JPS6392727A - Production of carbon fiber and apparatus therefor - Google Patents

Production of carbon fiber and apparatus therefor

Info

Publication number
JPS6392727A
JPS6392727A JP23489686A JP23489686A JPS6392727A JP S6392727 A JPS6392727 A JP S6392727A JP 23489686 A JP23489686 A JP 23489686A JP 23489686 A JP23489686 A JP 23489686A JP S6392727 A JPS6392727 A JP S6392727A
Authority
JP
Japan
Prior art keywords
carbon
gas
reaction
laser
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23489686A
Other languages
Japanese (ja)
Other versions
JPH0791695B2 (en
Inventor
Katsuhide Murata
勝英 村田
Kenji Sato
健二 佐藤
Masabumi Matsumoto
正文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP61234896A priority Critical patent/JPH0791695B2/en
Publication of JPS6392727A publication Critical patent/JPS6392727A/en
Publication of JPH0791695B2 publication Critical patent/JPH0791695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce and collect carbon fiber grown in vapor phase, in high efficiency, preventing the deposition of carbon to production devices, etc., by supplying gas of a carbon compound and catalyst particles or gas of a catalyst raw material to a region irradiated with a laser beam. CONSTITUTION:A laser beam is radiated from one end to the other end of a reaction vessel 10. One end of the reaction vessel 10 is supplied with a carrier gas, gas of a carbon compound and a raw material gas for catalyst (or catalyst particle) and the other end of the reaction vessel 10 is provided with a carbon fiber collector 22. The gas of the carbon compound is preferably aliphatic or aromatic hydrocarbon gas and the catalyst is preferably a transition metal compound, especially an iron compound such as Fe(NO)4, FeCl3, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素ia i(8を気相成長法により製造する
方法と装置に係り、特にレーザビームを利用した該方法
及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for producing carbon ia i (8) by a vapor phase growth method, and particularly to a method and apparatus using a laser beam.

[従来の技術] 炭素繊維は、従来からPAN系、ピッチ系のものが商業
生産されている。しかし、PAN系は高価であり、ピッ
チ系はプロセスが複雑で品質の制御がむずかしいなどの
致命的な欠点がある。
[Prior Art] Conventionally, PAN-based and pitch-based carbon fibers have been commercially produced. However, the PAN system is expensive, and the pitch system has fatal drawbacks such as complicated processes and difficult quality control.

一方、近年気相成長法が提案されている。従来、気相成
長炭素繊維は、電気炉内にアルミナなどの磁器、黒鉛な
どの基板を置き、これに炭素成長核、鉄、ニッケルなど
の超微粒子触媒を形成せしめ、この上にベンゼンなどの
炭化水素のガスと水素キャリヤガスの混合ガスを導入し
、950°〜1300℃の温度下に炭化水素を分解せし
めることにより、基板上に炭素ia維を成長させる方法
が知られている。
On the other hand, a vapor phase growth method has been proposed in recent years. Conventionally, vapor-grown carbon fibers are produced by placing a substrate made of porcelain such as alumina or graphite in an electric furnace, forming carbon growth nuclei, ultrafine particle catalysts such as iron or nickel on this, and then forming carbonization particles such as benzene on this. A method is known in which carbon IA fibers are grown on a substrate by introducing a mixed gas of hydrogen gas and hydrogen carrier gas and decomposing hydrocarbons at a temperature of 950° to 1300°C.

しかし、このような方法では、■基板表面の微妙な温度
ムラや、周囲のtaittの密生度によって長さの不均
一が起り易いこと、また■炭素の供給源としてのガスが
反応によって消費されることにより反応管の入口に近い
所と出口に近い所で1a維径が相当具なること、■基板
表面でのみ生成が行なわれるため、反応管の中心部分は
反応に関与せず収率が悪いこと、■超微粒子の基板への
分散、還元、成長次いでfa維の取出しという独立に実
施を必要とするプロセスがあるため、連続製造が不可能
であり、従って生産性が悪いなどの問題点を有する。
However, with this method, there are two issues: (1) non-uniformity in length is likely to occur due to subtle temperature unevenness on the substrate surface and the density of the surrounding taitt, and (2) gas as a source of carbon is consumed by the reaction. As a result, the diameter of the 1a fibers becomes considerably larger near the inlet and outlet of the reaction tube, and (1) the production occurs only on the substrate surface, so the central part of the reaction tube does not participate in the reaction and the yield is poor. ■ Continuous manufacturing is impossible because there are processes that must be carried out independently, such as dispersing ultrafine particles onto a substrate, reducing them, growing them, and then taking out the FA fibers, resulting in problems such as poor productivity. have

そこで、炭素化合物のガスと無機もしくは有機遷移金属
化合物のガスとキャリヤガスとの混合ガスを高温反応さ
せる炭素ia faの製造方法が提案されたく特開昭6
0−54998.6〇−224816など)。
Therefore, a method for producing carbon ia fa was proposed in which a mixed gas of a carbon compound gas, an inorganic or organic transition metal compound gas, and a carrier gas was reacted at high temperature.
0-54998.6〇-224816, etc.).

[発明が解決しようとする問題点] しかしながら、上記の特開昭60−54998.224
816などの方法では、反応容器も加熱されるところか
ら、器壁に副生物が付着し、収率が低下したり、連続運
転が困難である等の問題が生じていた。また、スケール
アップも容易ではなく、大量生産に不向きである、ある
いは加熱に電気炉を使用しており、エネルギーコストが
高い等の問題があった。
[Problems to be solved by the invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 60-54998.224
In methods such as 816, the reaction vessel is also heated, which causes problems such as by-products adhering to the walls of the vessel, resulting in a decrease in yield and difficulty in continuous operation. In addition, it is not easy to scale up, making it unsuitable for mass production, and requires an electric furnace for heating, resulting in high energy costs.

