JPS6393109A - Vertical type vapor growth device - Google Patents

Vertical type vapor growth device

Info

Publication number
JPS6393109A
JPS6393109A JP23884786A JP23884786A JPS6393109A JP S6393109 A JPS6393109 A JP S6393109A JP 23884786 A JP23884786 A JP 23884786A JP 23884786 A JP23884786 A JP 23884786A JP S6393109 A JPS6393109 A JP S6393109A
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction chamber
susceptor
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23884786A
Other languages
Japanese (ja)
Other versions
JPH0618175B2 (en
Inventor
Seiji Ochi
越智 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23884786A priority Critical patent/JPH0618175B2/en
Publication of JPS6393109A publication Critical patent/JPS6393109A/en
Publication of JPH0618175B2 publication Critical patent/JPH0618175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain uniform semiconductor crystals of large area by a method wherein a rectifyer, with which reaction gas will be rectified, is provided in the center part inside a gas introducing part, and the susceptor of a wafer, having the aperture to be used to pass reaction gas in the center part, is provided in a reaction chamber. CONSTITUTION:The area of a gas conveying path 1 is formed smaller than the area of a reaction chamber 3 on the route from the gas conveying path 1 to a substrate supporting stand 5a. Also, in a gas introducing path 2, the cross-sectional area on which gas flows is made small by a rectifier 4. Accordingly, the flow speed of gas reaching the substrate supporting stand 5a is increased, the effect of heat convection is removed, and as there is no space where reaction gas stagnates, the switching of reaction gas can be performed at high speed. Also, gas can be blown against the substrate supporting stand 5a uniformly by forming the cross-sectional shape of the reaction gas stream and the substrate supporting stand 5a in doughnut shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガリウムヒ素もしくはこれを主成分とする
化合物半導体層の気相成長に適した縦型気相成長装置に
関し、特にその量産型装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vertical vapor phase growth apparatus suitable for the vapor phase growth of gallium arsenide or a compound semiconductor layer containing gallium arsenide as a main component, and particularly relates to a mass production type apparatus thereof. It is related to.

〔従来の技術〕[Conventional technology]

第2図は従来の縦型気相成長装置の断面構造を示し、図
において、1はガス搬送路、2はガス導入部、3は反応
室、5は該反応室3内に設けられ半導体基板(ウェハ)
を載置するためのサセプタ(基板支持台)、6はサセプ
タ5を加熱する加熱用RFコイル、7はサセプタ5を支
持しかつ回転させる支持棒、10はサセプタ5と反応室
3の側壁の間隙である。
FIG. 2 shows a cross-sectional structure of a conventional vertical vapor phase growth apparatus. (wafer)
6 is a heating RF coil that heats the susceptor 5 , 7 is a support rod that supports and rotates the susceptor 5 , 10 is a gap between the susceptor 5 and the side wall of the reaction chamber 3 It is.

次に動作について説明する。Next, the operation will be explained.

上記反応室3内に設けられたサセプタ5は、該反応室3
の周りに位置するRFコイル6により誘導加熱される。
The susceptor 5 provided in the reaction chamber 3
is heated by induction by an RF coil 6 located around the .

このときガス搬送路1より送られてきた反応ガスは、ガ
ス導入部2を通り、サセプタ5上に載置された半導体ウ
ェハ(半導体基板)上に達し、熱分解により上記半導体
ウェハ表面に半導体結晶を成長させる。さらに反応ガス
は、サセプタ5と反応室3の側壁との間隙1oを通って
、下方へ排気される。ここで成長中は支持棒7の回転に
よりサセプタ5を回転させ、回転方向での結晶成長の均
一性の向上を図っている。
At this time, the reaction gas sent from the gas transport path 1 passes through the gas introduction part 2, reaches the semiconductor wafer (semiconductor substrate) placed on the susceptor 5, and is thermally decomposed to form semiconductor crystals on the surface of the semiconductor wafer. grow. Furthermore, the reaction gas passes through the gap 1o between the susceptor 5 and the side wall of the reaction chamber 3, and is exhausted downward. During the growth, the susceptor 5 is rotated by the rotation of the support rod 7 to improve the uniformity of crystal growth in the direction of rotation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の縦型気相成長装置は、以上の様に構成されている
ために、サセプタ5上に載置された半導体基板と、ガス
を搬送するガス搬送路1との間隔をかなり大きくとって
おり、このため基板近くで暖められたガスが上方に上り
、熱対流が生じ以下の様な問題を引き起こしていた。
Because the conventional vertical vapor phase growth apparatus is configured as described above, the distance between the semiconductor substrate placed on the susceptor 5 and the gas transport path 1 that transports the gas is quite large. As a result, heated gas near the substrate rises upward, causing thermal convection and causing the following problems.

