JPS6393838A - Aluminum alloy - Google Patents

Aluminum alloy

Info

Publication number
JPS6393838A
JPS6393838A JP23617386A JP23617386A JPS6393838A JP S6393838 A JPS6393838 A JP S6393838A JP 23617386 A JP23617386 A JP 23617386A JP 23617386 A JP23617386 A JP 23617386A JP S6393838 A JPS6393838 A JP S6393838A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
additive quantity
weight
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23617386A
Other languages
Japanese (ja)
Inventor
Ken Toma
当摩 建
Hajime Kudo
元 工藤
Isao Takeuchi
竹内 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP23617386A priority Critical patent/JPS6393838A/en
Publication of JPS6393838A publication Critical patent/JPS6393838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture an active Al alloy for hydrogen formation, etc., by incorporating specific amounts of In and Zn to Al and by subjecting the above alloy to solution heat treatment and then to cooling at a specific cooling velocity. CONSTITUTION:An alloy consisting of, by weight, about 0.1-2% In, about 0.1-5% Zn, and the balance Al after solution heat treatment is cooled at >=100 deg.C/sec cooling rate so as to be formed into an Al alloy. This Al alloy is remarkably electrochemically base and chemically active, so that it reacts with water to form H2 gas efficiently. In this Al alloy, when the additive quantity of In is by far less than 0.1%, activating effect is reduced and, when it exceeds 2% to a marked degree, problems occur at the time of heat treatment such as casting, solution heat treatment, etc., and, moreover, activating effect is not remarkably improved proportionately with the increase in the additive quantity. Zn has an activating function to a greater extent by synergistic effect with In and, in order to make this synergistic effect more marked, an additive quantity of >=0.1% is necessary but, even if the additive quantity exceeds 5%, the effect by the addition is not remarkably improved in proportion to the increase in the additive quantity, though the degree of activation is not reduced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば水と反応させることによって水素ガス
を生成せしむる為の水素生成用等のアルミニウム合金に
関するものである。
The present invention relates to an aluminum alloy for hydrogen production, for example, for producing hydrogen gas by reacting with water.

【従来技術とその問題点】[Prior art and its problems]

従来より、その目的に応じてその組成を整合させたアル
ミニウム合金が、種々の分野において用いられている。 すなわち、アルミニウム合金の一般的な特性として、A
l自体は、本来、電気化学的に著しく卑で、化学的橙活
性なものであるにもかかわらず、その表面は化学的に安
定な酸化皮膜で覆われているので、化学的に不活性で、
耐食性に優れており、このような特徴が各種の分野で利
用されている。 又、この耐食性に富む酸化皮膜の特性は、^1合金中に
含有される他の元素によって影響を受けることも知られ
るに至り、例えば^1合金中のZn量が増大すると、こ
の^1合金は電気化学的に卑なものになることから、こ
のことを応用して、Alや他の材料の防食を図る為の犠
牲陽極材として利用することも行なわれている。 しかし、このような犠牲陽極材は、犠牲陽極効果を長く
もたせる為に、いわゆる自己腐食を最小なものにしてお
く必要があり、この意味においてAl−Zn系合金は依
然として活性でないと言える。 又、Alは、その表面に生成した緻密な酸化皮膜が酸化
反応の内部進行を阻止してしまうことから、通常におい
ては水とほとんど反応しないものとなっているが、本来
においては、水と容易に反応して水素ガスを生成する特
性を有していることに注目して、例えば^1表面に水銀
被膜を形成せしめ、その膜中を泳動・拡散したへl原子
と水分子とを被膜表面上で反応させることによって、水
素ガスを生成させることに用いることが提案されている
。 しかし、このような水銀アマルガムを利用して水素ガス
を提供しようとする手法は、この水銀による公害問題が
苦慮され、実用化の上では問題がある。
BACKGROUND ART Aluminum alloys whose compositions are matched according to the purpose have been used in various fields. That is, as a general property of aluminum alloy, A
Although l itself is originally extremely electrochemically base and chemically active, its surface is covered with a chemically stable oxide film, so it is chemically inert. ,
It has excellent corrosion resistance, and these characteristics are used in various fields. It has also come to be known that the characteristics of this highly corrosion-resistant oxide film are influenced by other elements contained in the ^1 alloy. For example, when the amount of Zn in the ^1 alloy increases, the corrosion resistance of the ^1 alloy increases. Since it is electrochemically base, this fact has also been applied to use as a sacrificial anode material to prevent corrosion of Al and other materials. However, in order to maintain the sacrificial anode effect for a long time, such a sacrificial anode material needs to minimize so-called self-corrosion, and in this sense, it can be said that Al-Zn alloys are still inactive. In addition, Al normally hardly reacts with water because the dense oxide film that forms on its surface prevents the internal progress of oxidation reactions. For example, by forming a mercury film on the ^1 surface, the mercury atoms and water molecules that migrated and diffused in the film were transferred to the surface of the ^1 film. It has been proposed that the above reaction be used to generate hydrogen gas. However, this method of providing hydrogen gas using mercury amalgam is problematic in terms of practical use due to the problem of pollution caused by this mercury.