[問題点を解決するための手段及び作用]本発明は上記
の問題を解決するために、レーザ照射下において、炭素
化合物のガスと、浮遊状態にある触媒粒子とを接触させ
て炭素を繊維状に析出させることを特徴とする炭素繊維
の製造方法、 及び、 内部を反応ゾーンとする反応容器と、 該反応ゾーンへ向けてレーザビームを照射するレーザ装
置と、 該反応ゾーンを挟んで反応容器の一方の側に連設された
キャリアガスの導入手段、炭素化合物ガスの導入手段及
び触媒粒子又は触媒原料ガスの導入手段と、 該反応ゾーンを挟んで反応容器の他方の側に連設された
炭素繊維の捕集手段と、を備えたことを特徴とする炭素
繊維の製造方法及び装置、を提供するものである。
[Means and effects for solving the problems] In order to solve the above problems, the present invention brings carbon compound gas into contact with suspended catalyst particles under laser irradiation to form carbon into fibers. A method for producing carbon fiber, comprising: a reaction vessel having a reaction zone therein; a laser device that irradiates a laser beam toward the reaction zone; and a reaction vessel with the reaction zone in between. A means for introducing carrier gas, a means for introducing carbon compound gas, and a means for introducing catalyst particles or catalyst raw material gas are connected to one side, and carbon is connected to the other side of the reaction vessel with the reaction zone in between. The present invention provides a carbon fiber manufacturing method and apparatus, characterized by comprising a fiber collection means.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明における炭素化合物とは、ガス化可能な炭素化合
物全般を対象としており、CCL、CHCl3CI 2
 Cl 2、CH,C1%C01C52等の無機化合物
と有機化合物全般を特徴とする特に有用性の高い化合物
は、脂肪族炭化水素、芳香族炭化水素である。
The carbon compound in the present invention refers to all carbon compounds that can be gasified, and includes CCL, CHCl3CI2
Particularly useful compounds characterized by inorganic compounds such as Cl2, CH, C1%C01C52, etc. and organic compounds in general are aliphatic hydrocarbons and aromatic hydrocarbons.

また、これらの他窒素、酸素、硫黄、弗素、沃素、燐、
砒素等の元素を含んだ誘導体も使用可能である。具体的
な個々の化合物の例の一部を挙げると、メタン(天然ガ
スでも良い。)、エタン等のアルカン化合物、エチレン
、ブタジェン等のアルケン化合物、アセチレン等のアル
キン化合物、ベンゼン、トルエン、スチレン等のアリー
ル炭化水素化合物、インデン、ナフタリン、フェナント
レン等の縮合環を有する芳香族炭化水素、シクロプロパ
ン、シクロヘキサン等のシクロパラフィン化合物、シク
ロペンテン、シクロヘキセン等のシクロオレフィン化合
物、ステロイド等の縮合環を有する脂環式炭化水素化合
物、メチルチオール、メチルエチルスルフィド、ジメチ
ルチオケトン等の含硫黄脂肪族化合物、フェニルチオー
ル、ジフェニルスルフィド等の含硫黄芳香族化合物、ベ
ンゾチオフェン、チオフェン等の含硫黄複素環式化合物
、また単体ではないがガソリン等の消防法危険物第四類
、第一石油類、ケロシン、テレピン油、樟脳油、松根油
等の第二石油類、重油等の第三石油類、ギヤー油、シリ
ンダ油等の第四石油類も有効に使用できる。また、これ
ら混合物も使用できることは言うに及ばない。
In addition to these, nitrogen, oxygen, sulfur, fluorine, iodine, phosphorus,
Derivatives containing elements such as arsenic can also be used. Some specific examples of individual compounds include methane (natural gas may also be used), alkane compounds such as ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, benzene, toluene, styrene, etc. aryl hydrocarbon compounds, aromatic hydrocarbons with condensed rings such as indene, naphthalene, and phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane, cycloolefin compounds such as cyclopentene and cyclohexene, and alicyclic rings having condensed rings such as steroids. Formula hydrocarbon compounds, sulfur-containing aliphatic compounds such as methylthiol, methylethyl sulfide, dimethylthioketone, sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide, sulfur-containing heterocyclic compounds such as benzothiophene and thiophene, and Although not individual substances, Fire Service Act dangerous substances such as gasoline, Class 4 petroleum, Class 2 petroleum such as kerosene, turpentine, camphor oil, and pine oil, Class 3 petroleum such as heavy oil, gear oil, cylinder oil Quaternary petroleum oils such as, etc. can also be used effectively. It goes without saying that mixtures of these can also be used.

