JPH0254421B2 - - Google Patents

Info

Publication number
JPH0254421B2
JPH0254421B2 JP61113597A JP11359786A JPH0254421B2 JP H0254421 B2 JPH0254421 B2 JP H0254421B2 JP 61113597 A JP61113597 A JP 61113597A JP 11359786 A JP11359786 A JP 11359786A JP H0254421 B2 JPH0254421 B2 JP H0254421B2
Authority
JP
Japan
Prior art keywords
current efficiency
weight
anode
galvanic anode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61113597A
Other languages
Japanese (ja)
Other versions
JPS62270743A (en
Inventor
Eiji Nishimura
Hideo Aoki
Akira Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP11359786A priority Critical patent/JPS62270743A/en
Publication of JPS62270743A publication Critical patent/JPS62270743A/en
Publication of JPH0254421B2 publication Critical patent/JPH0254421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、アルミニウム合金製流電陽極の電流
効率改善方法に関するものであり、特にはAl−
Zn−In−Sn−(Ti,Zr,Sb)合金製の流電陽極
の電流効率改善方法に関する。本発明方法により
得られる流電陽極は安定した卑な陽極電位を維持
したまま電流効率を改善し、カソード防食法にお
ける流電陽極(犠牲陽極)として有用である。 (従来技術) 船舶、海水中の施設、港湾施設、建築物基礎、
化学装置等においては、電気化学的防食法として
流電陽極を使用するカソード防食が施される。流
電陽極としては、目的の環境中で保護すべき金属
より低電位で且つ必要なだけの分極を与えること
のできる金属としてアルミニウム合金が主として
使用されてきた。アルミニウム合金としては、ア
ルミニウムにZn,Sn,In,Zn−In,Zn−Sn等を
様々な比率で添加したものが使用されてきたが、
安定化した卑な陽極電位と比較的高い電流効率を
示すAl−Zn−In−Sn合金が実用化されている。
この合金では、Zn,In及びSnは基本的にアルミ
ニウム表面の酸化膜生成を減少させる働きをな
す。 更には、特開昭50−17311号は、電極の長寿命
化を計るためにAl−Zn−In−Sn合金に更にTi及
びSiを少量添加した合金を開示している。しかし
ここで開示された実施例の合金の電流効率は必ず
しも高くはない。また、特開昭59−100249号は、
心材と皮材を有するろう付け用アルミニウム合金
ブレージングシートを開示し、主に高温強度改善
を目的として、Zn、In、Sn、Ti、Zr、Sb等を含
めて様々な元素の添加例が報告されている。しか
し ここでは、陽極電位と電流効率に関するデー
タは報告されていない。 (発明が解決しようとする課題) 斯界では、少しでも電流効率の改善された流電
陽極を入手することが大きな課題となつている。
この場合、電極電位がさほどに悪化しないことが
必要である。 本発明の課題は、こうした必要性を満足する新
たなアルミニウム合金製流電陽極の電流効率改善
方法を間発することである。 (課題を解決するための手段) 本発明者は、特定組成範囲のAl−Zn−In−Sn
−(Ti,Zr,Sb)合金製の流電陽極が、こうした
課題を基本的に満たし、そしてそれを熱処理する
ことによつて一層の電流効率の改善がなしうるこ
とを見出した。こうした知見に基づいて、本発明
は 2.0〜3.5 重量%Zn、 0.005〜0.05 重量%In及び 0.001〜0.1 重量%Sn を含み、更に 0.001〜0.1 重量%Ti、 0.0005〜0.05 重量%Zr及び 0.0004〜0.4 重量%Sb のうちの少なくとも1種を含むアルミニウム合金
から鋳造された流電陽極を、300〜450℃の温度に
おいて15分〜3時間保持する熱処理を行なうこと
を特徴とする流電陽極の電流効率改善方法を提供
する。 (発明の具体的説明) Alは、単位重量当りの発生電気量がMgやZnに
較べて大きく、また電極電位もAl金属自体が安
定して卑であるから大きな防食電流を取り出すこ
とができるが、実際上は酸化皮膜を生成するため
に、そのままでは使用できない。そこで酸化膜生
成能を減少させることを主眼としてZn、In及び
Snを添加したAl合金が流電陽極としてし使用さ
れている。 本発明において使用する流電電極用アルミニウ
ム合金は上記のAl−Zn−In−Sn合金系に更に
Ti、Zr及びSbの少なくとも1種を添加する。 これらの添加量及びその限定理由は次の通りで
ある: (1) Zn:2.0〜3.5重量% ZnはAl表面の酸化膜生成能を減少させ、安
定した卑な電極電位と高い電流効率とを得るた
めに2.0重量%以上添加される。しかし、あま
り多量に添加すると、かえつて効率を低下させ
る。そのため、上限は3.5重量%と規定される。
好ましい範囲は、2.5〜3.3重量%である。 (2) In:0.005〜0.05重量% InはAl表面の酸化膜生成能を減少させ、防
食効果を向上させるが、有効であるには0.005
重量%以上必要である。Alに対するInの固溶
度は小さく、固溶しないInは有害であるから、
添加上限は0.05重量%とされる。好ましい範囲
は、0.010〜0.025重量%である。 (3) Sn:0.001〜0.1重量% Snは、Al表面の酸化膜生成能を減少させる
とともに、Inを均一に分散させる作用を有し、
電流効率を改善する。有効であるには0.001重
量%以上必要であるが、0.1重量%を超えると
かえつて電流効率を低下させる。好ましい範囲
は、0.002〜0.005重量%である。 (4) Ti:0.001〜0.1重量%、 Zr:0.0005〜0.05重量%及び Sb:0.0004〜0.4重量% のうちの少なくとも1種 これらは電極電位をさほどに悪化せずに電流効
率の改善に効果的である。指定された下限以上に
おいてその効力を奏する。上限を超えると、かえ
つて電流効率を低下する。 これら添加元素は、最終的に生成される合金中
での含有量として示したものである。TiはAl地
金に既に含まれていることが多く、その場合には
不足分として添加されねばならない。Zr及びSb
についても、添加量と分析値とは必ずしも一致せ
ず、配慮せねばならない。 合金は、高純度(99.7%以上)のAl地金を溶解
し、指定された添加元素を加え、所望の形状に鋳
造することにより電極とされる。 本発明に従えば、この鋳造電極は、300〜450℃
の温度において15分〜3時間保持する熱処理を施
される。この熱処理は、組織を均一化して電流効
率を一層改善する。組織の均一化のためには、少
なくとも300℃で加熱することが必要である。450
℃を超えるとかえつて有害である。保持時間は温
度に依存して選択される。 (実施例及び比較例) 以下の表1に示す最終組成の合金を溶解及び鋳
造した。これら鋳造電極を400℃で1時間熱処理
した。20mm直径×32mm長さそして20cm2の陽極面積
を残してビニールテープでシールして陽極を作製
した。他方、陰極は、SUS304ステンレス鋼によ
り有効面積250cm2を有するものとして作製した。
これらを人工海水を満たしたビーカに浸し、両極
間に20mAの電流を通電し、電極電位と電流効率
とを測定した。測定は常法に従いそして室温で行
なつた。結果を表1に併せて示す(但し、試験No.