第1に、反応室3内の一様な反応ガスの流れが防げられ
、成長膜厚に不均一を生じる。第2に加熱され反応した
ガスが再び反応室3の上方部へ逆流し反応室3内のガス
が汚染されるために、結晶の質が低下する。第3に、基
板に達するまでの反応室3の容積が大きく、反応ガスの
置換が迅速に行なえないために、成長方向での結晶膜特
性の急峻な変化をつけられないという問題もあった。こ
れらの問題は反応室3の内径が増加する程顕著となるた
めに、従来の縦型気相成長装置での処理能力は一般に1
回の成長で、2インチウェハ1枚以下に止まっており、
量産性を上げられない要因となっていた。
First, a uniform flow of reaction gas within the reaction chamber 3 is prevented, resulting in non-uniformity in the thickness of the grown film. Secondly, the heated and reacted gas flows back to the upper part of the reaction chamber 3 and contaminates the gas inside the reaction chamber 3, thereby degrading the quality of the crystal. Thirdly, since the volume of the reaction chamber 3 up to the substrate is large and the reaction gas cannot be replaced quickly, there is also the problem that it is not possible to make a sharp change in the crystal film properties in the growth direction. These problems become more pronounced as the inner diameter of the reaction chamber 3 increases, so the processing capacity of a conventional vertical vapor phase growth apparatus is generally 1.
The growth has been limited to less than one 2-inch wafer,
This was a factor that made it impossible to increase mass production.

この発明は、上記の様な問題点を解消するためになされ
たもので、均一な膜厚でかつ良質の半導体結晶を、多数
枚大面積にわたって成長できる量産型の縦型気相成長装
置を得る事を目的としている。
This invention was made to solve the above-mentioned problems, and provides a mass-produced vertical vapor phase growth apparatus that can grow a large number of semiconductor crystals of uniform thickness and high quality over a large area. It is aimed at something.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る縦型気相成長装置は、ガス導入部内の中央
に、反応ガスを整流する整流器を設け、かつ反応室内に
、その中央部に反応ガスを通すための開孔を有するサセ
プタを設けたものである。
In the vertical vapor phase growth apparatus according to the present invention, a rectifier for rectifying the reaction gas is provided in the center of the gas introduction section, and a susceptor having an opening for passing the reaction gas in the center of the reaction chamber is provided. It is something that

〔作用〕[Effect]

