JP4214398B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP4214398B2
JP4214398B2 JP2004011887A JP2004011887A JP4214398B2 JP 4214398 B2 JP4214398 B2 JP 4214398B2 JP 2004011887 A JP2004011887 A JP 2004011887A JP 2004011887 A JP2004011887 A JP 2004011887A JP 4214398 B2 JP4214398 B2 JP 4214398B2
Authority
JP
Japan
Prior art keywords
combustion
cylinder
combustion chamber
port
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004011887A
Other languages
Japanese (ja)
Other versions
JP2005207244A (en
Inventor
譲二 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004011887A priority Critical patent/JP4214398B2/en
Publication of JP2005207244A publication Critical patent/JP2005207244A/en
Application granted granted Critical
Publication of JP4214398B2 publication Critical patent/JP4214398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排ガス還流(EGR)を行わせる内燃エンジンに係り、特に、ストイキ運転時にEGRを行わせる内燃エンジンに関する。   The present invention relates to an internal combustion engine that performs exhaust gas recirculation (EGR), and more particularly to an internal combustion engine that performs EGR during stoichiometric operation.

一般に、エンジン運転時には、気筒内にEGRによる排ガスを導入させればポンプロスの低減や熱損失の低減などが図られ、熱効率が向上して燃費を改善できることが知られている。
一方、この排ガス還流量(EGR量)が増加すると、燃焼が緩慢となり等容度が低下して熱効率が落ち、燃費が悪化してしまう。つまり、EGR量は、少量の場合には燃費を良好化できるものの、増加によって逆に悪化するとの問題がある。なお、この等容度とは、燃焼指標の一つであり、燃焼が瞬時に完結しないことによる時間損失の割合である。エンジンでは一般に約0.8〜0.95の範囲に収まるように設計される。
In general, it is known that when exhaust gas is introduced by EGR into a cylinder during engine operation, pump loss and heat loss can be reduced and thermal efficiency can be improved to improve fuel efficiency.
On the other hand, when the exhaust gas recirculation amount (EGR amount) increases, the combustion becomes slow, the isovolume decreases, the thermal efficiency decreases, and the fuel consumption deteriorates. In other words, there is a problem that the EGR amount deteriorates conversely by an increase, although the fuel efficiency can be improved when the amount is small. The equal volume is one of the combustion indices, and is the ratio of time loss due to the fact that combustion is not completed instantaneously. Engines are generally designed to be in the range of about 0.8-0.95.

ここで、上記等容度を低下させないことに着目し、ストイキ運転時のEGR量の多い場合(高EGR率時)には、加圧空気を気筒内にで直接的に噴射させるエンジンが本発明者から提案されている(特願2003−360944号)。この加圧空気はエアポンプ等を備えた加圧空気供給装置で生成される。このエンジンによれば、燃焼室内では燃料と空気との乱れ(乱れ作用)が活発になり、等容度が低下しなくなる。   Here, paying attention to the fact that the equal volume is not lowered, an engine that directly injects pressurized air into the cylinder when the EGR amount during stoichiometric operation is large (at a high EGR rate) is disclosed in the present invention. (Japanese Patent Application No. 2003-360944). This pressurized air is generated by a pressurized air supply device equipped with an air pump or the like. According to this engine, turbulence (turbulence action) between fuel and air becomes active in the combustion chamber, and the isovolume does not decrease.

これについては図4を用いて説明する。まず、筒内で加圧空気の直接噴射を行わない場合(従来1)において、低EGR率時では燃焼変動が小さく、燃焼期間もそれほど長くならず、等容度も許容範囲内に確保されるので燃費は向上する。しかし、EGR量が増加するに連れて燃焼が緩慢となり、燃焼期間が長くなり、等容度が低下することから熱効率も低下し、逆に燃費が悪化してしまう。   This will be described with reference to FIG. First, when direct injection of pressurized air is not performed in the cylinder (conventional 1), the combustion fluctuation is small at the low EGR rate, the combustion period is not so long, and the equal volume is ensured within the allowable range. Therefore, fuel consumption is improved. However, as the EGR amount increases, the combustion becomes slower, the combustion period becomes longer, and the isovolume decreases, so that the thermal efficiency also decreases, and conversely the fuel efficiency deteriorates.

一方、本発明者の提案のように筒内で加圧空気の直接噴射を行う場合(従来2)には、低EGR率時の他、EGR量の多い高EGR率時においても、燃焼室内では乱れ作用が活発になって燃焼速度が速められるので、燃焼変動が上記従来1の場合よりも小さくなり、燃焼期間も短くなる。よって、上記従来1の場合よりも等容度が増大することから熱効率が向上し、燃費の良好化が図られる。   On the other hand, when the pressurized air is directly injected into the cylinder as in the proposal of the present inventor (conventional 2), not only at a low EGR rate but also at a high EGR rate with a large EGR amount, Since the turbulent action becomes active and the combustion speed is increased, the combustion fluctuation becomes smaller than that in the conventional case 1, and the combustion period becomes shorter. Therefore, since the equal volume is increased as compared with the conventional case 1, the thermal efficiency is improved and the fuel efficiency is improved.

ところで、上述の従来技術では、加圧空気の生成には加圧空気供給装置が必要とされている。つまり、上記エンジンにはエアポンプ等の構成が別途必要となり、製造コストを安価に抑えることができないとの問題が残されている。
また、上述の加圧空気を用いる場合には、吸入空気量を予め減らしておく必要がある点にも留意しなければならない。換言すれば、ストイキ運転を維持するためには加圧空気供給分だけスロットル弁を閉弁させて気筒内の新気量を最終的に一定に保持する必要があり、これでは、ポンプロスが却って増大し、燃費の改善の妨げになるからである。
By the way, in the above-described prior art, a pressurized air supply device is required for generating pressurized air. In other words, the engine requires an additional configuration such as an air pump, and there remains a problem that the manufacturing cost cannot be kept low.
It should also be noted that when the above-described pressurized air is used, it is necessary to reduce the intake air amount in advance. In other words, in order to maintain the stoichiometric operation, it is necessary to close the throttle valve by the amount of pressurized air supplied to finally keep the fresh air amount in the cylinder constant, which increases the pump loss. This is because it hinders improvement in fuel consumption.