本発明において、触媒としては、無機遷移金属化合物、
Siの無機化合物、有機遷移金属化合物、Stの有機化
合物などが挙げられる。この無機遷移金属化合物とは、
単独で気化が可能な遷移金属の無機化合物又は水もしく
は少なくとも一種以上の水もしくは有機溶媒(この有機
溶媒としては炭素原料化合物を用いても良い。)に可溶
なもしくは微粒子として懸濁可能な遷移金属の無機化合
物が対象となる。遷移金属としては、鉄、ニッケル、コ
バルト、モリブデン、バナジウム、パラジウム等が好ま
しく、特に鉄が好ましい。前者の単独で気化が可能な無
機遷移金属化合物としては、Fe(No)4. FeC
1t、 Fl!(No)3C1,Fe(NO)2. F
e(NO)21FeF3等に代表される。また後者とし
ては、前者として挙げた化合物の他に、Fa (NOs
) 2. FeBr2゜Fe(HCOO)s、 C2t
H4xFeN90+2. Fe(SO2)s Fe(S
CN)s。
In the present invention, the catalyst includes an inorganic transition metal compound,
Examples include inorganic compounds of Si, organic transition metal compounds, and organic compounds of St. What is this inorganic transition metal compound?
An inorganic compound of a transition metal that can be vaporized alone or a transition metal that is soluble in water or at least one type of water or organic solvent (a carbon raw material compound may be used as the organic solvent) or can be suspended as fine particles. The target is inorganic compounds of metals. As the transition metal, iron, nickel, cobalt, molybdenum, vanadium, palladium, etc. are preferable, and iron is particularly preferable. Examples of the former inorganic transition metal compound that can be vaporized alone include Fe(No)4. FeC
1t, Fl! (No)3C1, Fe(NO)2. F
Representative examples include e(NO)21FeF3. In addition to the compounds listed as the former, the latter include Fa (NOs
) 2. FeBr2゜Fe(HCOO)s, C2t
H4xFeN90+2. Fe(SO2)s Fe(S
CN)s.

Fe(NO)J)Is、 Go(No)2CI、 Nt
(No)CI、 Pd(NO)2c12゜NiC1,等
が代表としてあげられる。
Fe(NO)J)Is, Go(No)2CI, Nt
Representative examples include (No)CI, Pd(NO)2c12°NiC1, etc.

本発明における有機遷移金属化合物とは、アルキル基と
金屑が結合したアルキル金属、アリル基と金属が結合し
たアリル錯体、炭素間2重結合や3重結合と金属とが結
合したπ−コンプレックスとキレート型化合物等に代表
される有機遷移金属化合物である。また、ここで遷穆金
属としては、スカンジウム、チタン、バナジウム、クロ
ム、マンガン、鉄、コバルト、ニッケル、イツトリウム
、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロ
ジウム、パラジウム、タンタル、タングステン、レニウ
ム、イリジウム、白金を指すものであるが、これらの内
特に周期律表■族に属するもの、その内で特に鉄、ニッ
ケル、コバルトが好適であって、鉄が最も好適である。
The organic transition metal compounds in the present invention include alkyl metals in which an alkyl group and gold scrap are bonded, allyl complexes in which an allyl group and a metal are bonded, and π-complexes in which a carbon-carbon double bond or triple bond is bonded to a metal. It is an organic transition metal compound typified by chelate type compounds. In addition, the translucent metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, and platinum. Of these, those belonging to group (I) of the periodic table are particularly preferred, particularly iron, nickel, and cobalt, with iron being the most preferred.

また、含硫黄炭素化合物または無機硫黄化合物の存在下
では、シリコンの無機化合物も用いることができる。例
えば、上記の無機金属化合物において金属をSiに置換
したものや炭化珪素を用い得る。さらに、各種の有機珪
素化合物をも用い得る。
Furthermore, in the presence of a sulfur-containing carbon compound or an inorganic sulfur compound, an inorganic compound of silicon can also be used. For example, the above-mentioned inorganic metal compounds in which the metal is replaced with Si or silicon carbide may be used. Furthermore, various organosilicon compounds may also be used.

有機珪素化合物としては、珪素−炭素結合をもつ有機化
合物の他にシラン、ハロゲンシランを便宜上含むものと
する。炭素−珪素結合を持つ有機化合物としては、テト
ラメチルシラン、メチルトリフェニルシラン等のオリガ
ノシラン、クロルジフルオルメチルシラン、ブロムトリ
プロピルシラン等のオルガノハロゲンシラン;メトキシ
トリメチルシラン、トリメチルフェノキシシラン等のオ
ルガノアルコキシシラン;ジアセトキシジメチルシラン
、アセトキシトリプロピルシラン等のオルガノアセトキ
シシラン;ヘキサエチルジシラン、ヘキサフェニルジシ
ラン、オクタフェニルシクロテトラシラン等のオルガノ
ポリシラン;ジメチルシラン、トリフェニルシラン等の
オルガノヒドロゲノシラン; (SiH2)rlで表示
されるシクロシラン;トリフェニルシラザン、ヘキサエ
チルジシラザン、ヘキサフェニルシクロトリシラザン等
のオルガノシラザン、(SiH2N)I)nで表示され
るシクロシラザンジエチルシランジオール、トリフェニ
ルシラノール等のオルガノシラノール;トリメチルシリ
ル酢酸、トリメチルシリルピロピオン酸等のオルガノシ
ラノール;トリメチルシリル酢酸、トリメチルシリルプ
ロピオン酸等のオルガノシランカルボン酸;トリメチル
シリコンイソシアナート、ジフェニルシリコンジイソシ
アナート等のシリコンイソシアナート;トリメチルシリ
コンイソチオシアナート、ジフェニルシリコンジイソチ
オシアナート等のオルガノシリコンイソチオシアナート
;シアン化トリエチルシリル等のオルガノシリコンエス
テル;ヘキサエチルジシラザン、テトラメチルシリコン
シルチアン等のシルチアン:(siH2s)nで表示さ
れるシクロシルチアン;ヘキサメチルジシロキサン、オ
クタメチルトリシルメチレン等のオルガノシルメチレン
;ヘキサメチルジシロキサン、ヘキサプロピルジシロキ
サン等のオルガノシロキサン等が挙げられるが、その他
の炭素−珪素結合を含む化合物であってもよい。また、
これらの混合物の使用も可能である。
The organic silicon compound includes, for convenience, silane and halogen silane in addition to organic compounds having a silicon-carbon bond. Examples of organic compounds having a carbon-silicon bond include organosilanes such as tetramethylsilane and methyltriphenylsilane; organohalogensilanes such as chlorodifluoromethylsilane and bromotripropylsilane; Alkoxysilanes; Organoacetoxysilanes such as diacetoxydimethylsilane and acetoxytripropylsilane; Organopolysilanes such as hexaethyldisilane, hexaphenyldisilane and octaphenylcyclotetrasilane; Organohydrogenosilanes such as dimethylsilane and triphenylsilane; Cyclosilane represented by SiH2)rl; organosilazane such as triphenylsilazane, hexaethyldisilazane, hexaphenylcyclotrisilazane; (SiH2N)I)organosilazane such as cyclosilazane diethylsilanediol and triphenylsilanol represented by n; Silanol; Organosilanols such as trimethylsilylacetic acid and trimethylsilylpyropionic acid; Organosilane carboxylic acids such as trimethylsilylacetic acid and trimethylsilylpropionic acid; Silicon isocyanates such as trimethylsilicon isocyanate and diphenylsilicon diisocyanate; Trimethylsilicon isothiocyanate and diphenyl Organosilicon isothiocyanates such as silicon diisothiocyanate; organosilicon esters such as triethylsilyl cyanide; silthians such as hexaethyldisilazane and tetramethyl siliconsilthian; cyclosylthian expressed as (siH2s)n; Examples include organosylmethylenes such as methyldisiloxane and octamethyltrisylmethylene; organosiloxanes such as hexamethyldisiloxane and hexapropyldisiloxane; however, compounds containing other carbon-silicon bonds may be used. Also,
It is also possible to use mixtures of these.

