590504B2 (en) 2009-05-08 2013-11-26 Honda Motor Co., Ltd. Method for controlling an intake system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590504B2 (en) 2009-05-08 2013-11-26 Honda Motor Co., Ltd. Method for controlling an intake system

Similar Documents

Publication Publication Date Title
US4201180A (en) Split engine operation of closed loop controlled multi-cylinder internal combustion engine with air-admission valve
US7472679B2 (en) Valve control device and valve control method for internal combustion engine
RU2358144C1 (en) Device for fuel supply for vehicle
US6813880B2 (en) Fuel injection controlling apparatus for engine
JPH076395B2 (en) Internal combustion engine intake system
JPH0821342A (en) Fuel injection type engine
KR100236141B1 (en) Apparatus and method for controlling intake air amount in engines that perform lean cumbustion
JPH07103050A (en) Fuel injection device for internal combustion engine
JPS6394031A (en) Control device for number of operating cylinders of engine
JP2005113745A (en) Fuel supply device for internal combustion engine
JPH087092Y2 (en) Fuel injector
JP2627104B2 (en) Assist air supply device for internal combustion engine
JPH082460Y2 (en) Gas engine mixer
JPH01240742A (en) Fuel supply device for engine
JP4214398B2 (en) Internal combustion engine
JPH0313429B2 (en)
JPH0666227A (en) Fuel injector for internal combustion engine
JPS6116257A (en) Engine exhaust recirulation control system
JPS6142093B2 (en)
JPH02163432A (en) Fuel feeding device for engine
JPH0633803A (en) Fuel supply device of engine
JPH04224271A (en) Assist-air supply device for internal combustion engine
JPS62135627A (en) Fuel injection device for engine
JPS6113102B2 (en)
JPH07310602A (en) Intake device for engine