本発明は、このような課題に鑑みてなされたもので、EGRを行う場合、特に、ストイキ運転時にEGRを行う場合において、製造コストを安価に抑え、且つ、燃費の改善を図ることができる内燃エンジンを提供することを目的とする。   The present invention has been made in view of such problems, and in the case of performing EGR, particularly in the case of performing EGR during stoichiometric operation, an internal combustion engine capable of suppressing the manufacturing cost and improving fuel consumption. The purpose is to provide an engine.

上記目的を達成するべく、請求項1記載の内燃エンジンは、エンジンの各気筒の燃焼室内に導入される排ガス量を可変制御可能な排ガス還流手段と、燃焼室に連通する吸排気ポートとは別個に配設され、各燃焼室にそれぞれ連通する分岐ポートと、各分岐ポートを連通する連通室と、各分岐ポートにそれぞれ配設され、分岐ポートと燃焼室との連通又は遮断を切り換えるポート開閉弁と、排ガス還流手段による前記燃焼室内への排ガス導入中に、連通室に加圧空気を貯留すべく、所定気筒の燃焼直前の圧縮行程後半に該所定気筒のポート開閉弁を一時的に開閉制御するとともに、所定気筒以外の他の気筒の燃焼室に加圧空気を供給すべく、他の気筒の燃焼前の吸気行程中期から圧縮行程中期の間に他の気筒のポート開閉弁を一時的に開閉制御する制御手段とを含むことを特徴としている。 In order to achieve the above object, an internal combustion engine according to claim 1 is provided separately from an exhaust gas recirculation means capable of variably controlling the amount of exhaust gas introduced into the combustion chamber of each cylinder of the engine and an intake / exhaust port communicating with the combustion chamber. A branch port communicating with each combustion chamber, a communication chamber communicating each branch port, and a port opening / closing valve disposed at each branch port to switch communication between the branch port and the combustion chamber And, during the introduction of the exhaust gas into the combustion chamber by the exhaust gas recirculation means, the port opening / closing valve of the predetermined cylinder is temporarily controlled in the latter half of the compression stroke immediately before the combustion of the predetermined cylinder so as to store the pressurized air in the communication chamber. In addition, in order to supply pressurized air to the combustion chambers of other cylinders other than the predetermined cylinder, the port opening / closing valves of the other cylinders are temporarily set between the middle of the intake stroke before the combustion of the other cylinders and the middle of the compression stroke. Open / close control It is characterized in that it comprises a that control means.

更にまた、請求項記載の発明では、制御手段は、所定気筒内で圧縮された空気を、点火時期が所定気筒に連続する他の気筒の燃焼室に供給すべく、当該所定気筒及び他の気筒の各ポート開閉弁をそれぞれ一時的に開閉制御することを特徴としている。
また、請求項記載の発明では、エンジンの燃焼室内に導入される排ガス量を可変制御可能な排ガス還流手段と、燃焼室に連通する吸排気ポートとは別個に配設され、前記燃焼室に連通する連通室と、連通室と燃焼室との連通又は遮断を切り換えるポート開閉弁と、排ガス還流手段による前記燃焼室内への排ガス導入中に、エンジンの所定気筒の燃焼直前の圧縮行程後半に連通室に加圧空気を貯留するべく該所定気筒のポート開閉弁を一時的に開閉制御するとともに所定気筒の次回の燃焼サイクルにおける燃焼前の吸気行程中期から圧縮行程中期の間に連通室に貯留された加圧空気を該所定気筒の燃焼室に供給すべく、ポート開閉弁を一時的に開閉制御する制御手段とを含むこと特徴としている。
Furthermore, in the invention according to claim 2 , the control means supplies the compressed air in the predetermined cylinder to the combustion chamber of the other cylinder whose ignition timing is continuous with the predetermined cylinder. It is characterized in that each port on-off valve of the cylinder is temporarily controlled to open and close.
According to a third aspect of the present invention, the exhaust gas recirculation means capable of variably controlling the amount of exhaust gas introduced into the combustion chamber of the engine and the intake / exhaust port communicating with the combustion chamber are provided separately, Communicating in the latter half of the compression stroke immediately before combustion of a predetermined cylinder of the engine during the introduction of the exhaust gas into the combustion chamber by the exhaust gas recirculation means, the port opening / closing valve for switching communication between the communication chamber and the combustion chamber The port opening / closing valve of the predetermined cylinder is temporarily controlled to be stored in the chamber so as to store the pressurized air, and is stored in the communication chamber from the middle of the intake stroke before the combustion to the middle of the compression stroke in the next combustion cycle of the predetermined cylinder. Control means for temporarily opening and closing the port opening / closing valve to supply the pressurized air to the combustion chamber of the predetermined cylinder.

更に、請求項記載の発明では、制御手段は、エンジンのストイキ運転時にポート開閉弁を開閉制御することを特徴としている。 Further, the invention according to claim 4 is characterized in that the control means controls the opening / closing of the port opening / closing valve during the stoichiometric operation of the engine.

したがって、請求項1記載の本発明の内燃エンジンによれば、制御手段がポート開閉弁を作動制御し、EGR実施中に加圧空気を燃焼室に供給させることから、従来の如くの加圧空気供給装置を用いることなく、EGR量の多い場合にも燃焼室内では燃料と空気との乱れ(乱れ作用)が活発になる。よって、製造コストを安価に抑えつつ、燃焼速度の上昇による等容度の増加及び熱効率の向上から燃費の改善を図ることができる。   Therefore, according to the internal combustion engine of the first aspect of the present invention, the control means controls the operation of the port opening / closing valve and supplies the pressurized air to the combustion chamber during the EGR operation. Even when the amount of EGR is large without using a supply device, turbulence (turbulence action) between fuel and air becomes active in the combustion chamber. Therefore, it is possible to improve the fuel efficiency by increasing the isovolume by increasing the combustion speed and improving the thermal efficiency while keeping the manufacturing cost low.