本発明においては、ガス導入部内の中央に、反応ガスを
整流する整流器を設け、かつ反応室内に、その中央部に
反応ガスを通すための開孔を有するウェハのサセプタを
設けたから、ガス搬送路及びガス導入部のガス流路を十
分細くして高速のガス流を実現でき、これにより熱対流
を防止できかつ急峻にガス組成を変化でき、さらにサセ
プタ上に断面ドーナツ形状の反応ガス流を吹きつけてサ
セプタ上の広い部分にわたり均一にガス流を発生させる
ことができる。
In the present invention, a rectifier for rectifying the reaction gas is provided in the center of the gas introduction section, and a wafer susceptor having an opening for passing the reaction gas is provided in the reaction chamber, so that the gas transport path is In addition, the gas flow path in the gas introduction part can be made sufficiently thin to achieve a high-speed gas flow, which can prevent thermal convection and change the gas composition rapidly.Furthermore, it is possible to blow a reactant gas flow with a doughnut-shaped cross section onto the susceptor. This allows a gas flow to be generated uniformly over a wide area on the susceptor.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による縦型気相成長装置の断
面構造を示し、図において、1はガス搬送路、2は口径
の小さなガス搬送路1から口径の大きな反応室3ヘガス
を導入するガス導入部であり、これはその内径が下流側
程広くなる円錐台形状をなしている。4は該ガス導入部
2内中央部に置かれた整流器で、これと円錐台形状のガ
ス導入部2の内壁とにより、両者の間隙8に断面ドーナ
ツ形状のガス流が形成され、その中央部に開口を有する
ドーナツ形状の基板支持台5aに反応ガスが吹きつけら
れる。ここで該整流器4と基板支持台5の間隙9と、反
応室3の内壁と基板支持台5aの間隙10とは、両者の
断面積が略等しなくなる様構成されているため、基板支
持台5a上にガスが均一に吹きつけられる。7は基板支
持台5aを支える支持棒であり、成長中は回転して回転
方向の結晶成長の均一性を向上させる。6は基板支持台
加熱用のRFコイルである。
FIG. 1 shows a cross-sectional structure of a vertical vapor phase growth apparatus according to an embodiment of the present invention. In the figure, 1 is a gas transport path, and 2 is a gas transport path 1 with a small diameter to a reaction chamber 3 with a large diameter. This is a gas introduction part for introducing gas, and this has a truncated conical shape with an inner diameter that becomes wider toward the downstream side. Reference numeral 4 denotes a flow rectifier placed at the center of the gas introduction section 2. This rectifier and the inner wall of the truncated conical gas introduction section 2 form a gas flow with a doughnut-shaped cross section in the gap 8 between the two. A reaction gas is blown onto a donut-shaped substrate support 5a having an opening. Here, the gap 9 between the rectifier 4 and the substrate support stand 5, and the gap 10 between the inner wall of the reaction chamber 3 and the substrate support stand 5a, are constructed so that their cross-sectional areas are no longer approximately equal. Gas is uniformly blown onto 5a. A support rod 7 supports the substrate support stand 5a, and rotates during growth to improve the uniformity of crystal growth in the direction of rotation. 6 is an RF coil for heating the substrate support.

次に作用効果について説明する。Next, the effects will be explained.

この様な構成において、ガス搬送路1がら基板支持台5
aに至る経路において、ガス搬送路1の面積は反応室3
の面積に比べ小さく形成されており、又ガス導入部2に
おいては、整流器4によりガスの流れる断面積は小さく
なっている。従って、基板支持台5aに至るガス流速は
、従来装置に比べ数倍となって熱対流の影響が無くなり
、又、反応ガスが停滞する空間がないため、反応ガスの
切り替えが高速に行なえる。
In such a configuration, the substrate support 5 is connected to the gas transport path 1.
In the path leading to a, the area of the gas transport path 1 is equal to that of the reaction chamber 3.
In addition, in the gas introduction section 2, the cross-sectional area through which the gas flows is reduced by the rectifier 4. Therefore, the gas flow rate reaching the substrate support stage 5a is several times higher than that of the conventional apparatus, eliminating the influence of thermal convection, and since there is no space for reaction gas to stagnate, switching of reaction gases can be performed at high speed.

第4図は、本実施例装置において、GaAsを成長し次
いで反応ガスを切り替えて、Aj2GaAS膜を連続的
に成長した場合の組成変化を、従来装置の場合と比較し
て示したものである。従来のものでは第4図(alに示
すように熱対流による反応ガスの逆流及びガスの停滞に
より、組成の変化は徐々に起こり急峻な界面は得られな
いのに対し、本実施例装置では第4図(b)に示す様な
急峻な組成変化が可能となる。
FIG. 4 shows the change in composition when GaAs is grown and then the reaction gas is switched to continuously grow an Aj2GaAS film using the apparatus of this embodiment, compared with the case using the conventional apparatus. In the conventional device, the composition changes gradually due to the backflow of the reaction gas due to thermal convection and gas stagnation, as shown in FIG. 4 (al), and a steep interface cannot be obtained. A steep compositional change as shown in FIG. 4(b) becomes possible.