【発明の開示】[Disclosure of the invention]

本発明者は、^lが、本来化学的に活性な元素であるに
もかかわらず、表面に生成した酸化皮膜の為に化学的に
不活性なものになっていることに対する研究を鋭恵押し
進めた結果、In約0.1〜2重量%、Zn約0.1〜
5重量%を含有し、残部^rと不可避不純物の溶体化処
理した合金を、100℃/sec以上の冷却速度で冷却
してなるアルミニウム合金は、極めて化学的に活性であ
り、水と反応して水素ガスを効率よく提供できるもので
あることを見出した。 すなわち、従来からの^1合余生に含ませる元素によっ
て酸化被膜の特性が影響を大きく受けるという立場の研
究を押し進めた結果、Inを0.1〜2.0重量%及び
Znを0.1〜5.0重量%含ませておくと、その後の
処理次第で電気化学的に著しく卑となり、化学的に活性
になることが判明したのである。 ここで、Inの含有量を0.1〜2.0重量%とじたの
は、Inの含有量が0.1重量%よりかなり少なすぎる
と、In?a加による活性効果が小さく、そして2重量
%を大巾に越えてしまうと、Inが低融点金属であるこ
とから鋳造、溶体化処理等の熱処理時に問題があり、又
、In含有量を大巾に多くしても、In添加による活性
効果がこれに比例して大巾に向上するといったものでは
ないからである。 又、Znを含ませたのは、Inとの相乗効果によって一
層電気化字的に卑なものにする為であり、これによって
掻めて活性なものになるからである。 この相乗効果をより一層顕著なものになす為、Znは少
なくとも0.1重量%以上なければならず、そしてZn
の含有量が5重量%を越えても活性度を低下させるもの
ではないが、Znの量が増すとそれだけ^lの量が少な
くなることから、又、Zn添加による活性効果がこれに
比例して大巾に向上するものでもないことから、Znの
量は0.1〜5.0重量%としたのである。 尚、In、Znの他にも、化学的な活性度を低下させな
い第四、第五・・・の元素例えばBi等が含まれていて
も差し支えないものではあるが、Fe、 Si及びCu
等の元素はその総量が0.3重量%以下であることが望
ましい、つまり、 Fe、 Si及びCuの元素が多量
に含ませられると、化学的活性度が低下するに至るので
ある。 そして、上記のような組成の^1−Zn−1n系合金の
鋳造時の溶湯の冷却速度を約り℃/sec以上、望まし
くは約り0℃/sea以上、より一層望ましくは約10
4°(: /sec以上のものとすることによって、化
学的に活性なものになることを見出したのである。 これに反して、冷却速度が1℃/seeに満たない緩慢
な冷却の場合には、化学的に活性という大きな特徴を示
さないのである。 しかし、鋳造時の冷却速度が1℃/sec以上という上
記の条件を満たさない場合においても、Inの固溶量の
増大を目的とした溶体化処理を行なうことによって、化
学的に活性な特徴を示すようになることを見出した。 例えば、上記組成のアルミニウム合金を鋳造して得たア
ルミニウム合金を、約400〜630℃、望ましくは約
500〜630℃程度の温度で約5分間以上加熱処理し
、その後例えば水浴中冷却又は油浴中冷却等の手段によ
る約100℃/sec以上の速度で室温にまで冷却する
ことによって、化学的に活性なアルミニウム合金が得ら
れたのである。
The inventor of the present invention has carried out research into the fact that although ^l is originally a chemically active element, it has become chemically inactive due to the oxide film formed on its surface. As a result, In about 0.1 to 2% by weight, Zn about 0.1 to 2% by weight
An aluminum alloy made by cooling an alloy containing 5% by weight, the balance ^r, and unavoidable impurities through solution treatment at a cooling rate of 100°C/sec or more is extremely chemically active and does not react with water. We have discovered that hydrogen gas can be efficiently provided using That is, as a result of conducting research based on the conventional viewpoint that the properties of the oxide film are greatly affected by the elements contained in the ^1 mixture, we found that In is 0.1 to 2.0% by weight and Zn is 0.1 to 0.1% by weight. It has been found that when 5.0% by weight is contained, it becomes electrochemically significantly less noble and becomes