また、上記燃費の改善の他、乱れ作用の活発化によって燃焼室内では燃料の霧化促進を図ることも可能となる。つまり、ピストンやシリンダに付着する燃料が減少し、冷態時では未燃燃料(HC)が低減され、排ガスの浄化促進をも図ることができる。
た燃焼室内に供給された空気は、圧縮行程後半では十分加圧されていることに鑑み、この時点で制御手段が所定気筒のポート開閉弁を一時的に開弁させるので、加圧空気を連通室に確実に取り込むことができる。従って、従来に比して製造コストが安価になるし、例えば、電動のポンプを用いる場合のような電気的なロスの懸念がなく、空気の加圧を効率良く達成できる。
Further, in addition to the improvement of the fuel consumption, the atomization of the fuel can be promoted in the combustion chamber by activating the turbulence. That is, the fuel adhering to the piston and cylinder is reduced, unburned fuel (HC) is reduced in the cold state, and exhaust gas purification can be promoted.
The air supplied to the or combustion chamber, in view of the fact that pressurized sufficiently pressurized in the latter half of the compression stroke, the control means at this time to temporarily open the port on-off valve of a given cylinder, pressurized air Can be reliably taken into the communication room. Therefore, the manufacturing cost is lower than in the conventional case, and there is no concern of electrical loss as in the case of using an electric pump, for example, and air pressurization can be achieved efficiently.

更に、吸気行程中期では、燃焼室内の圧力(筒内圧)が低いので上記乱れ作用が良好に生じ、また、圧縮行程中期では、燃焼の極めて直前に上記乱れ作用を生じるので上記乱れ作用がより活発化される。よって、この時期に制御手段が他の気筒のポート開閉弁を一時的に開弁すれば、適切な燃費の改善に寄与できる。
更にまた、請求項記載の発明によれば、加圧空気は点火時期が所定気筒に連続する他の気筒の燃焼室に供給されることから、加圧空気分の新気を増減すべくスロットル弁を制御する必要がなく、スロットル弁制御の簡略化を図ることができる。
Furthermore, the air intake stroke metaphase, the low pressure in the combustion chamber (cylinder pressure) occur above turbulence effect is satisfactory, In addition, in the compression stroke mid the turbulence effect and more since they produce the disturbance acting on very shortly before the combustion Be activated. Therefore, if the control means temporarily opens the port opening / closing valve of the other cylinders at this time, it can contribute to an appropriate improvement in fuel consumption.
Furthermore, according to the second aspect of the present invention, since the pressurized air is supplied to the combustion chamber of another cylinder whose ignition timing is continuous with the predetermined cylinder, the throttle valve is used to increase or decrease the amount of fresh air for the pressurized air. Therefore, the throttle valve control can be simplified.

また、請求項記載の発明によれば、請求項1と同様の効果が得られる。
更に、請求項記載の発明によれば、燃焼室に供給される加圧空気は、ストイキ運転を行うために予め吸入された空気、換言すれば、従来のようなストイキ運転とは別個に供給された空気ではなく、そもそもストイキ運転を行うために吸入されていた空気である。そして、これを利用すれば加圧空気の供給のためにスロットル弁を別途閉じる必要がなく、これに伴うポンプロスの増大も抑えることができる。
Further, according to the invention described in claim 3 , the same effect as in claim 1 can be obtained.
According to the fourth aspect of the present invention, the pressurized air supplied to the combustion chamber is supplied in advance to perform the stoichiometric operation, in other words, separately from the conventional stoichiometric operation. It is not the air that has been used, but the air that has been inhaled to perform the stoichiometric operation. And if this is utilized, it is not necessary to close a throttle valve separately for supply of pressurized air, and the increase in the pump loss accompanying this can also be suppressed.

以下、図面により本発明の実施形態について説明する。
当該実施形態のエンジン1は直列4気筒エンジンである。このエンジン1のシリンダヘッド2には♯1〜♯4の4つの気筒11〜14が形成されており、気筒11〜14毎に吸気ポート4が形成されている。また、この各吸気ポート4の燃焼室3側には各吸気ポート4と燃焼室3との連通及び遮断を行う吸気弁8がそれぞれ設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The engine 1 of this embodiment is an in-line four-cylinder engine. The cylinder head 2 of the engine 1 includes four cylinders 11 to 14 # 1 to # 4, and an intake port 4 is formed for each cylinder 11 to 14. Further, an intake valve 8 is provided on the side of the combustion chamber 3 of each intake port 4 to perform communication and disconnection between each intake port 4 and the combustion chamber 3.

各吸気ポート4には吸気通路10の一端がそれぞれ接続されている。この吸気通路10には各気筒11〜14に燃料噴射を行う電磁式のインジェクタ(図示せず)が気筒毎にそれぞれ取り付けられており、このインジェクタはピストン5の排気行程で燃焼室3に向けて燃料を噴射する。
吸気通路10には吸気管16の一端が接続されている。吸気管16には吸入空気量を調節するモータ駆動式のスロットル弁18の他、スロットル開度を検出するセンサ、吸入空気量を検出するセンサ(いずれも図示せず)が設けられている。そして、新気は各吸気ポート4を介して♯1気筒11、#2気筒12、#3気筒13及び♯4気筒14に吸入されている。
One end of an intake passage 10 is connected to each intake port 4. In the intake passage 10, electromagnetic injectors (not shown) for injecting fuel into the cylinders 11 to 14 are attached to the respective cylinders, and the injectors are directed toward the combustion chamber 3 in the exhaust stroke of the piston 5. Inject fuel.
One end of an intake pipe 16 is connected to the intake passage 10. In addition to a motor-driven throttle valve 18 that adjusts the intake air amount, the intake pipe 16 is provided with a sensor that detects the throttle opening and a sensor that detects the intake air amount (both not shown). The fresh air is sucked into the # 1 cylinder 11, # 2 cylinder 12, # 3 cylinder 13 and # 4 cylinder 14 through the intake ports 4.