なお、本発明では、予め微粒子として生成された触媒粒
子(例えば乾燥した微粉末)を反応容器内に導入するよ
うにしても良い。
Note that, in the present invention, catalyst particles (for example, dried fine powder) that have been generated in advance as fine particles may be introduced into the reaction vessel.

本発明におけるキャリアガスとは、直接反応に関与しな
いガス全般を対象としている。例示すれば、N2ガス、
N2ガス、NH3ガス、Arガス、Heガス、にrガス
、又はこれらの混合ガスを主体とするガスである。この
うち、N2ガスが通常の場合用いられる。
The carrier gas in the present invention refers to all gases that are not directly involved in the reaction. For example, N2 gas,
The gas is mainly N2 gas, NH3 gas, Ar gas, He gas, R gas, or a mixture thereof. Among these, N2 gas is usually used.

また、キャリアガスなと、容器内に導入されるガスにレ
ーザの吸収効果を高めるための成分を添加しても良い。
Moreover, a component for enhancing the laser absorption effect may be added to the gas introduced into the container, such as a carrier gas.

この場合、添加成分は使用するレーザの波長によるが、
例えばC02レーザに対してはNH3やC2H4をレー
ザ吸収効果向上剤として添加することができる。
In this case, the additive components depend on the wavelength of the laser used, but
For example, for a C02 laser, NH3 or C2H4 can be added as a laser absorption effect enhancer.

以下本発明について図面に示す好適な態様を参照しなが
ら詳細に説明する。
The present invention will be described in detail below with reference to preferred embodiments shown in the drawings.

第1図は本発明を実施するに好適な装置の一例を示す概
略的な断面図である。符号10は反応容器(本実施例で
は反応管)であり、その一端側にレーザビームを照射す
るためのレーザ発振器12が設置され、他端側にはレー
ザ吸収板14が設置されている。また、前記一端側には
、触媒粒子となる物質を含む化合物の供給用配管16と
、キャリアガスの供給用配管18と、炭素化合物のガス
を供給するための配管20とが接続され、これら配管1
6.18.20の途中にそれぞれ流量制御装置16a、
18a、20aが設けられている。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus suitable for carrying out the present invention. Reference numeral 10 designates a reaction vessel (in this embodiment, a reaction tube), on one end of which a laser oscillator 12 for irradiating a laser beam is installed, and on the other end a laser absorption plate 14 is installed. Further, to the one end side, a pipe 16 for supplying a compound containing a substance to become catalyst particles, a pipe 18 for supplying a carrier gas, and a pipe 20 for supplying a gas of a carbon compound are connected. 1
In the middle of 6.18.20, respectively, the flow rate control device 16a,
18a and 20a are provided.

また、反応管10の他端側には炭素繊維捕集器22が接
続され、この炭素繊維捕集器22には排ガスの抜出管2
4が接続されている。
Further, a carbon fiber collector 22 is connected to the other end of the reaction tube 10, and an exhaust gas extraction pipe 22 is connected to the carbon fiber collector 22.
4 is connected.

なお、本発明において上記のレーザ発振器12としては
、波長が0.1〜1000μm程度の範囲の光を出すも
のが好適であり、具体的には例えばC02,YAG、ル
ビー、半導体、エキシマレーザ等を採用することができ
る。
In the present invention, the laser oscillator 12 is preferably one that emits light with a wavelength in the range of about 0.1 to 1000 μm, and specifically, for example, C02, YAG, ruby, semiconductor, excimer laser, etc. Can be adopted.

上記の如く構成された炭素繊維製造装置において、反応
容器内に導入された触媒粒子となる物質を含む化合物は
、レーザビームによって励起されて分解し、遷移元素又
はSiCなとの触媒粒子(通常の粒径は0.1〜10μ
m程度である)が生成する。更に、レーザビームによっ
て励起、分解された原料の炭素化合物がこの微粒子上に
析出し、炭素繊維が成長する。
In the carbon fiber manufacturing apparatus configured as described above, a compound containing a substance that becomes catalyst particles introduced into the reaction vessel is excited by a laser beam and decomposed, and catalyst particles such as transition elements or SiC (normal Particle size is 0.1~10μ
m) is generated. Further, the raw carbon compound excited and decomposed by the laser beam is deposited on the fine particles, and carbon fibers grow.