chemically active depending on the subsequent treatment. Here, the In content is limited to 0.1 to 2.0% by weight because if the In content is much less than 0.1% by weight, In? The activation effect of adding a is small, and if it exceeds 2% by weight, there will be problems during heat treatments such as casting and solution treatment because In is a low melting point metal. This is because even if the width is increased, the activity effect due to the addition of In will not be greatly improved in proportion to this. Further, the reason why Zn is included is to make the electrification level even lower due to the synergistic effect with In, and this is because it becomes more active. In order to make this synergistic effect even more remarkable, Zn must be at least 0.1% by weight, and Zn
Even if the content exceeds 5% by weight, the activity does not decrease, but as the amount of Zn increases, the amount of Therefore, the amount of Zn was set at 0.1 to 5.0% by weight. In addition to In and Zn, there is no problem in including a fourth or fifth element that does not reduce the chemical activity, such as Bi, but Fe, Si and Cu may also be included.
It is desirable that the total amount of the elements is 0.3% by weight or less; that is, if large amounts of the elements Fe, Si, and Cu are included, the chemical activity will decrease. The cooling rate of the molten metal during casting of the ^1-Zn-1n alloy having the above composition is approximately 0°C/sec or more, preferably approximately 0°C/sea or more, and even more preferably approximately 10°C/sea or more.
They found that when the cooling rate exceeds 4°C/sec, it becomes chemically active.On the other hand, in the case of slow cooling at a cooling rate of less than 1°C/sec. However, even if the cooling rate during casting does not meet the above condition of 1°C/sec or more, the purpose of increasing the amount of In solid solution is It has been found that by solution treatment, chemically active characteristics can be exhibited.For example, an aluminum alloy obtained by casting an aluminum alloy having the above composition is heated at about 400 to 630°C, preferably about Chemically, by heating at a temperature of about 500 to 630°C for about 5 minutes or more, and then cooling to room temperature at a rate of about 100°C/sec or more, for example, by cooling in a water bath or cooling in an oil bath. An active aluminum alloy was obtained.