シリンダヘッド2には気筒11〜14毎に点火プラグ7が取り付けられており、吸気管16からの新気とインジェクタからの燃料とからなる混合気に対して燃焼室3内で火花点火が行われる。なお、本実施形態の点火順序は、♯1気筒11、#3気筒13、♯4気筒14、#2気筒12の順である。
また、シリンダヘッド2には4つの気筒11〜14毎に排気ポート6が形成されている。そして、各排気ポート6の燃焼室3側には各排気ポート6と燃焼室3との連通及び遮断を行う排気弁9がそれぞれ設けられている。この排気弁9の開閉時期は排気弁タイミング可変装置(排ガス還流手段)50による油圧調整によって連続的に可変にされている。この排気弁タイミング可変装置50には例えばベーン式可変バルブタイミング機構が適用される。なお、該ベーン式可変バルブタイミング機構は公知であり、ここではその構成の詳細については説明を省略する。
Spark plugs 7 are attached to the cylinder head 2 for each of the cylinders 11 to 14, and spark ignition is performed in the combustion chamber 3 for the air-fuel mixture composed of fresh air from the intake pipe 16 and fuel from the injector. . Note that the ignition order of the present embodiment is the order of # 1 cylinder 11, # 3 cylinder 13, # 4 cylinder 14, and # 2 cylinder 12.
Further, an exhaust port 6 is formed in the cylinder head 2 for each of the four cylinders 11 to 14. Exhaust valves 9 are provided on the side of the combustion chamber 3 of each exhaust port 6 to communicate and block each exhaust port 6 and the combustion chamber 3. The opening / closing timing of the exhaust valve 9 is continuously varied by adjusting the hydraulic pressure by an exhaust valve timing varying device (exhaust gas recirculation means) 50. For example, a vane type variable valve timing mechanism is applied to the exhaust valve timing variable device 50. The vane type variable valve timing mechanism is well known, and a detailed description of the configuration is omitted here.

各排気ポート6には排気通路40の一端がそれぞれ接続されている。また、排気通路40には排気浄化を行う三元触媒や排気中の排気空燃比を検出するO2センサ(いずれも図示せず)が設けられている。
ここで、上記各気筒11、12、13、14には、燃焼室3に連通する分岐管(分岐ポート)31、32、33、34が吸気ポート4や排気ポート6とは別個に配設されている。また、各分岐管31、32、33、34には、この各分岐管を任意の時期に開閉可能な電磁式のエア弁(ポート開閉弁)21、22、23、24がそれぞれ装着されている。更に、各分岐管31、32、33、34には、これらを連通するデリバリパイプ(連通室)20が接続されている。
One end of an exhaust passage 40 is connected to each exhaust port 6. The exhaust passage 40 is provided with a three-way catalyst for purifying exhaust gas and an O 2 sensor (none of which is shown) for detecting the exhaust air-fuel ratio in the exhaust gas.
Here, in each of the cylinders 11, 12, 13, and 14, branch pipes (branch ports) 31, 32, 33, and 34 communicating with the combustion chamber 3 are provided separately from the intake port 4 and the exhaust port 6. ing. Each branch pipe 31, 32, 33, 34 is equipped with an electromagnetic air valve (port opening / closing valve) 21, 22, 23, 24 that can open and close each branch pipe at an arbitrary time. . Furthermore, a delivery pipe (communication chamber) 20 that connects these branch pipes 31, 32, 33, and 34 is connected.

具体的には、#1気筒11の断面図(図2)に示されるように、分岐管31は、シリンダヘッド2の吸気ポート4の開口近傍位置において燃焼室3に向けて開口され、燃焼室3から離れる方向に延設されている。そして、デリバリパイプ20は分岐管31に略直交する方向にて他の分岐管32、33、34に向けて設けられている。
一方、エア弁21は分岐管31に対してシリンダヘッド2の外側から燃焼室3に向けて装着されている。そして、電子コントロールユニット(ECU)60からの信号に基づいてエア弁21の弁体41が分岐管31を開閉することにより、気筒11の燃焼室3内の圧縮された空気を取り出してデリバリパイプ20に貯留したり、また、このデリバリパイプ20を介して、気筒12からの加圧された空気を気筒11の燃焼室3内へ供給することが行われる。なお、気筒12、13、14の構成についても上記気筒11の構成と同様である。
Specifically, as shown in the sectional view of the # 1 cylinder 11 (FIG. 2), the branch pipe 31 is opened toward the combustion chamber 3 at a position near the opening of the intake port 4 of the cylinder head 2, and the combustion chamber It extends in a direction away from 3. The delivery pipe 20 is provided toward the other branch pipes 32, 33, 34 in a direction substantially orthogonal to the branch pipe 31.
On the other hand, the air valve 21 is attached to the branch pipe 31 from the outside of the cylinder head 2 toward the combustion chamber 3. Then, the valve body 41 of the air valve 21 opens and closes the branch pipe 31 based on a signal from the electronic control unit (ECU) 60, thereby extracting compressed air in the combustion chamber 3 of the cylinder 11 and delivering pipe 20. In addition, the pressurized air from the cylinder 12 is supplied into the combustion chamber 3 of the cylinder 11 through the delivery pipe 20. The configuration of the cylinders 12, 13, and 14 is the same as the configuration of the cylinder 11.