本発明において、微粒子が生成し、これを成長点として
炭素繊維が生成する反応容器の器壁の温度は従来の外熱
式の電気炉を用いた反応容器のそれよりも相当に低く、
器壁に副生物を付着することはない。従って、本発明で
は、反応容器の材質を高価な高耐食性あるいは高耐熱性
のものに限定する必要はない。また、レーザビームを採
用しているので、一般の外熱式の電気炉よりもエネルギ
ー消費が少なく、エネルギーコストが低度である。ただ
し、本発明では必要に応じ外熱式の電気炉等の外部加熱
手段を、反応容器を取り巻くように設け、反応ゾーンの
器壁を加熱してもよい。
In the present invention, the temperature of the wall of the reaction vessel in which fine particles are generated and carbon fibers are generated using these particles as growth points is considerably lower than that of a reaction vessel using a conventional external heating electric furnace.
No by-products will adhere to the vessel wall. Therefore, in the present invention, there is no need to limit the material of the reaction vessel to expensive materials with high corrosion resistance or high heat resistance. Additionally, since it uses a laser beam, it consumes less energy than a general external heating type electric furnace, resulting in lower energy costs. However, in the present invention, if necessary, an external heating means such as an external heating type electric furnace may be provided to surround the reaction vessel to heat the vessel wall of the reaction zone.

この場合、器壁への生成物の付着を防止するために、器
壁温度が600℃未満とりわけ550℃以下となるよう
に外部加熱するのが好適である。
In this case, in order to prevent the product from adhering to the vessel wall, it is preferable to externally heat the vessel so that the vessel wall temperature is less than 600°C, particularly 550°C or less.

本発明において、触媒粒子の大きさ或いは炭素繊維の直
径及び長さ等は、原料ガスの分圧、滞留時間、レーザ強
度等を制御することによって調節が可能である。
In the present invention, the size of the catalyst particles or the diameter and length of the carbon fibers can be adjusted by controlling the partial pressure, residence time, laser intensity, etc. of the raw material gas.

反応容器内における反応の順序は、上述の如く触媒微粒
子の生成、炭素繊維の成長となるのであるが、反応容器
内を特に微粒子生成ゾーンと炭素繊維成長ゾーンとにあ
えて分割する必要はない。
As described above, the reaction order in the reaction vessel is the generation of catalyst fine particles and the growth of carbon fibers, but there is no need to divide the inside of the reaction vessel into a fine particle generation zone and a carbon fiber growth zone.

ただし、必要により上記の如く適当な外部加熱手段を併
設すること等により、炭素繊維成長ゾーンを形成するよ
うにしてもよい。
However, if necessary, a carbon fiber growth zone may be formed by additionally providing a suitable external heating means as described above.

反応容器内において生成した炭素IIA維は、キャリア
ガスと共に炭素繊維捕集器22内に導入される。この捕
集方法は従来から知られている重力沈降法、電気集塵法
等の各種方法を採用することができる。なお、炭素繊維
捕集器22は、生成した炭素繊維を冷却する役割をも果
たす。本発明によれば、通常長さ0.1〜500mm程
度であり、直径が0.1〜300um程度の炭素繊維を
容易に製造することができる。
The carbon IIA fibers produced in the reaction vessel are introduced into the carbon fiber collector 22 together with a carrier gas. As this collection method, various conventionally known methods such as gravity sedimentation method and electrostatic precipitation method can be employed. Note that the carbon fiber collector 22 also plays a role of cooling the generated carbon fibers. According to the present invention, it is possible to easily produce carbon fibers that usually have a length of about 0.1 to 500 mm and a diameter of about 0.1 to 300 um.

炭素繊維捕集器22から抜き出されたキャリアガスは、
そのまま排気処理手段に導入して放出してもよいのであ
るが、精製後回循環させて用いるようにしてもよい。
The carrier gas extracted from the carbon fiber collector 22 is
It may be introduced into the exhaust treatment means and discharged as it is, but it may also be circulated and used after purification.

上記の装置では、反応管10の端部にレーザ吸収板(例
えば水冷銅板)14を設置しているが、光路長が短い場
合などでは反射板を置いてレーザビームの光路長を長く
するように構成してもよい。
In the above apparatus, a laser absorption plate (for example, a water-cooled copper plate) 14 is installed at the end of the reaction tube 10, but if the optical path length is short, a reflection plate may be placed to lengthen the optical path length of the laser beam. may be configured.

第2図は本発明の異なる実施例に係る炭素ja維製造装
置の構成を示す概略的な断面図である。
FIG. 2 is a schematic cross-sectional view showing the configuration of a carbon fiber manufacturing apparatus according to a different embodiment of the present invention.

符号30は反応容器であり、本実施例では反応管32.
34.36.38を四角形の枠状に接続して組み立てで
ある。そして、この四角形の隅角部にはそれぞれプリズ
ム39を設けると共に、反応管32と38との隅角部に
はレーザ発振器12を設置しである。また、この反応管
32と38の接続部にはZn5eなどレーザビームのみ
を透過させる窓板が設けられており、反応管32と38
とを遮断している。同様の窓板42は反応管34と36
との接続部にも配置されている。
Reference numeral 30 indicates a reaction vessel, and in this embodiment, a reaction tube 32.
It is assembled by connecting 34, 36, and 38 into a rectangular frame. A prism 39 is provided at each corner of the rectangle, and a laser oscillator 12 is provided at the corner between the reaction tubes 32 and 38. In addition, a window plate made of Zn5e that only transmits the laser beam is provided at the connection between the reaction tubes 32 and 38.
and are blocked. Similar window plates 42 are used for reaction tubes 34 and 36.
It is also located at the connection point.

