JPS61194223A - Production of carbon fiber by gaseous phase method - Google Patents

Production of carbon fiber by gaseous phase method

Info

Publication number
JPS61194223A
JPS61194223A JP3281785A JP3281785A JPS61194223A JP S61194223 A JPS61194223 A JP S61194223A JP 3281785 A JP3281785 A JP 3281785A JP 3281785 A JP3281785 A JP 3281785A JP S61194223 A JPS61194223 A JP S61194223A
Authority
JP
Japan
Prior art keywords
fine powder
carbon fiber
gas
fibers
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3281785A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3281785A priority Critical patent/JPS61194223A/en
Publication of JPS61194223A publication Critical patent/JPS61194223A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve dispersibility and activity of metallic fine powder, and to improve productivity of carbon fiber, by producing metallic fine powder by arcing, and making it exist in a productin zone of carbon fiber. CONSTITUTION:Arcing is produced between the graphite 4 and the metallic (Fe, Co, Ni, etc.) wire 5, the fine powder 10 is produced, and dispersed into the reaction layer 1 at 800-1,500 deg.C. The reaction tank 1 is sufficiently long and retension time of the fine powder is long. A hydrocarbon gas is fed from the gas inlet 3, and formed fibers are collected by the collector 8. The collector 8 has a built-in filter, the fibers are separated from the gas, and the gas is exhausted by the pump 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気相法炭素繊維の製造法に関し、特に収率よく
炭素M&雄を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing vapor-grown carbon fibers, and more particularly to a method for obtaining carbon M&M in good yield.

従来技術 従来の気相法炭素繊維の製造法はムライトなどのセラミ
ック基板表面に鉄などの微粉末(seed)を存在させ
、水素で稀釈したベンゼンなどの炭化水素を1000〜
1300℃の雰囲気下でゆっくり流す事により長時間を
かけて製造していた。気相法?7褒#am+711#写
纒帽ト1じ令g掛飴竿の賽面九ら炭素が溶は込み、II
面からは過飽和になって固体状炭素を析出させるメカニ
ズムで説明されている。幾多の実験を繰り返していると
、確かに、このメカニズムに従った結果が得られている
。しかし従来法でのこのメカニズムに従う限り、炉の表
面基板部分しか活用できない為に低い生産性しか達成さ
れていない。
Conventional technology The conventional method for manufacturing vapor-grown carbon fiber involves the presence of fine powder (seed) such as iron on the surface of a ceramic substrate such as mullite, and the addition of hydrocarbon such as benzene diluted with hydrogen to
It was manufactured over a long period of time by slowly flowing in an atmosphere of 1300°C. Gas phase method? 7 award #am+711 #shankhatto1stg-hangingcandyrodsice-male-nine-carbon-melted-in, II
The mechanism is explained by the mechanism of supersaturation and precipitation of solid carbon. Through repeated experiments, we have certainly obtained results that follow this mechanism. However, as long as this mechanism is followed in the conventional method, only a low productivity is achieved because only the surface substrate portion of the furnace can be utilized.

従来法で得られる繊維は、直径lO〜20#L■、長さ
3〜10cmで、目視によっても明らかに繊維状をして
おり、熱処理によりよく配向した黒鉛繊維となし得てい
る。しかし気相法炭素繊維の場合細い繊維の方が強度な
どの特性が向上し、他のPAN 。
The fibers obtained by the conventional method have a diameter of 10 to 20 #L and a length of 3 to 10 cm, and are clearly fibrous even by visual inspection, and can be made into well-oriented graphite fibers by heat treatment. However, in the case of vapor-grown carbon fibers, thinner fibers have better properties such as strength, making them more difficult to use than other PANs.

ピッチ系繊維に無い特性が期待できるので、生産性が向
上するのであれば、従来よりかなり短く細い繊維でもよ
い。
Since it is expected to have properties not found in pitch-based fibers, fibers that are much shorter and thinner than conventional ones may be used as long as productivity is improved.

その他従来法では金属微粉末の分散が十分でなく、また
微粒子の活性も高くないことが生産性を悪くする一因を
なしていた。
In addition, in the conventional method, the dispersion of the metal fine powder was not sufficient and the activity of the fine particles was not high, which was one of the causes of poor productivity.

発明が解決しようとする問題点 本発明は従来問題となっていた金属微粉末の分散性、活
性をよくシ、炭素繊維の生産性を向トさせることにある
Problems to be Solved by the Invention The object of the present invention is to improve the dispersibility and activity of fine metal powder, which has been a problem in the past, and to improve the productivity of carbon fibers.

問題点の解決手段 本発明は金属微粒子の分散性をよくするためアーク放電
により金属微粒子を発生させ、直ちにこれを炭素繊維の
生産帯域に共存させて活性を高い状態に維持したもので
ある。
Means for Solving the Problems In the present invention, in order to improve the dispersibility of metal fine particles, metal fine particles are generated by arc discharge, and the metal particles are immediately made to coexist in the carbon fiber production zone to maintain a high level of activity.

また炭素繊維の収量を増すには広い空間を利用し、かつ
ガス中の炭素濃度を高い状態にする必要がある0本発明
では、発生した微粒子は空間に浮遊した状態で炭素繊維
を析出させることが望ましい。
In addition, in order to increase the yield of carbon fibers, it is necessary to use a wide space and maintain a high carbon concentration in the gas.In the present invention, the generated fine particles are suspended in the space and the carbon fibers are precipitated. is desirable.

以下図面を参考に本発明の一実施態様について説明する
。第1図は本発明に用いられる装置の1例を示す断面図
で、1は反応層で加熱装置2により所定の温度、例えば
800〜1500℃に内部が保たれている。金属微粒子
は例えば黒鉛4と金属線5を用い4両者を剛化6,7し
てアークを発生させ、微粉末lOを得、反応層l内に分
散させる。金属は気相法炭素m維の製造において公知の
Fe、Go、Ni等が選ばれる0図ではアーク発生は反
応層のトにアーク発生帯を別に設け、そこで行なってい
るが、アーク発生は反応層内の上部で行なってもよい0
反応層は充分長くし、微粒子の滞留時間を長くする。炭
化水素ガスはガス供給口3より導入する。これにはHz
が通常混合され、またAtを併用することもできる。生
成した繊維は捕集器8で捕集する。8には細かい網等の
フィルターを内蔵させ、繊維とガスを分離し、ガスはポ
ンプ9より排出する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing one example of the apparatus used in the present invention, in which 1 is a reaction layer whose interior is maintained at a predetermined temperature, for example 800 to 1500 DEG C., by a heating device 2. The metal fine particles are made of, for example, graphite 4 and a metal wire 5, both of which are stiffened 6, 7 to generate an arc to obtain fine powder 10, which is dispersed within the reaction layer 1. The metals selected are Fe, Go, Ni, etc., which are known in the production of vapor-grown carbon fibers. May be done at the top of the layer0
The reaction layer should be sufficiently long to increase the residence time of the fine particles. Hydrocarbon gas is introduced from the gas supply port 3. For this, Hz
are usually mixed together, and At can also be used in combination. The generated fibers are collected by a collector 8. 8 has a built-in filter such as a fine mesh to separate the fibers from the gas, and the gas is discharged from the pump 9.

炭化水素ガスとしては気相法炭化水素製造に一般に使用
されるベンゼン、メタン、エタン、プロパン等が使用さ
れる。
As the hydrocarbon gas, benzene, methane, ethane, propane, etc., which are generally used in gas phase hydrocarbon production, are used.

実施例I Feのワイヤー(径0.3sus)を用い、第1図に示
す装置でFeの微粒子を発生させた。ワイヤーの送り速
度1 cta/分とし、アークは約5秒間隔でパルス的
に1〜2秒間発生させた。反応容器は内径1OC11、
長さ 100c麟のセラミックパイプを用いた。ガスは
C3H,11/分、 Ar 100cc/分、)111
17分の割合で第1図の供給口3より送入した0反応容
器内は800〜1000°Cに維持した。その結果直径
0.1〜0.3 grs 、長さ50〜l100ILの
繊維状物が1.1g/分得られた。
Example I Fine particles of Fe were generated using an apparatus shown in FIG. 1 using a Fe wire (diameter 0.3 sus). The wire feed rate was 1 cta/min, and the arc was generated in pulses for 1 to 2 seconds at approximately 5 second intervals. The reaction vessel has an inner diameter of 1OC11,
A ceramic pipe with a length of 100 cm was used. Gas is C3H, 11/min, Ar 100cc/min, )111
The inside of the reaction vessel was maintained at 800 to 1000°C by feeding from the supply port 3 in FIG. 1 at a rate of 17 minutes. As a result, a fibrous material having a diameter of 0.1 to 0.3 grs and a length of 50 to 1100 IL was obtained at a rate of 1.1 g/min.

実施例2 前記例でc5 H9を2文/分とした外は同様にして行
なった結果、直径0.1〜0.2終l、長さ30〜60
ルmのものが2.0g/分得られた。
Example 2 The same procedure was carried out except that the c5 H9 was changed to 2 sentences/min in the above example.
2.0 g/min was obtained.

これら両側とも繊維は真直なものは少なく、曲りくねっ
たもの、枝分れしたものが多かった。
On both sides, few of the fibers were straight, and many were curved or branched.

効果 本発明によると繊維は細くかつ短かいが、量は従来の例
えば基板上に析出させる方法に較べかなり多い、このm
raは例えば、エポキシ樹脂に分散させ、射出成形し、
高弾性体とし、スポーツ用品等に用いることができる。
Effects According to the present invention, the fibers are thin and short, but the amount is considerably larger than in the conventional method of depositing on a substrate, for example.
For example, RA is dispersed in epoxy resin and injection molded,
It is a highly elastic body and can be used for sporting goods, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いられる装置の1例を示
す断面図である。 10・・・・・・微粉末。
FIG. 1 is a cross-sectional view showing one example of an apparatus used to carry out the method of the present invention. 10...Fine powder.

Claims (1)

【特許請求の範囲】[Claims] 炭化水素の熱分解による気相法炭素繊維の製造法におい
て、金属のアーク放電により金属微粉末を生成させ、該
微粉末を炭素繊維生成帯域に存在させることを特徴とす
る気相法炭素繊維の製造法。
A method for producing vapor-grown carbon fiber by thermal decomposition of hydrocarbons, which is characterized in that metal fine powder is generated by metal arc discharge, and the fine powder is present in a carbon fiber production zone. Manufacturing method.
JP3281785A 1985-02-22 1985-02-22 Production of carbon fiber by gaseous phase method Pending JPS61194223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3281785A JPS61194223A (en) 1985-02-22 1985-02-22 Production of carbon fiber by gaseous phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281785A JPS61194223A (en) 1985-02-22 1985-02-22 Production of carbon fiber by gaseous phase method

Publications (1)

Publication Number Publication Date
JPS61194223A true JPS61194223A (en) 1986-08-28

Family

ID=12369382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281785A Pending JPS61194223A (en) 1985-02-22 1985-02-22 Production of carbon fiber by gaseous phase method

Country Status (1)

Country Link
JP (1) JPS61194223A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225325A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPH01229818A (en) * 1988-03-04 1989-09-13 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
JPH03104927A (en) * 1989-06-28 1991-05-01 Central Glass Co Ltd Coil-like carbon fiber and carbon composite material
JPH07189040A (en) * 1993-12-27 1995-07-25 Nec Corp Production of cylindrical graphite fiber
JP2012246590A (en) * 2011-05-30 2012-12-13 Sumitomo Bakelite Co Ltd Method for producing fibrous carbon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225325A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPH01229818A (en) * 1988-03-04 1989-09-13 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
JPH03104927A (en) * 1989-06-28 1991-05-01 Central Glass Co Ltd Coil-like carbon fiber and carbon composite material
JPH07189040A (en) * 1993-12-27 1995-07-25 Nec Corp Production of cylindrical graphite fiber
JP2012246590A (en) * 2011-05-30 2012-12-13 Sumitomo Bakelite Co Ltd Method for producing fibrous carbon

Similar Documents

Publication Publication Date Title
JPS6027700A (en) Preparation of carbon fiber by vapor-phase method
KR960000063B1 (en) Condensate diamond
US3630678A (en) Diamond growth process
JPH0346437B2 (en)
JPS58135117A (en) Preparation of diamond
JPS62242B2 (en)
JPS61194223A (en) Production of carbon fiber by gaseous phase method
US3399980A (en) Metallic carbides and a process of producing the same
CN112760974B (en) Carbon nanotube-copper composite fiber and preparation method thereof
JP3071571B2 (en) Method for producing vapor grown carbon fiber
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS59152298A (en) New production process for carbon fiber
JPH0320471A (en) Depositing method of ceramic coating on filament
JPS6262914A (en) Production of carbonaceous fiber
JP3117523B2 (en) Method for producing vapor grown carbon fiber
JPS5945635B2 (en) Method for growing β-SiC whiskers
JPS62104920A (en) Method for forming graphite fiber
JPH03146716A (en) Carbon fiber and its production
JPS6392727A (en) Production of carbon fiber and apparatus therefor
JPH01317198A (en) Method for synthesizing diamond or the like
Motojima et al. Preparation of Coiled Carbon Fibers by CVD
JPH01229818A (en) Production of carbon fiber
JPH03187998A (en) Production of aluminum nitride whisker
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method