ECU60は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を備えており、当該ECU60によってエンジン1の総合的な制御が行われる。
ECU60の入力側には上記各種センサ類が接続されている。一方、ECU60の出力側には、上記インジェクタやスロットル弁18等の他、排気弁タイミング可変装置50等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された各信号がそれぞれ出力される。
The ECU 60 includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like, and the ECU 60 performs overall control of the engine 1.
The various sensors are connected to the input side of the ECU 60. On the other hand, the output side of the ECU 60 is connected to various output devices such as the exhaust valve timing variable device 50 in addition to the injector, the throttle valve 18 and the like, and these various output devices include detection information from various sensors. Each signal calculated based on the output is output.

特に、本実施形態のエンジン1では、エア弁制御部(制御手段)61がECU60に備えられており、このエア弁制御部(制御手段)61は、例えば#1気筒(一の気筒)11内の圧縮された空気を、点火時期が連続する#3気筒(他の気筒)13内に加圧空気として供給させるべく、エンジン運転状態に応じてエア弁21を作動制御する。
このように、エア弁制御部61によるエア弁21の作動制御によって、#1気筒11の圧縮された空気を加圧空気として#3気筒13に供給すれば、加圧空気分の新気を増減すべくスロットル弁18を制御する必要がなく、スロットル弁制御の簡略化を図ることができるとともに、燃焼室3内で空気と燃料との乱れ作用を生じさせ、EGR量が増加しても燃費の改善を図ることができる。
In particular, in the engine 1 of the present embodiment, an air valve control unit (control unit) 61 is provided in the ECU 60, and the air valve control unit (control unit) 61 is, for example, in the # 1 cylinder (one cylinder) 11. The air valve 21 is operated and controlled in accordance with the engine operating state so that the compressed air is supplied as pressurized air into the # 3 cylinder (other cylinders) 13 whose ignition timing continues.
Thus, if the compressed air of the # 1 cylinder 11 is supplied to the # 3 cylinder 13 as the pressurized air by the operation control of the air valve 21 by the air valve control unit 61, the fresh air for the pressurized air is increased or decreased. Therefore, it is not necessary to control the throttle valve 18 as much as possible, and the throttle valve control can be simplified, and the turbulent action of air and fuel is generated in the combustion chamber 3 to improve the fuel consumption even if the EGR amount increases. Can be achieved.

このエア弁制御部61の加圧空気の供給による燃費改善制御については図3を用いて説明する。
当該制御では、排気弁タイミング可変装置50を用いてストイキ運転時に高EGR率で内部EGR制御を実施中に、各エア弁の開弁時期が圧縮行程に設定される。例えば、エア弁21は#1気筒11の圧縮行程後半のタイミングTで一時的に開弁される。このタイミングTにおける#1気筒11内の空気は、燃焼前の未だ混合気の状態にあり、しかも、ピストン5の上昇に伴って既に圧縮されている。よって、このタイミングTでエア弁21を開弁させれば、#1気筒11内の圧縮された空気がデリバリパイプ20内に確実に取り込まれて貯留されることになる。
The fuel efficiency improvement control by the supply of pressurized air by the air valve control unit 61 will be described with reference to FIG.
In this control, the opening timing of each air valve is set to the compression stroke while the internal EGR control is being performed at a high EGR rate during the stoichiometric operation using the exhaust valve timing varying device 50. For example, the air valve 21 is temporarily opened at the timing T in the latter half of the compression stroke of the # 1 cylinder 11. The air in the # 1 cylinder 11 at this timing T is still in the state of the air-fuel mixture before combustion, and is already compressed as the piston 5 rises. Therefore, if the air valve 21 is opened at this timing T, the compressed air in the # 1 cylinder 11 is surely taken into the delivery pipe 20 and stored.

次いで、エア弁23が#3気筒13の圧縮行程前半のタイミングFで一時的に開弁される。このタイミングFでエア弁23を開弁させれば、デリバリパイプ20内の加圧空気が#3気筒13の燃焼室3に勢い良く噴射され、#3気筒13の燃焼室3では強い乱れが生成されることになる。
なお、ここでは、圧縮行程にある気筒11と該気筒11の点火時期に連続する気筒13との組み合わせについて説明したが、圧縮行程の気筒とこれに連続する圧縮行程の気筒との組み合わせであれば、図3にてタイミングTからタイミングFへの矢印で示されるように、圧縮行程にある気筒13と気筒14、同じく気筒14と気筒12や気筒12と気筒11についても同様に制御できる。これらエア弁の開閉はシーケンシャルに繰り返される。
Next, the air valve 23 is temporarily opened at the timing F in the first half of the compression stroke of the # 3 cylinder 13. If the air valve 23 is opened at this timing F, the pressurized air in the delivery pipe 20 is injected vigorously into the combustion chamber 3 of the # 3 cylinder 13, and a strong turbulence is generated in the combustion chamber 3 of the # 3 cylinder 13. Will be.
Here, the combination of the cylinder 11 in the compression stroke and the cylinder 13 that is continuous with the ignition timing of the cylinder 11 has been described. However, as long as it is a combination of a cylinder in the compression stroke and a cylinder in the compression stroke that follows the combination. 3, the cylinder 13 and the cylinder 14 in the compression stroke, the cylinder 14 and the cylinder 12, and the cylinder 12 and the cylinder 11 can be similarly controlled as indicated by an arrow from the timing T to the timing F. The opening and closing of these air valves is repeated sequentially.