【実施例] 通常の溶解法を用いて、表に示すアルミニウム合金を調
整し、そして水冷金型(鋳塊冷却速度は約80℃/5e
e)又は黒鉛金型(鋳造冷却速度は約0.2”C/5e
e)を用いて鋳造し、10情麟厚の鋳塊とした。 そして、各鋳塊を熱間圧延と冷間圧延とを繰り返し、1
−厚の板材とし、次いで600℃で10分間の溶体化処
理といった熱処理を施し、その後水浴中で冷却(冷却速
度500℃/secルな。 【比較例] 通常の溶解法を用いて、表に示すアルミニウム合金を調
整し、そして水冷金型(鋳塊冷却速度的80℃/5ee
)と黒鉛鋳型(鋳塊冷却速度は約0.2℃/sec )
とを用いて鋳造し、10彌輸厚の鋳塊とした。 そして、各鋳塊の一部を熱間圧延と冷間圧延とを繰り返
し、1■−厚の板材とし、次いで600℃で10分間の
溶体化処理といった熱処理を施し、その後水浴中で冷却
(冷却速度500℃/5ee)した。 【特性】 上記各側で得た^1合金の板材を水道水に浸漬した際の
水素ガス発生速度及び3.5%食塩水中での腐食電位を
調べたので、この結果を表に示す。 この表かられかるように、上記実施例のアルミニウム合
金は、化学的に活性であることが窺える。 すなわち、Inが約0.1〜2重量%、Znが約0.1
〜5重量%含まれ、残部Alと不可避不純物の溶体化処
理した合金を約100℃/sec以上の冷却速度で冷却
したアルミニウム合金は化学的に活性であり、水と反応
しての水素ガス生成速度は大きいのに対し、合金組成が
本発明と同じであっても、鋳造時の冷却速度が0.2℃
/secにすぎず、溶体化処理が行なわれない場合には
、水と反応しての水素ガス生成速度は小さく、又、鋳造
時の冷却速度が80℃/secと大きく、かつ溶体化処
理が行われた場合でもInやZnが含まれていない組成
のものでは、水と反応しての水素ガス生成速度は小さく
、化学的活性度に劣ることが判る。 そして、このようにして得られたアルミニウム合金の薄
帯材を、例えばプレス手段等によって押し固めたものに
すれば、燃料電池の水素ガス供給源として好的なものに
なり、エネルギー貯蔵材として優れたものになる。 又、化学的に活性(水との反応性が高い)な点を利用す
ることによって、大気中の湿度センサーとしても利用で
きるし、又、除湿材料としても利用できるようになる。 特許出願人  三菱アルミニウム株式会社代  理  
人    宇     高     克     f色
・、、′7.−
[Example] Using a normal melting method, the aluminum alloy shown in the table was prepared, and a water-cooled mold (the ingot cooling rate was about 80℃/5e
e) or graphite mold (casting cooling rate is approximately 0.2”C/5e)
e) to obtain an ingot with a thickness of 10 degrees. Then, each ingot was repeatedly hot-rolled and cold-rolled.
- Thick plate material, then subjected to heat treatment such as solution treatment at 600°C for 10 minutes, and then cooled in a water bath (cooling rate 500°C/sec.) [Comparative example] Using the usual melting method, The aluminum alloy shown was prepared, and a water-cooled mold (ingot cooling rate of 80°C/5ee
) and graphite mold (ingot cooling rate is approximately 0.2℃/sec)
A 10 mm thick ingot was obtained by casting. Then, a portion of each ingot was repeatedly hot-rolled and cold-rolled to form a 1-inch-thick plate material, which was then subjected to heat treatment such as solution treatment at 600°C for 10 minutes, and then cooled in a water bath (cooling The speed was 500°C/5ee). [Characteristics] The rate of hydrogen gas generation when the ^1 alloy plates obtained on each side were immersed in tap water and the corrosion potential in 3.5% saline were investigated, and the results are shown in the table. As can be seen from this table, it can be seen that the aluminum alloys of the above examples are chemically active. That is, In is approximately 0.1 to 2% by weight, and Zn is approximately 0.1% by weight.
Aluminum alloys containing ~5% by weight, the remainder Al and unavoidable impurities, which are solution-treated and cooled at a cooling rate of approximately 100°C/sec or higher, are chemically active and react with water to produce hydrogen gas. However, even if the alloy composition is the same as that of the present invention, the cooling rate during casting is only 0.2℃.
/sec, and if solution treatment is not performed, the rate of hydrogen gas generation by reaction with water is small, and the cooling rate during casting is as high as 80 °C/sec, and solution treatment is not performed. It can be seen that even when this is done, the rate of hydrogen gas production upon reaction with water is low and the chemical activity is poor in those whose composition does not contain In or Zn. If the aluminum alloy thin strip material obtained in this way is compacted using, for example, pressing means, it becomes a suitable hydrogen gas supply source for fuel cells and is an excellent energy storage material. become something. Furthermore, by taking advantage of its chemical activity (high reactivity with water), it can be used as an atmospheric humidity sensor and as a dehumidifying material. Patent applicant Mitsubishi Aluminum Co., Ltd. Representative
Person Uko Katsu f color...'7. −