5は、熱処理を行なつていない。最も汎用されて
いる陽極として基準目的で呈示した比較例であ
る)。
(Industrial Application Field) The present invention relates to a method for improving the current efficiency of an aluminum alloy galvanic anode, and particularly relates to a method for improving the current efficiency of an aluminum alloy galvanic anode.
This invention relates to a method for improving the current efficiency of a galvanic anode made of Zn-In-Sn-(Ti, Zr, Sb) alloy. The galvanic anode obtained by the method of the present invention improves current efficiency while maintaining a stable base anode potential, and is useful as a galvanic anode (sacrificial anode) in cathodic protection. (Prior art) Ships, underwater facilities, port facilities, building foundations,
In chemical equipment and the like, cathodic corrosion protection using a galvanic anode is applied as an electrochemical protection method. As galvanic anodes, aluminum alloys have mainly been used as metals that have a lower potential than the metal to be protected in the target environment and can provide the necessary polarization. Aluminum alloys have been used in which various ratios of Zn, Sn, In, Zn-In, Zn-Sn, etc. are added to aluminum.
Al-Zn-In-Sn alloys have been put into practical use, showing a stabilized base anodic potential and relatively high current efficiency.
In this alloy, Zn, In and Sn basically serve to reduce the formation of oxide film on the aluminum surface. Furthermore, Japanese Patent Application Laid-Open No. 17311/1984 discloses an Al--Zn--In--Sn alloy in which small amounts of Ti and Si are further added in order to extend the life of the electrode. However, the current efficiency of the alloys of the examples disclosed herein is not necessarily high. In addition, JP-A No. 59-100249 is
An aluminum alloy brazing sheet for brazing having a core material and a skin material is disclosed, and examples of addition of various elements including Zn, In, Sn, Ti, Zr, Sb, etc. are reported mainly for the purpose of improving high temperature strength. ing. However, no data regarding anode potential and current efficiency are reported here. (Problem to be Solved by the Invention) In this field, it has become a major problem to obtain a galvanic anode with improved current efficiency.
In this case, it is necessary that the electrode potential does not deteriorate significantly. An object of the present invention is to develop a new method for improving the current efficiency of an aluminum alloy galvanic anode that satisfies these needs. (Means for Solving the Problems) The present inventor has discovered that Al-Zn-In-Sn in a specific composition range
We have discovered that a galvanic anode made of -(Ti, Zr, Sb) alloy basically satisfies these issues, and that by heat treating it, the current efficiency can be further improved. Based on these findings, the present invention includes 2.0-3.5 wt% Zn, 0.005-0.05 wt% In, and 0.001-0.1 wt% Sn, and further contains 0.001-0.1 wt% Ti, 0.0005-0.05 wt% Zr, and 0.0004-0.4 wt% Current efficiency of a galvanic anode, characterized in that a galvanic anode cast from an aluminum alloy containing at least one type of Sb (wt%) is heat treated at a temperature of 300 to 450°C for 15 minutes to 3 hours. Provide ways to improve. (Detailed Description of the Invention) Al generates a larger amount of electricity per unit weight than Mg or Zn, and the electrode potential of Al metal itself is stable and base, so a large anti-corrosion current can be extracted. In practice, it cannot be used as it is because it forms an oxide film. Therefore, Zn, In and