したがって、本実施形態のエア弁制御部61では、燃焼室3内に供給された空気が圧縮行程後半では十分加圧された状態にあることに着目し、エア弁制御部61が上記圧縮行程後半(タイミングT)でエア弁を一時的に開弁すれば、加圧空気をデリバリパイプ20に確実に取り込むことができる。よって、エアポンプを用いることなく加圧空気の生成が可能となり、製造コストが安価に抑えられる。しかも、電動のポンプを用いる場合の如くの電気的なロスがなく、空気の加圧を効率良く行える。   Therefore, in the air valve control unit 61 of the present embodiment, paying attention to the fact that the air supplied into the combustion chamber 3 is sufficiently pressurized in the second half of the compression stroke, the air valve control unit 61 performs the second half of the compression stroke. If the air valve is temporarily opened at (timing T), the pressurized air can be reliably taken into the delivery pipe 20. Therefore, it is possible to generate pressurized air without using an air pump, and the manufacturing cost can be reduced. In addition, there is no electrical loss as in the case of using an electric pump, and air can be pressurized efficiently.

そして、燃焼が悪化する高EGR率時に、この加圧空気を燃焼室に供給すれば、燃焼室3内では燃料と空気との乱れ(乱れ作用)が活発になる。従って、燃焼速度が上昇し、等容度の増加によって熱効率も向上し、EGR量が増加しても燃費の改善が図られる。
更に、この加圧空気は、ストイキ運転と別個に供給された空気ではなく、そもそもストイキ運転を行うためにスロットル弁18を介して吸入されていた空気を再利用したものに相当するので、加圧空気の供給のためにスロットル弁18を改めて閉じる必要がなく、これに伴うポンプロスの増大が抑えられる。
When this pressurized air is supplied to the combustion chamber at a high EGR rate at which the combustion deteriorates, the turbulence (turbulence action) between the fuel and air becomes active in the combustion chamber 3. Therefore, the combustion speed is increased, the thermal efficiency is improved by increasing the isovolume, and the fuel efficiency is improved even if the EGR amount is increased.
Furthermore, this pressurized air is not air supplied separately from the stoichiometric operation, but corresponds to the one that reuses the air that has been sucked in through the throttle valve 18 in order to perform the stoichiometric operation. It is not necessary to close the throttle valve 18 again for supplying air, and an increase in pump loss associated therewith is suppressed.

更にまた、エア弁制御部61が上記圧縮行程前半(タイミングF)でエア弁を開弁すれば、エアポンプを用いることなく加圧空気の供給が可能となるし、燃焼の直前に上記乱れ作用が生じ、燃費のより一層の改善が図られる。
また、加圧空気の供給は燃焼室3内での燃料の霧化促進を図ることができる。つまり、吸気行程中に加圧空気を供給することによって霧化が促進され、燃料がピストン5などに付着し難くなり、例えば冷態時では未燃燃料(HC)の低減が達成可能となる。
Furthermore, if the air valve control unit 61 opens the air valve in the first half of the compression stroke (timing F), it is possible to supply pressurized air without using an air pump, and the turbulence effect occurs immediately before combustion. As a result, the fuel consumption is further improved.
Further, the supply of pressurized air can promote the atomization of fuel in the combustion chamber 3. That is, atomization is promoted by supplying pressurized air during the intake stroke, making it difficult for the fuel to adhere to the piston 5 and the like. For example, in the cold state, reduction of unburned fuel (HC) can be achieved.

以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では加圧空気を噴射させるべく、エア弁制御部61が圧縮行程前半(タイミングF)でエア弁を開弁しているが、このタイミングFは、この圧縮行程前半の他、吸気行程中期から圧縮行程中期に亘って設定するか、或いは、吸気行程後半だけに設定しても良い。筒内圧の低い吸気行程中期では上記乱れ作用が良好に生じ、燃焼の直前の圧縮行程中期では上記乱れ作用がより活発化され、適切な燃費の改善に寄与するからである。また、吸気行程後半に設定する場合、上述の気筒11と気筒13との関係でいえば、エア弁21の開弁と同時にエア弁23を開弁することによっても加圧空気を供給可能である。この場合には、気筒11内で加圧された空気がデリバリパイプ20に貯留されず、気筒11内で圧縮された空気がデリバリパイプ20を介して気筒13に直ちに供給できるからである。
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the air valve control unit 61 opens the air valve in the first half of the compression stroke (timing F) in order to inject pressurized air, but this timing F includes the first half of the compression stroke, It may be set from the middle of the intake stroke to the middle of the compression stroke, or may be set only in the latter half of the intake stroke. This is because the turbulence is favorably generated in the middle of the intake stroke where the in-cylinder pressure is low, and the turbulence is more active in the middle of the compression stroke immediately before combustion, which contributes to the improvement of appropriate fuel consumption. Further, when the second half of the intake stroke is set, the compressed air can be supplied by opening the air valve 23 simultaneously with the opening of the air valve 21 in terms of the relationship between the cylinder 11 and the cylinder 13 described above. . In this case, the air pressurized in the cylinder 11 is not stored in the delivery pipe 20, and the air compressed in the cylinder 11 can be immediately supplied to the cylinder 13 via the delivery pipe 20.

また、上記実施形態では4気筒の例が示されているが、本発明は2気筒の場合にも適用可能であり、更に、上記一実施形態に示す弁体41を弁座側に付勢するバルブに換えて、開弁時に燃焼室内に突出するポペット弁タイプのインジェクタであっても良い。
更に、上記実施形態では排気弁タイミング可変装置を用いた内部EGRによって排ガスの一部を燃焼室に導入しているが、この実施形態の他、例えば、気筒の外部にEGR配管及びEGRバルブを設け、このバルブの開閉によりサージタンクに排気の一部を還流させる外部EGRであっても良い。
Moreover, although the example of 4 cylinders is shown in the said embodiment, this invention is applicable also to the case of 2 cylinders, Furthermore, the valve body 41 shown in the said one embodiment is urged | biased to the valve seat side. Instead of the valve, a poppet valve type injector that protrudes into the combustion chamber when the valve is opened may be used.
Furthermore, in the above embodiment, a part of the exhaust gas is introduced into the combustion chamber by internal EGR using the exhaust valve timing variable device. In addition to this embodiment, for example, an EGR pipe and an EGR valve are provided outside the cylinder. An external EGR that recirculates part of the exhaust gas to the surge tank by opening and closing the valve may be used.