Claims (1)

【特許請求の範囲】[Claims] In約0.1〜2重量%、Zn約0.1〜5重量%を含
有し、残部Alと不可避不純物の溶体化処理した合金を
、約100℃/sec以上の冷却速度で冷却してなるこ
とを特徴とするアルミニウム合金。
An alloy containing approximately 0.1 to 2% by weight of In and approximately 0.1 to 5% by weight of Zn, the remainder of which is Al and unavoidable impurities, is solution-treated and cooled at a cooling rate of approximately 100°C/sec or more. An aluminum alloy characterized by:
JP23617386A 1986-10-06 1986-10-06 Aluminum alloy Pending JPS6393838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23617386A JPS6393838A (en) 1986-10-06 1986-10-06 Aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23617386A JPS6393838A (en) 1986-10-06 1986-10-06 Aluminum alloy

Publications (1)

Publication Number Publication Date
JPS6393838A true JPS6393838A (en) 1988-04-25

Family

ID=16996850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23617386A Pending JPS6393838A (en) 1986-10-06 1986-10-06 Aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6393838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004428A1 (en) * 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2009215602A (en) * 2008-03-10 2009-09-24 Kobelco Kaken:Kk Liquid state alloy material and method for producing hydrogen and byproduct material using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089296A (en) * 1973-12-12 1975-07-17
JPS60238457A (en) * 1984-05-09 1985-11-27 Nippon Light Metal Co Ltd Manufacture of aluminum alloy blank for galvanic anode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089296A (en) * 1973-12-12 1975-07-17
JPS60238457A (en) * 1984-05-09 1985-11-27 Nippon Light Metal Co Ltd Manufacture of aluminum alloy blank for galvanic anode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004428A1 (en) * 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP5511186B2 (en) * 2006-07-05 2014-06-04 勲 伊藤 Hydrogen generating method, hydrogen generating alloy, and hydrogen generating alloy manufacturing method
JP2009215602A (en) * 2008-03-10 2009-09-24 Kobelco Kaken:Kk Liquid state alloy material and method for producing hydrogen and byproduct material using the same

Similar Documents

Publication Publication Date Title
US4098606A (en) Electrochemically active aluminium alloy, the method of its preparation and use
JPS6233790A (en) Activated amorphous alloy electrode
JPS62263946A (en) Aluminum alloy for hydrogen formation
US4659629A (en) Formation of a protective outer layer on magnesium alloys containing aluminum
JPH0748658A (en) Material for sacrificial electrode for preventing corrosion excellent in corrosion resistance
JPS6393838A (en) Aluminum alloy
JPS591653A (en) Copper alloy for fin of radiator
JPS5918457B2 (en) Magnesium-based alloy with high mechanical strength and low corrosion tendency
JPS6148544A (en) High-conductivity copper alloy and low softening temperature
Lee Hydrogen overpotential on zinc containing small amounts of impurities in concentrated alkaline solution
US3321306A (en) Galvanic anode alloy and products produced therefrom
JPS6393839A (en) Aluminum alloy
JPH02122040A (en) Creep-resistat zn-a1 base cast alloy
JPH0468394B2 (en)
JPS622626B2 (en)
JPS6280287A (en) Sacrificial anode material made of al alloy
CN111485127A (en) Preparation method of magnesium alloy with high corrosion resistance and magnesium alloy
US3939009A (en) Method of making battery plate grids for lead-acid batteries and alloys therefor
JPS5849632B2 (en) Amorphous alloy electrode material for electrolysis
JPS636619B2 (en)
JPH0254421B2 (en)
JPS63141263A (en) Lead-base alloy for storage battery
CA1153209A (en) Method for the addition of metallic alloying agents to a bath of molten aluminium, the said alloying agents, and also the aluminium alloy obtained
JPH02175853A (en) Composition for galvanizing bath
JPS6167732A (en) Surface-activated amorphous alloy for electrode for electrolysis of solution