また、加熱された基板支持台5aに達したガスは、ここ
で加熱分解され、支持台5上に載置された基板上に半導
体結晶が成長するが、この時従来の装置では、支持台の
径が大型化するに伴って、ガス流が不均一になることか
ら、支持台の中心部から外に向かって成長膜厚に分布を
生じた(第3図(al、 (b)参照)、一方、本実施
例装置では、反応ガスの流の断面形状及び基板支持台5
aの形状をドーナツ形状にした事により、基板支持台5
a上にガスを均一に吹きつけることができ、また基板支
持台5a中心部の間隙9の面積と基板支持台5aの外の
間隙10の面積を略等しく構成しているため、吹きつけ
られたガスは内外に均等に流れる。
Further, the gas that reaches the heated substrate support 5a is thermally decomposed here, and a semiconductor crystal grows on the substrate placed on the support 5. At this time, in the conventional apparatus, the gas that reaches the support As the diameter increases, the gas flow becomes non-uniform, resulting in a distribution in the thickness of the grown film outward from the center of the support (see Figures 3 (al) and (b)). On the other hand, in the apparatus of this embodiment, the cross-sectional shape of the flow of the reaction gas and the substrate support
By making the shape of a into a donut shape, the substrate support stand 5
Since the gas can be uniformly blown onto the substrate support 5a and the area of the gap 9 at the center of the substrate support 5a is approximately equal to the area of the gap 10 outside the substrate support 5a, Gas flows evenly in and out.

これにより、多数枚基板を載置可能な大型の装置にもか
かわらず、各基板について小型装置と同等又はそれ以上
の膜厚均一性が得られる(第3図(C1参照)。
As a result, even though the device is a large device capable of mounting a large number of substrates, it is possible to obtain film thickness uniformity for each substrate that is equivalent to or better than that of a small device (see FIG. 3 (see C1)).

さらに、本実施例装置ではガス流は高速であり熱対流が
起こらないため、気相中の反応生成物による結晶品質の
劣化、反応室上部内壁の汚染及び汚染物の落下環の問題
も起こらない。
Furthermore, in this example device, the gas flow is high-speed and no thermal convection occurs, so problems such as deterioration of crystal quality due to reaction products in the gas phase, contamination of the upper inner wall of the reaction chamber, and falling rings of contaminants do not occur. .