反応管32と36の一端側には、それぞれ触媒粒子とな
る物質を含む化合物の供給用配管16、キャリヤガスの
供給用配管18、炭素化合物の供給用配管20がそれぞ
れ接続されており、これら配管の途中には流量制御装置
16a、18a、20aが設けられている。
Connected to one end of the reaction tubes 32 and 36 are a compound supply pipe 16 containing a substance to become catalyst particles, a carrier gas supply pipe 18, and a carbon compound supply pipe 20, respectively. Flow rate control devices 16a, 18a, and 20a are provided in the middle.

また、反応管34の反応管36側の端部及び反応管38
の反応管32側の端部にはそれぞれ炭素1a fa捕集
器22a、bが接続され、該捕集器22a、bには排ガ
ス抜出口24が接続されている。
Also, the end of the reaction tube 34 on the reaction tube 36 side and the reaction tube 38
Carbon 1a fa collectors 22a and 22b are connected to the ends of the reaction tube 32 side, respectively, and an exhaust gas outlet 24 is connected to the collectors 22a and 22b.

このように構成された第2図の装置において、配管16
,1B及び20から導入されたガスが反応管32.34
内で反応し炭素繊維を生成させ、この炭素繊維は捕集器
22aにて捕集される。また、反応管36.38内にて
生じた炭素11a維は、同様に捕集器22bで捕集され
る。この第2図の装置では、レーザビームの光路長が大
きく、効率よく炭素繊維を製造できる。なお、上記実施
例では四角形状に反応管を接続して反応容器を構成して
いるが、これは五角形、六角形など他の形状としてもよ
い。また、第3図に示す如くつづら折状に往復させる接
続方式や、第4図に示す如く反応管32を並列的に配置
したマルチ式の接続方式など各種の接続方式を採用して
もよい。
In the apparatus of FIG. 2 configured in this way, the piping 16
, 1B and 20 are introduced into the reaction tubes 32 and 34.
The carbon fibers are reacted within and generated, and the carbon fibers are collected by the collector 22a. Further, the carbon 11a fibers generated in the reaction tubes 36 and 38 are similarly collected by the collector 22b. In the apparatus shown in FIG. 2, the optical path length of the laser beam is large, and carbon fibers can be manufactured efficiently. In the above embodiment, the reaction tubes are connected in a rectangular shape to constitute the reaction vessel, but this may be in other shapes such as pentagonal or hexagonal. Furthermore, various connection methods may be employed, such as a connection method in which the reaction tubes 32 are reciprocated in a meandering manner as shown in FIG. 3, and a multi-type connection method in which reaction tubes 32 are arranged in parallel as shown in FIG.

第5図は本発明の異なる実施例に係る炭素繊維製造装置
の構成を示す斜視図である。本実施例では2枚の平板4
0,42と、レーザ反射板44.46及びレーザ吸収板
48で反応容器50を構成しである。この反応容器50
においては、ガス導入側50aから、炭素化合物のガス
、キャリアガス及び触媒粒子となる物質を含む化合物の
ガスが導入され、レーザ発振器12がレーザ反射板44
に向けてレーザを照射している。このレーザは、第6図
に示す如く反射板44と46との間で複数回反射され、
やがてレーザ吸収板48で吸収されるが、この途中にお
いて上記のガスを励起させ、炭素繊維を生成させる。生
成した炭素繊維は、キャリアガス及び残余の原料ガス等
と共に反応容器50の出口側50bから排出され、炭素
ia維は適宜の捕集手段にて捕集される。
FIG. 5 is a perspective view showing the configuration of a carbon fiber manufacturing apparatus according to a different embodiment of the present invention. In this embodiment, two flat plates 4
0, 42, laser reflecting plates 44, 46, and laser absorbing plate 48 constitute a reaction vessel 50. This reaction vessel 50
, a carbon compound gas, a carrier gas, and a compound gas containing a substance that will become catalyst particles are introduced from the gas introduction side 50a, and the laser oscillator 12 is connected to the laser reflection plate 44.
A laser is irradiated towards. This laser is reflected multiple times between reflection plates 44 and 46 as shown in FIG.
The gas is eventually absorbed by the laser absorption plate 48, but during this process, the above gas is excited and carbon fibers are generated. The generated carbon fibers are discharged from the outlet side 50b of the reaction vessel 50 together with the carrier gas and the remaining raw material gas, and the carbon IA fibers are collected by an appropriate collection means.

なお、レーザ発振器12は反応容器50の長手方向に首
を振るように運動させてもよい。このようにすれば反応
容器50内をくまなくレーザビームにて照射することが
でき、炭素繊維生成反応が一層促進されている。
Note that the laser oscillator 12 may be moved in the longitudinal direction of the reaction container 50 so as to swing its head. In this way, the entire inside of the reaction vessel 50 can be irradiated with the laser beam, and the carbon fiber production reaction is further promoted.

また、レーザ発振器12を首振り運動させる代りに、第
7図に示す如くレーザ発振器12としてレーザビームを
拡散方向に照射するものを用いてもよい。この場合には
反応容器50内のレーザ吸収仮設置部以外を全て鏡面と
しレーザビームを反射させる必要がある。また、第8図
の如く、レーザ反射板44として曲面鏡を採用すること
により、該レーザ反射板44に向けてレーザ光束を放射
させるようにしてもよい。この第8図の場合でも、レー
ザ吸収板以外の部分の反応容器内面を鏡面とする必要が
ある。
Furthermore, instead of swinging the laser oscillator 12, a laser oscillator 12 that emits a laser beam in a diffusing direction may be used as shown in FIG. In this case, it is necessary to make all parts of the reaction vessel 50 other than the laser absorption temporary installation part a mirror surface to reflect the laser beam. Further, as shown in FIG. 8, by employing a curved mirror as the laser reflecting plate 44, the laser beam may be emitted toward the laser reflecting plate 44. Even in the case of FIG. 8, it is necessary to make the inner surface of the reaction vessel other than the laser absorption plate a mirror surface.

[実施例] 以下、好適な製造実施例について説明する。[Example] Hereinafter, preferred manufacturing examples will be described.

実施例1 第1図に示す装置において、下記の条件にて炭素繊維の
製造を行なった。
Example 1 In the apparatus shown in FIG. 1, carbon fibers were manufactured under the following conditions.

レーザm:002レーザー(10,591μ)原   
料:  C2H4 触媒粒子となる物質を含む化合物: FeCl13水溶液 キャリアーガス:H2 圧  カニ常圧 滞留時間=1分 原料濃度: 5vo 1%1nH2 反応器: 20mmI Dx450mmL(石英製) 結果は次の通りであった。
Laser m: 002 laser (10,591μ) original
Material: C2H4 Compound containing a substance that becomes catalyst particles: FeCl13 aqueous solution Carrier gas: H2 pressure Crab normal pressure residence time = 1 minute Raw material concentration: 5vo 1% 1nH2 Reactor: 20mmI Dx450mmL (made of quartz) The results are as follows. Ta.

実験結果: 生長繊維二061〜1.0μmφ 100〜1000 μm上 収   率:25wt% 実施例2 第2図に示す装置を用い、炭素繊維の製造を行なった。Experimental result: Growth fiber 2061~1.0μmφ 100-1000μm above Yield rate: 25wt% Example 2 Carbon fibers were manufactured using the apparatus shown in FIG.

主な条件と結果を次に示す。The main conditions and results are shown below.

実験条件 レーザー:YAGレーザ−(1,06μm)原  料:
ベンゼン 触媒粒子となる物質を含む化合物: FeSO4水溶液 キャリアーガス:H2 圧  カニ常圧 滞留時間:5分(1ループ) 原料濃度:5vo1%i nH2 反応器:20mmlDX500mmLX4(石英製) 実験結果: 生長tafa: 0.1〜1.0μmφ100〜200
0μmL 収   率: 30〜35wt% 実施例3 第5図に示す装置を用いて炭素1a維を製造した。主な
条件と結果を下記に示す。
Experimental conditions Laser: YAG laser (1,06 μm) Raw material:
Compound containing a substance that becomes benzene catalyst particles: FeSO4 aqueous solution carrier gas: H2 pressure Crab normal pressure residence time: 5 minutes (1 loop) Raw material concentration: 5vo1% inH2 Reactor: 20 mm DX 500 mm LX 4 (made of quartz) Experimental results: Growing tafa: 0.1~1.0μmφ100~200
0 μmL Yield: 30 to 35 wt% Example 3 Carbon 1a fibers were produced using the apparatus shown in FIG. The main conditions and results are shown below.

実験条件 レーザm:002レーザー(10,591ρ)原   
料:  Ca  Ha  +H2S触媒粒子となる物質
を含む化合物: FeBra水溶液 キャリアーガス:H2 圧  カニ常圧 滞留時間:20秒 原料濃度ニア、5vo1%1nH2 反応器: d=10mm、 h=1000mm。
Experimental conditions Laser m: 002 laser (10,591ρ) original
Material: Ca Ha + H2S Compound containing substance to become catalyst particles: FeBra aqueous solution Carrier gas: H2 pressure Crab normal pressure residence time: 20 seconds Raw material concentration near, 5vo1%1nH2 Reactor: d = 10 mm, h = 1000 mm.

A=200mm     (石英製) 実験結果 生長繊維:0.1〜1.0μmφ、 100〜2000μmL 収   率: 35〜45wt% なお、これらの実施例1〜3において、いずれも器壁へ
の付着物は詔められなかった。
A = 200 mm (made of quartz) Experimental results Growing fibers: 0.1 to 1.0 μmφ, 100 to 2000 μmL Yield: 35 to 45 wt% In addition, in these Examples 1 to 3, the deposits on the vessel wall were It was not admonished.

[発明の効果] 以上の通り、本発明によればレーザを利用して気相法に
より炭素繊維を製造するものであり、■ エネルギー消
費が少なく、製造コストが廉価である。
[Effects of the Invention] As described above, according to the present invention, carbon fibers are manufactured by a vapor phase method using a laser, and (1) energy consumption is low and manufacturing costs are low.

■ 反応容器の内壁面は低温であり、その材質も廉価な
材質のもので足りる。
■ The inner wall surface of the reaction vessel is at a low temperature, and its material can be made of an inexpensive material.

■ 反応容器内面に副生物が付着しにくく、連続運転及
び大型反応容器の稼動に好適である。
(2) It is difficult for by-products to adhere to the inner surface of the reaction vessel, making it suitable for continuous operation and operation of large reaction vessels.

■ 反応容器内の圧力、各ガスの分圧、滞留時間、レー
ザ強度等を調節することにより得られる炭素繊維の品質
を容易に制御することができる。
(2) The quality of the carbon fiber obtained can be easily controlled by adjusting the pressure inside the reaction vessel, the partial pressure of each gas, residence time, laser intensity, etc.

■ 大景生産、スケールアップが容易である。■ Great production, easy to scale up.

等の優れた効果が奏される。Excellent effects such as these can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の実施例装置の描成
説明図、第3図及び第4図は反応管接続方式を説明する
線図、第5図は異なる実施例装置を示゛す斜視図、第6
図は同装薗におけるレーザビームの反射を示すレーザビ
ーム光路説明図、第7図及び第8図はそれぞれ異なる実
施例装置を説明する断面図である。 10・・・反応容器、    12・・・レーザ発振器
、16・・・触媒供給管、 18・・・キャリアガス供給管、 20・・・炭素化合物供給管、 22.22a、22b・・・炭素繊維捕集器。 代理人   弁理士   重 野  剛第1図 キャリアーガヌ十(2) 第5図 触媒粒子となる物質を含む化合物 第6図 第7図 第8図
FIGS. 1 and 2 are illustrations of an apparatus according to an embodiment of the present invention, FIGS. 3 and 4 are diagrams illustrating a reaction tube connection system, and FIG. 5 is a diagram showing a different embodiment of the apparatus. Perspective view, No. 6
The figure is an explanatory diagram of a laser beam optical path showing the reflection of a laser beam in the same device, and FIGS. 7 and 8 are cross-sectional views illustrating different embodiments of the apparatus. DESCRIPTION OF SYMBOLS 10... Reaction container, 12... Laser oscillator, 16... Catalyst supply pipe, 18... Carrier gas supply pipe, 20... Carbon compound supply pipe, 22.22a, 22b... Carbon fiber Collector. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 Carrier Ganu 10 (2) Figure 5 Compound containing a substance that becomes catalyst particles Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ照射下において、炭素化合物のガスと、浮
遊状態にある触媒粒子とを接触させて炭素を繊維状に析
出させることを特徴とする炭素繊維の製造方法。
(1) A method for producing carbon fibers, which comprises bringing carbon compound gas into contact with suspended catalyst particles under laser irradiation to precipitate carbon in the form of fibers.
(2)内部を反応ゾーンとする反応容器と、該反応ゾー
ンへ向けてレーザビームを照射するレーザ装置と、 該反応ゾーンを挟んで反応容器の一方の側に連設された
、キャリアガスの導入手段、炭素化合物ガスの導入手段
及び触媒粒子又は触媒原料ガスの導入手段と、 該反応ゾーンを挟んで反応容器の他方の側に連設された
炭素繊維の捕集手段と、を備えたことを特徴とする炭素
繊維の製造装置。
(2) A reaction container with a reaction zone inside, a laser device that irradiates a laser beam toward the reaction zone, and a carrier gas introduced on one side of the reaction container with the reaction zone in between. means, means for introducing carbon compound gas, means for introducing catalyst particles or catalyst raw material gas, and means for collecting carbon fibers connected to the other side of the reaction vessel across the reaction zone. Characteristic carbon fiber manufacturing equipment.
JP61234896A 1986-10-02 1986-10-02 Carbon fiber manufacturing equipment Expired - Lifetime JPH0791695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234896A JPH0791695B2 (en) 1986-10-02 1986-10-02 Carbon fiber manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234896A JPH0791695B2 (en) 1986-10-02 1986-10-02 Carbon fiber manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS6392727A true JPS6392727A (en) 1988-04-23
JPH0791695B2 JPH0791695B2 (en) 1995-10-04

Family

ID=16978002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234896A Expired - Lifetime JPH0791695B2 (en) 1986-10-02 1986-10-02 Carbon fiber manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0791695B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339818A (en) * 1992-06-11 1993-12-21 Mitsui Eng & Shipbuild Co Ltd Carbon fiber made by activated vapor phase
CN110042505A (en) * 2019-03-29 2019-07-23 武汉格罗夫氢能汽车有限公司 A kind of high-efficient carbon fiber production device
US11577214B2 (en) 2018-07-23 2023-02-14 Lg Chem, Ltd. Nanoparticle synthesis device and nanoparticle synthesis method using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231822A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231822A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339818A (en) * 1992-06-11 1993-12-21 Mitsui Eng & Shipbuild Co Ltd Carbon fiber made by activated vapor phase
US11577214B2 (en) 2018-07-23 2023-02-14 Lg Chem, Ltd. Nanoparticle synthesis device and nanoparticle synthesis method using same
CN110042505A (en) * 2019-03-29 2019-07-23 武汉格罗夫氢能汽车有限公司 A kind of high-efficient carbon fiber production device
CN110042505B (en) * 2019-03-29 2021-10-22 武汉格罗夫氢能汽车有限公司 High efficiency carbon fiber apparatus for producing

Also Published As

Publication number Publication date
JPH0791695B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US4876078A (en) Process for preparing carbon fibers in gas phase growth
US7651668B2 (en) Production method and production device for carbon nano structure
EP0136497B2 (en) A process for preparing fine carbon fibers in a gaseous phase reaction
US7518045B2 (en) Method of preparing carbon nanocages
JPH0424320B2 (en)
US20090191352A1 (en) Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
EP0451208A1 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
JP3730998B2 (en) Method for producing carbon nanotube
JPS6392727A (en) Production of carbon fiber and apparatus therefor
JPH0440450B2 (en)
JPH0246691B2 (en)
JPH0665765B2 (en) Carbon fiber manufacturing method
JPH0519341Y2 (en)
JPH0440451B2 (en)
JPH062222A (en) Production of carbon fiber by gaseous phase growth
JPH01104834A (en) Production of carbon fiber
JPS61194223A (en) Production of carbon fiber by gaseous phase method
JPH02127523A (en) Carbon fiber of vapor growth
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
RU2064889C1 (en) Method of hydrogen and carbon material producing
JPH0413448B2 (en)
JPS61257000A (en) Production of silicon carbide whisker
JPH0665764B2 (en) Carbon fiber manufacturing method
JPH07843B2 (en) Method for producing vapor grown carbon fiber