また、上記実施形態では吸気ポートを介した燃料噴射が実施可能なマルチポイントインジェクションエンジン(MPI型エンジン)への適用を示しているが、筒内噴射型エンジンに適用しても良い。
更に、上記実施形態ではストイキ運転時に適用する例が示されているが、空燃比がストイキ運転よりもリーン側、又はリッチ側の略ストイキ運転時に適用しても良い。この場合にも、上記実施形態のストイキ運転時と同様の効果が得られる。また、この略ストイキ運転よりも更にリーン側のリーン運転時に適用しても良い。
In the above embodiment, the present invention is applied to a multipoint injection engine (MPI engine) capable of performing fuel injection via an intake port, but may be applied to an in-cylinder injection engine.
Furthermore, although the example applied in the stoichiometric operation is shown in the above-described embodiment, the present invention may be applied during a substantially stoichiometric operation where the air-fuel ratio is leaner or richer than the stoichiometric operation. Also in this case, the same effect as in the stoichiometric operation of the above embodiment can be obtained. Further, the present invention may be applied during lean operation on the lean side further than the substantially stoichiometric operation.

以下に、上記実施形態の変形例について説明する。
上記実施形態では、各燃焼室に連通する分岐管及びこれら分岐管を連通する共通のデリバリパイプを設けた例が示されている。
一方、変形例では、各気筒に個別に連通する複数のデリバリパイプ(連通室)、及び各気筒の燃焼室とデリバリパイプとの連通及び遮断を行うエア弁を設ける。そして、この各気筒毎に独立のデリバリパイプを設けた変形例の場合には、エア弁制御部によってエア弁が次のように制御される。すなわち、所定気筒で圧縮された加圧空気をデリバリパイプに貯留すべく該所定気筒の圧縮行程後半にエア弁を一時的に開閉するとともに、該所定気筒の次回の燃焼サイクルにおける吸気行程中期から圧縮行程中期の間に、該デリバリパイプに貯留された加圧空気を該所定気筒の燃焼室内に供給すべく、エア弁を一時的に開閉する。これにより、共通のデリバリパイプを設けた上記実施形態の場合と同一の効果が得られる。
Below, the modification of the said embodiment is demonstrated.
In the above embodiment, an example in which a branch pipe communicating with each combustion chamber and a common delivery pipe communicating these branch pipes is shown.
On the other hand, in the modified example, a plurality of delivery pipes (communication chambers) communicating with each cylinder individually, and an air valve for communicating and blocking between the combustion chamber of each cylinder and the delivery pipe are provided. And in the case of the modification which provided the independent delivery pipe for every cylinder, an air valve is controlled as follows by an air valve control part. That is, the air valve is temporarily opened and closed in the latter half of the compression stroke of the predetermined cylinder so as to store the compressed air compressed in the predetermined cylinder in the delivery pipe, and compressed from the middle of the intake stroke in the next combustion cycle of the predetermined cylinder. During the middle of the stroke, the air valve is temporarily opened and closed to supply the pressurized air stored in the delivery pipe into the combustion chamber of the predetermined cylinder. Thereby, the same effect as the case of the said embodiment which provided the common delivery pipe is acquired.

また、この変形例の場合、つまり、同一の気筒で圧縮された加圧空気をデリバリパイプに貯留し、次回の燃焼サイクルにおいて該デリバリパイプに貯留された加圧空気を燃焼室内に供給する場合には、多気筒に限定されずに、単気筒エンジンにも適用可能である。   In the case of this modification, that is, when compressed air compressed in the same cylinder is stored in the delivery pipe, and the pressurized air stored in the delivery pipe is supplied into the combustion chamber in the next combustion cycle. Can be applied to a single cylinder engine without being limited to a multi-cylinder.

本発明の一実施形態に係る内燃エンジンの概略構成図である。1 is a schematic configuration diagram of an internal combustion engine according to an embodiment of the present invention. 図1のエンジンの部分断面図である。It is a fragmentary sectional view of the engine of FIG. 図1のエンジンによる燃費改善制御の説明図である。It is explanatory drawing of the fuel consumption improvement control by the engine of FIG. 従来のエンジンによる燃費改善の説明図である。It is explanatory drawing of the fuel consumption improvement by the conventional engine.

符号の説明Explanation of symbols

1 内燃エンジン
3 燃焼室
4 吸気ポート
6 排気ポート
11,12,13,14 気筒
20 デリバリパイプ(連通室)
21,22,23,24 エア弁(ポート開閉弁)
31,32,33,34 分岐管(分岐ポート)
50 排気弁タイミング可変装置(排ガス還流手段)
60 電子コントロールユニット(ECU)
61 エア弁制御部(制御手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 Combustion chamber 4 Intake port 6 Exhaust port 11, 12, 13, 14 Cylinder 20 Delivery pipe (communication chamber)
21, 22, 23, 24 Air valve (Port open / close valve)
31, 32, 33, 34 Branch pipe (branch port)
50 Exhaust valve timing variable device (exhaust gas recirculation means)
60 Electronic control unit (ECU)
61 Air valve control unit (control means)

Claims (4)