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明に係る縦型気相成長装置によれば
、ガス導入部内中央部に、反応ガスを整流する整流器を
設け、かつ反応室内に、その中央部に反応ガスを通すた
めの開孔を有するウェハのサセプタを設けたので、大面
積にわたり、均一で高品質の半導体結晶を得られる効果
がある。
As described above, according to the vertical vapor phase growth apparatus according to the present invention, a rectifier for rectifying the reaction gas is provided in the center of the gas introduction section, and a flow rectifier for passing the reaction gas through the center of the reaction chamber is provided. Since a wafer susceptor having openings is provided, it is possible to obtain a uniform and high quality semiconductor crystal over a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による縦型気相成長装置を
示す断面図、第2図は従来の縦型気相成長装置の断面図
、第3図は膜厚分布を示す図、第4図は組成変化を示す
図である。 1・・・ガス搬送路、2・・・ガス導入部、3・・・反
応室、杢 4・・・整流器、5・・・基板支持台、6・・・RFコ
イル、7・・・支持棒、8・・・ガス導入部と整流器と
の間隙、9・・・整流器と基板支持台との間隙、10・
・・基板支持台と反応室内壁との間隙。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing a vertical vapor phase growth apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a conventional vertical vapor growth apparatus, and FIG. 3 is a view showing film thickness distribution. FIG. 4 is a diagram showing changes in composition. DESCRIPTION OF SYMBOLS 1... Gas conveyance path, 2... Gas introduction part, 3... Reaction chamber, heather 4... Rectifier, 5... Substrate support stand, 6... RF coil, 7... Support Rod, 8... Gap between gas introduction part and rectifier, 9... Gap between rectifier and substrate support, 10.
...Gap between the substrate support stand and the wall of the reaction chamber. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)ガス搬送路、円錐台形状のガス導入部及び反応室
を有し、上記ガス搬送路から送られてくる反応ガスをガ
ス導入部を介して上記ガス搬送路より口径の大きな上記
反応室へ導入し、該反応室でウェハと反応させる縦型気
相成長装置において、上記ガス導入部内に設けられ上記
送られてくる反応ガスを整流する整流器と、 上記反応室内に設けられその中央部に上記反応ガスを通
すための開孔を有するウェハのサセプタとを備えたこと
を特徴とする縦型気相成長装置。
(1) It has a gas transport path, a truncated conical gas introduction part, and a reaction chamber, and the reaction gas sent from the gas transport path is passed through the gas introduction part to the reaction chamber whose diameter is larger than that of the gas transport path. In the vertical vapor phase growth apparatus, the reaction gas is introduced into the reaction chamber and reacted with the wafer in the reaction chamber. A vertical vapor phase growth apparatus comprising: a susceptor for a wafer having an opening for passing the reaction gas.
(2)上記ウェハのサセプタの開孔の開口面積は該サセ
プタと上記反応室の内壁との間隙の断面積とほぼ等しい
ことを特徴とする特許請求の範囲第1項記載の縦型気相
成長装置。
(2) Vertical vapor phase growth according to claim 1, characterized in that the opening area of the opening in the susceptor of the wafer is approximately equal to the cross-sectional area of the gap between the susceptor and the inner wall of the reaction chamber. Device.
JP23884786A 1986-10-07 1986-10-07 Vertical vapor deposition equipment Expired - Lifetime JPH0618175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23884786A JPH0618175B2 (en) 1986-10-07 1986-10-07 Vertical vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23884786A JPH0618175B2 (en) 1986-10-07 1986-10-07 Vertical vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPS6393109A true JPS6393109A (en) 1988-04-23
JPH0618175B2 JPH0618175B2 (en) 1994-03-09

Family

ID=17036151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23884786A Expired - Lifetime JPH0618175B2 (en) 1986-10-07 1986-10-07 Vertical vapor deposition equipment

Country Status (1)

Country Link
JP (1) JPH0618175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129920A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Chemical vapor growth device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129920A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Chemical vapor growth device

Also Published As

Publication number Publication date
JPH0618175B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4798165A (en) Apparatus for chemical vapor deposition using an axially symmetric gas flow
JPH09330884A (en) Epitaxial growth device
US9890473B2 (en) Batch epitaxy processing system having gas deflectors
EP0164928A2 (en) Vertical hot wall CVD reactor
JPH088198A (en) Susceptor for vapor growth apparatus
JP2020096181A (en) Susceptor and chemical vapor deposition device
GB2181460A (en) Apparatus and method for chemical vapor deposition using an axially symmetric gas flow
JPH0322523A (en) Vapor growth device
JPS6393109A (en) Vertical type vapor growth device
JP2020102533A (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS
JPH09266173A (en) Org. metal chemical vapor deposition apparatus
US4352713A (en) Vapor growth method
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPS5932123A (en) Vapor growth method
JPH0727870B2 (en) Low pressure vapor deposition method
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPH02212393A (en) Vapor growth method and its device
JPH0722318A (en) Vertical vapor epitaxial growing device
JPH02224222A (en) Vapor growth apparatus
JP4142450B2 (en) Equipment for epitaxial growth of materials by CVD
JPH01222438A (en) Vapor growth device
JPH03291916A (en) Susceptor
JPH0322522A (en) Vapor growth device
JPH04311031A (en) Chemical vapor deposition device
JPS62105418A (en) Vapor growth equipment