Al alloys with added Sn are used as galvanic anodes. The aluminum alloy for current electrodes used in the present invention is the above-mentioned Al-Zn-In-Sn alloy system.
At least one of Ti, Zr and Sb is added. The amounts added and the reasons for their limitations are as follows: (1) Zn: 2.0 to 3.5% by weight Zn reduces the ability to form an oxide film on the Al surface and provides a stable base electrode potential and high current efficiency. 2.0% by weight or more is added to obtain However, adding too much will actually reduce the efficiency. Therefore, the upper limit is defined as 3.5% by weight.
The preferred range is 2.5-3.3% by weight. (2) In: 0.005 to 0.05% by weight In reduces the ability to form an oxide film on the Al surface and improves the anticorrosion effect, but 0.005 to 0.05% by weight is insufficient to be effective.
% or more by weight is required. The solid solubility of In in Al is small, and In that does not dissolve in solid form is harmful.
The upper limit of addition is 0.05% by weight. The preferred range is 0.010-0.025% by weight. (3) Sn: 0.001 to 0.1% by weight Sn has the effect of reducing the ability to form an oxide film on the Al surface and uniformly dispersing In.
Improve current efficiency. To be effective, it needs to be at least 0.001% by weight, but if it exceeds 0.1% by weight, it will actually reduce the current efficiency. The preferred range is 0.002-0.005% by weight. (4) At least one of Ti: 0.001 to 0.1% by weight, Zr: 0.0005 to 0.05% by weight, and Sb: 0.0004 to 0.4% by weight. These are effective in improving current efficiency without significantly deteriorating electrode potential. It is. It takes effect above the specified lower limit. If the upper limit is exceeded, the current efficiency will be reduced. These additive elements are shown as contents in the finally produced alloy. Ti is often already included in the Al base metal, and in that case it must be added to cover the deficiency. Zr and Sb
Also, the amount added and the analytical value do not necessarily match and must be taken into consideration. The alloy is made into an electrode by melting high-purity (99.7% or higher) Al base metal, adding specified additive elements, and casting into the desired shape. According to the invention, this cast electrode
Heat treatment is performed at a temperature of 15 minutes to 3 hours. This heat treatment homogenizes the structure and further improves current efficiency. Heating to at least 300°C is necessary for homogenization of the structure. 450
If the temperature exceeds ℃, it is even harmful. The holding time is selected depending on the temperature. (Examples and Comparative Examples) An alloy having the final composition shown in Table 1 below was melted and cast. These cast electrodes were heat treated at 400°C for 1 hour. An anode was prepared with a diameter of 20 mm x a length of 32 mm and an anode area of 20 cm 2 which was sealed with vinyl tape. On the other hand, the cathode was made of SUS304 stainless steel and had an effective area of 250 cm 2 .
These were immersed in a beaker filled with artificial seawater, a current of 20 mA was passed between the two electrodes, and the electrode potential and current efficiency were measured. Measurements were carried out according to conventional methods and at room temperature. The results are also shown in Table 1 (however, test no.
No. 5 was not subjected to heat treatment. This is a comparative example presented for reference purposes as the most commonly used anode).

【表】【table】

【表】 (発明の効果) Al−Zn−In−Sn流電陽極の電極電位を犠牲と
することなく電流効率を1.5〜3.5%アツプするこ
とに成功した。このアツプ率は、この技術分野で
は非常に有意義なものである。
[Table] (Effects of the invention) We succeeded in increasing the current efficiency by 1.5 to 3.5% without sacrificing the electrode potential of the Al-Zn-In-Sn galvanic anode. This increase rate is very significant in this technical field.

Claims (1)

【特許請求の範囲】 1 2.0〜3.5 重量%Zn、 0.005〜0.05 重量%In及び 0.001〜0.1 重量%Sn を含み、更に 0.001〜0.1 重量%Ti、 0.0005〜0.05 重量%Zr及び 0.0004〜0.4 重量%Sb のうちの少なくとも1種を含むアルミニウム合金
から鋳造された流電陽極を、300〜450℃の温度に
おいて15分〜3時間保持する熱処理を行なうこと
を特徴とする流電陽極の電流効率改善方法。
[Claims] 1. Contains 2.0 to 3.5 wt% Zn, 0.005 to 0.05 wt% In, and 0.001 to 0.1 wt% Sn, and further contains 0.001 to 0.1 wt% Ti, 0.0005 to 0.05 wt% Zr, and 0.0004 to 0.4 wt% A method for improving the current efficiency of a galvanic anode, which comprises heat-treating a galvanic anode cast from an aluminum alloy containing at least one type of Sb at a temperature of 300 to 450°C for 15 minutes to 3 hours. .
JP11359786A 1986-05-20 1986-05-20 Aluminum alloy for voltaic anode Granted JPS62270743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11359786A JPS62270743A (en) 1986-05-20 1986-05-20 Aluminum alloy for voltaic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11359786A JPS62270743A (en) 1986-05-20 1986-05-20 Aluminum alloy for voltaic anode

Publications (2)

Publication Number Publication Date
JPS62270743A JPS62270743A (en) 1987-11-25
JPH0254421B2 true JPH0254421B2 (en) 1990-11-21

Family

ID=14616239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11359786A Granted JPS62270743A (en) 1986-05-20 1986-05-20 Aluminum alloy for voltaic anode

Country Status (1)

Country Link
JP (1) JPS62270743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254634A (en) * 2012-02-23 2014-12-31 亚马格轧制公司 Age-hardenable aluminium alloy and method for improving the ability of a semi-finished or finished product to age artificially

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134329B2 (en) * 1991-02-12 2001-02-13 三菱アルミニウム株式会社 Single layer aluminum alloy fin material for brazed aluminum heat exchanger with excellent sacrificial anode effect
CN111235441A (en) * 2020-02-24 2020-06-05 山东南山铝业股份有限公司 Sb-containing heat-resistant aluminum alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017311A (en) * 1973-06-19 1975-02-24
JPS59100249A (en) * 1982-11-26 1984-06-09 Showa Alum Corp Aluminum alloy brazing sheet having high strength characteristics at high temperature and sacrificial anticorrosive effect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017311A (en) * 1973-06-19 1975-02-24
JPS59100249A (en) * 1982-11-26 1984-06-09 Showa Alum Corp Aluminum alloy brazing sheet having high strength characteristics at high temperature and sacrificial anticorrosive effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254634A (en) * 2012-02-23 2014-12-31 亚马格轧制公司 Age-hardenable aluminium alloy and method for improving the ability of a semi-finished or finished product to age artificially

Also Published As

Publication number Publication date
JPS62270743A (en) 1987-11-25

Similar Documents

Publication Publication Date Title
US3180728A (en) Aluminum-tin composition
US3189486A (en) Primary electric cell
JP2892449B2 (en) Magnesium alloy for galvanic anode
US3368958A (en) Aluminum alloy for cathodic protection system and primary battery
US3368952A (en) Alloy for cathodic protection galvanic anode
JPH0254421B2 (en)
CA1066175A (en) Aluminum sacrificial anode
US3033775A (en) Anode for cathodic protection
NO167724B (en) DEVICE FOR STEERING A DRIVE SHIFT DRIVE ON A VEHICLE FRAME.
JPH06179936A (en) Negative electrode material for aluminum battery
JPH0459379B2 (en)
JP2000282165A (en) Lithium-containing magnesium alloy, and crucible for its smelting
US3321306A (en) Galvanic anode alloy and products produced therefrom
JPH09310131A (en) Production of magnesium alloy for voltaic anode
US4626329A (en) Corrosion protection with sacrificial anodes
JP4126633B2 (en) Aluminum alloy galvanic anode for low temperature seawater
JPH09310130A (en) Production of magnesium alloy for galvanic anode
JP4436553B2 (en) Aluminum alloy for low temperature seawater environmental current anode
Bhatt et al. Electrochemical studies on a zinc-lead-cadmium alloy in aqueous ammonium chloride solution
CN115679138B (en) Method for improving corrosion damage resistance of conductor aluminum alloy
JPH03122239A (en) Aluminum alloy for cathode foil of electrolytic capacitor
JP2773971B2 (en) Magnesium alloy for galvanic anode
Kuhn et al. Anodic Behaviour of Binary Iron–Silicon Alloys
JP3184516B2 (en) Magnesium alloy for galvanic anode
JPS58171548A (en) Aluminum alloy for galvanic anode and its manufacture