エンジンの各気筒の燃焼室内に導入される排ガス量を可変制御可能な排ガス還流手段と、
前記燃焼室に連通する吸排気ポートとは別個に配設され、前記各燃焼室にそれぞれ連通する分岐ポートと、
該各分岐ポートを連通する連通室と、
前記各分岐ポートにそれぞれ配設され、該分岐ポートと前記燃焼室との連通又は遮断を切り換えるポート開閉弁と、
前記排ガス還流手段による前記燃焼室内への排ガス導入中に、前記連通室に加圧空気を貯留すべく、所定気筒の燃焼直前の圧縮行程後半に該所定気筒のポート開閉弁を一時的に開閉制御するとともに、前記所定気筒以外の他の気筒の燃焼室に加圧空気を供給すべく、該他の気筒の燃焼前の吸気行程中期から圧縮行程中期の間に該他の気筒のポート開閉弁を一時的に開閉制御する制御手段と
を含むことを特徴とする内燃エンジン。
Exhaust gas recirculation means capable of variably controlling the amount of exhaust gas introduced into the combustion chamber of each cylinder of the engine;
A branch port disposed separately from the intake / exhaust port communicating with the combustion chamber, and communicating with each combustion chamber;
A communication chamber for communicating the branch ports;
A port opening / closing valve disposed at each branch port, for switching communication between the branch port and the combustion chamber;
During the exhaust gas introduction into the combustion chamber by the exhaust gas recirculation means, the port opening / closing valve of the predetermined cylinder is temporarily controlled in the latter half of the compression stroke immediately before the combustion of the predetermined cylinder so as to store pressurized air in the communication chamber. In addition, in order to supply pressurized air to the combustion chambers of other cylinders other than the predetermined cylinder, the port opening / closing valves of the other cylinders are set between the middle of the intake stroke and the middle of the compression stroke before the combustion of the other cylinders. An internal combustion engine comprising: control means for temporarily controlling opening and closing.
前記制御手段は、所定気筒内で圧縮された空気を、点火時期が該所定気筒に連続する他の気筒の燃焼室に供給すべく、前記所定気筒及び他の気筒の各ポート開閉弁をそれぞれ一時的に開閉制御することを特徴とする請求項1に記載の内燃エンジン。 The control means temporarily controls the port opening / closing valves of the predetermined cylinder and other cylinders to supply the air compressed in the predetermined cylinder to the combustion chambers of other cylinders whose ignition timing continues to the predetermined cylinder. 2. The internal combustion engine according to claim 1 , wherein opening and closing control is performed in a controlled manner . エンジンの燃焼室内に導入される排ガス量を可変制御可能な排ガス還流手段と、
前記燃焼室に連通する吸排気ポートとは別個に配設され、前記燃焼室に連通する連通室と、
該連通室と前記燃焼室との連通又は遮断を切り換えるポート開閉弁と、
前記排ガス還流手段による前記燃焼室内への排ガス導入中に、前記エンジンの所定気筒の燃焼直前の圧縮行程後半に前記連通室に加圧空気を貯留するべく該所定気筒のポート開閉弁を一時的に開閉制御するとともに前記所定気筒の次回の燃焼サイクルにおける燃焼前の吸気行程中期から圧縮行程中期の間に前記連通室に貯留された加圧空気を該所定気筒の燃焼室に供給すべく、前記ポート開閉弁を一時的に開閉制御する制御手段と
を含むことを特徴とする内燃エンジン。
Exhaust gas recirculation means that can variably control the amount of exhaust gas introduced into the combustion chamber of the engine;
A communication chamber arranged separately from the intake and exhaust ports communicating with the combustion chamber, and communicating with the combustion chamber;
A port opening / closing valve for switching communication or blocking between the communication chamber and the combustion chamber;
During the introduction of exhaust gas into the combustion chamber by the exhaust gas recirculation means, the port opening / closing valve of the predetermined cylinder is temporarily stored so as to store pressurized air in the communication chamber in the latter half of the compression stroke immediately before combustion of the predetermined cylinder of the engine. The port is controlled to open and close and to supply pressurized air stored in the communication chamber from the middle of the intake stroke before combustion in the next combustion cycle of the predetermined cylinder to the middle of the compression stroke to the combustion chamber of the predetermined cylinder. Control means for temporarily opening and closing the on-off valve;
An internal combustion engine comprising:
前記制御手段は、前記エンジンのストイキ運転時に前記ポート開閉弁を開閉制御することを特徴とする請求項1又3に記載の内燃エンジン。 The internal combustion engine according to claim 1 or 3 , wherein the control means controls the opening / closing of the port opening / closing valve during the stoichiometric operation of the engine.
JP2004011887A 2004-01-20 2004-01-20 Internal combustion engine Expired - Fee Related JP4214398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011887A JP4214398B2 (en) 2004-01-20 2004-01-20 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011887A JP4214398B2 (en) 2004-01-20 2004-01-20 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005207244A JP2005207244A (en) 2005-08-04
JP4214398B2 true JP4214398B2 (en) 2009-01-28

Family

ID=34898438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011887A Expired - Fee Related JP4214398B2 (en) 2004-01-20 2004-01-20 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP4214398B2 (en)

Also Published As

Publication number Publication date
JP2005207244A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
KR100879486B1 (en) Engine
EP1408222B1 (en) Spark-ignition engine controller
EP1515031A3 (en) System and method for controlling spark-ignition internal combustion engine
KR19980064111A (en) Control device of cylinder-type internal combustion engine
US20160115876A1 (en) Internal combustion engine
JP4479822B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2008075471A (en) Fuel injection control device for internal combustion engine
US20190093571A1 (en) Engine control device
JP2010037964A (en) Cylinder fuel injection spark ignition internal combustion engine
JP5072765B2 (en) Spark ignition gas fuel internal combustion engine
JP2006336593A (en) Start controller and start control method for cylinder direct injection internal combustion engine
JP4214398B2 (en) Internal combustion engine
JP4930726B2 (en) Fuel injection device for internal combustion engine
WO2008102910A1 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JP4206905B2 (en) Multi-cylinder internal combustion engine
JP2008163807A (en) Control method of gasoline engine
JP4240083B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP5079619B2 (en) Spark ignition internal combustion engine
JP6697179B2 (en) Engine fuel injector
JP4324776B2 (en) Multi-cylinder internal combustion engine
JP4269158B2 (en) Multi-cylinder internal combustion engine
JP2017198176A (en) Fuel injection device for engine
JP3365681B2 (en) Engine intake system
JP2010031684A (en) Spark ignition internal combustion engine
JP3951855B2 (en) Control device for spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees