JPH01229818A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH01229818A
JPH01229818A JP63051330A JP5133088A JPH01229818A JP H01229818 A JPH01229818 A JP H01229818A JP 63051330 A JP63051330 A JP 63051330A JP 5133088 A JP5133088 A JP 5133088A JP H01229818 A JPH01229818 A JP H01229818A
Authority
JP
Japan
Prior art keywords
transition metal
carbon
plasma
fibers
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051330A
Other languages
Japanese (ja)
Inventor
Kenji Sato
健二 佐藤
Masabumi Matsumoto
正文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63051330A priority Critical patent/JPH01229818A/en
Publication of JPH01229818A publication Critical patent/JPH01229818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To readily control quality and efficiently obtain carbon fibers at a low cost by generating a plasma containing a transition metal using an electrode of the transition metal (compound), passing the resultant plasma through a reaction zone, simultaneously feeding a hydrocarbon and growing carbon into the fibers. CONSTITUTION:An electrode 3 consisting of a transition metal or a compound thereof is used to pass a DC current across the electrodes (anode and cathode) 4 and 3. A plasma gas 5, such as H2, is introduced into an arc plasma torch 2 to generate an arc plasma jet 10, which is then used to generate ultrafine particles of the transition metal from the cathode 3. The obtained plasma is subsequently made to flow to a reaction zone (vessel) 1 and a hydrocarbon is simultaneously fed from an introduction port 6 into the reaction zone 1, excited and decomposed to grow carbon into a fibrous form using the ultrafine particles of the transition metal as a growth point. The grown fibers are then collected in a carbon fiber collector 7 to afford the aimed carbon fibers 30.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は炭素繊維の製造方法に係り、特にアークプラズ
マを利用して気相成長法により炭素繊維を効率的に製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing carbon fibers, and more particularly to a method for efficiently manufacturing carbon fibers by vapor phase growth using arc plasma.

[従来の技術] 炭素繊維は、従来からPAN系、ピッチ系のものが商業
生産されている。しかし、PAN系は高価であり、ピッ
チ系はプロセスが複雑で品質の制御がむずかしいなどの
致命的な欠点がある。
[Prior Art] Conventionally, PAN-based and pitch-based carbon fibers have been commercially produced. However, the PAN system is expensive, and the pitch system has fatal drawbacks such as complicated processes and difficult quality control.

一方、近年気相成長法が提案されている。従来、気相成
長炭素繊維は、電気炉内にアルミナなどの磁器、黒鉛な
どの基板を置き、これに炭素成長核、鉄、ニッケルなど
の超微粒子触媒を形成せしめ、この上にベンゼンなどの
炭化水素のガスと水素キャリヤガスの混合ガスを導入し
、950〜1300℃の温度下に炭化水素を分解せしめ
ることにより、基板上に炭素繊維を成長させる方法が知
られている。
On the other hand, a vapor phase growth method has been proposed in recent years. Conventionally, vapor-grown carbon fibers are produced by placing a substrate made of porcelain such as alumina or graphite in an electric furnace, forming carbon growth nuclei, ultrafine particle catalysts such as iron or nickel on this, and then forming carbonization particles such as benzene on this. A method is known in which carbon fibers are grown on a substrate by introducing a mixed gas of hydrogen gas and hydrogen carrier gas and decomposing hydrocarbons at a temperature of 950 to 1300°C.

しかし、このような方法では、■基板表面の微妙な温度
ムラや、周囲の繊維の密生度によって長さの不均一が起
り易いこと、また■炭素の供給源としてのガスが反応に
よって消費されることにより反応管の人口に近い所と出
口に近い所で繊維径が相当具なること、■基板表面での
み生成が行なわれるため、反応管の中心部分は反応に関
与せず収率が悪いこと、■超微粒子の基板への分散、還
元、成長次いで繊維の取出しという独立に実施を必要と
するプロセスがあるため、連続製造が不可能であり、従
って生産性が悪いなどの問題点を有する。
However, with this method, there are two issues: (1) the length is likely to be non-uniform due to subtle temperature irregularities on the substrate surface and the density of the surrounding fibers, and (2) the gas that serves as a carbon source is consumed by the reaction. As a result, the fiber diameter is considerably different between the part near the population of the reaction tube and the part near the outlet. ■Since the fiber is produced only on the surface of the substrate, the central part of the reaction tube does not participate in the reaction and the yield is poor. , (2) Since there are processes that must be carried out independently, such as dispersion of ultrafine particles onto a substrate, reduction, growth, and extraction of fibers, continuous production is impossible, and therefore there are problems such as poor productivity.

そこで、原料の炭素化合物のガスと触媒となる無機もし
くは有機遷移金属化合物のガスとキャリヤガスとの混合
ガスを高温反応させる炭素繊維の製造方法が提案された
(特開昭60−54998.60−224816など)
Therefore, a method for manufacturing carbon fiber was proposed in which a mixed gas of a carbon compound gas as a raw material, an inorganic or organic transition metal compound gas as a catalyst, and a carrier gas is reacted at high temperature (JP-A-60-54998.60- 224816 etc.)
.

[発明が解決しようとする課題] しかしながら、特開昭60−54998.6゜−224
816などの方法では、ラインの閉塞の問題や、定量的
なフィードができないなどといった問題があり、その上
、反応容器も加熱されるところから、器壁に副生物が付
着し、収率が低下したり、連続運転が困難である等の問
題が生じていた。また、スケールアップも容易ではなく
、大量生産に不向ぎである、あるいは加熱に電気炉を使
用しており、エネルギーコストが高い等の問題があった
[Problem to be solved by the invention] However, Japanese Patent Application Laid-Open No. 60-54998.6°-224
Methods such as 816 have problems such as line blockage and the inability to feed quantitatively.Furthermore, since the reaction vessel is also heated, by-products adhere to the vessel wall, reducing yield. Problems such as continuous operation were difficult. In addition, it is not easy to scale up, making it unsuitable for mass production, and requires an electric furnace for heating, resulting in high energy costs.

本発明は上記従来の問題を解決し、炭素繊維を極めて効
率的に製造することができる方法を提供するものである
The present invention solves the above-mentioned conventional problems and provides a method that can produce carbon fibers extremely efficiently.

[課題を解決するための手段] 本発明の炭素繊維の製造方法は、遷移金属又はiff 
穆金属化合物よりなる電極を用いて、遷移金属を含むプ
ラズマを発生させ、このプラズマを反応ゾーンに向けて
流すと共に、反応ゾーンに炭化水素を供給して炭素を繊
維状に成長させることを特徴とする。
[Means for Solving the Problems] The method for producing carbon fiber of the present invention provides a method for producing carbon fibers using transition metals or if
The method is characterized by generating plasma containing a transition metal using an electrode made of a metal compound, flowing this plasma toward a reaction zone, and supplying hydrocarbons to the reaction zone to grow carbon in the form of fibers. do.

従来、アークプラズマを採用した炭素繊維の製造方法は
既に提案されている(特開昭59−152298、同6
O−231822)。しかしながら、これらの方法はい
ずれも炭素電極を用いるものであり、遷移金属化合物等
の触媒は加熱によりガス状として別途供給されている。
Conventionally, methods for producing carbon fiber using arc plasma have already been proposed (Japanese Patent Laid-Open Nos. 59-152298 and 1986-6).
O-231822). However, all of these methods use carbon electrodes, and a catalyst such as a transition metal compound is separately supplied in the form of a gas by heating.

このため、やはり定量的フィードが難しく、連続的生産
が困難であるといった問題が生じている。
For this reason, problems arise in that quantitative feeding is difficult and continuous production is difficult.

本発明の方法は、アークプラズマを利用する炭素繊維の
製造方法において、遷移金属又はその化合物よりなる電
極を用い、アークプラズマジェットにより遷移余尺超微
粒子を発生、噴射させることにより、このような問題を
解決するものである。
The method of the present invention solves these problems by using an electrode made of a transition metal or its compound and generating and injecting extra-transition ultrafine particles by an arc plasma jet in a carbon fiber manufacturing method using arc plasma. This is to solve the problem.

以下、図面を参照して本発明について詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の炭素繊維の製造方法の実施に好適な炭
素繊維製造装置の構成を説明する概略的な断面図である
FIG. 1 is a schematic cross-sectional view illustrating the configuration of a carbon fiber manufacturing apparatus suitable for implementing the carbon fiber manufacturing method of the present invention.

第1図に示す装置において、符号1は反応容器(本例で
は反応管)であり、その一端側にアークプラズマジェッ
トを発生させるための、アークプラズマトーチ2が設置
されている。この装置のアークプラズマトーチ2は、直
流電源によりアークプラズマジェットを発生させる型式
のものであって、陰極3は遷移金属又はその化合物で構
成され、陽極4は通常の炭素電極とされている。陽極4
に形成されたガス導入口5からはプラズマガスが流入さ
れる。
In the apparatus shown in FIG. 1, reference numeral 1 denotes a reaction vessel (in this example, a reaction tube), and an arc plasma torch 2 for generating an arc plasma jet is installed at one end of the reaction vessel. The arc plasma torch 2 of this device is of a type that generates an arc plasma jet using a DC power source, and the cathode 3 is made of a transition metal or a compound thereof, and the anode 4 is an ordinary carbon electrode. Anode 4
Plasma gas is introduced from a gas inlet 5 formed in the .

反応容器1のアークプラズマトーチ2近傍には原料とな
る炭化水素の導入口6が設けられ、また反応容器1の他
端側(アークプラズマトーチ2と反対の側)には炭素繊
維捕集器7が接続され、この炭素繊維捕集器7には排ガ
スの抜出管8が接続されている。反応容器1の炭化水素
導入口6と炭素繊維捕集器7との接続部との間には、冷
却ガスの導入口9が設けられている。
An inlet 6 for introducing hydrocarbons as a raw material is provided near the arc plasma torch 2 of the reaction vessel 1, and a carbon fiber collector 7 is provided at the other end of the reaction vessel 1 (the side opposite to the arc plasma torch 2). is connected to the carbon fiber collector 7, and an exhaust gas extraction pipe 8 is connected to the carbon fiber collector 7. A cooling gas inlet 9 is provided between the hydrocarbon inlet 6 of the reaction vessel 1 and the connection portion with the carbon fiber collector 7 .

上記の如く構成された炭素繊維製造装置においては、電
極3.4間に直流電流を流すと共に、H2又はH2と希
ガスの混合ガス等のプラズマガスをトーチ2に導入する
ことにより、トーチ2内でアークプラズマジェット10
が発生し、これにより、陰極3より遷f3金属又は遷移
金属化合物の超微粒子が発生、噴射される(帯域A)。
In the carbon fiber manufacturing apparatus configured as described above, a direct current is passed between the electrodes 3 and 4, and a plasma gas such as H2 or a mixed gas of H2 and a rare gas is introduced into the torch 2. arc plasma jet 10
As a result, ultrafine particles of transf3 metal or transition metal compound are generated and injected from the cathode 3 (zone A).

この遷移金属又は遷移金属化合物の超微粒子は反応容器
1内に噴出され、導入口6からの炭化水素ガスを励起す
ると共に分解する。アークプラズマジェット10によれ
ば、容易に950〜1300℃程度の反応温度条件が得
られ、遷移金属又は遷移金属化合物の超微粒子を生長点
(核)として炭素iA!l維が生長する(帯域B)。
The ultrafine particles of the transition metal or transition metal compound are ejected into the reaction vessel 1, excite the hydrocarbon gas coming from the inlet 6, and decompose it. According to the arc plasma jet 10, reaction temperature conditions of approximately 950 to 1300°C can be easily obtained, and carbon iA! l fibers grow (zone B).

この炭素繊維の生成帯域である帯域Bの後方には、必要
に応じてH2又はH2O等の冷却ガスを導入口9より導
入し、逆反応の進行を防止する(帯域C)。
A cooling gas such as H2 or H2O is introduced from the inlet 9 as necessary to the rear of zone B, which is the carbon fiber production zone, to prevent the reverse reaction from proceeding (zone C).

このようにして反応容器1内で生成した炭素繊ii[i
 30は、炭素繊維捕集器7に導入される。この捕集方
法は従来から知られている重力沈降法、電気集座法等の
各種方法を採用することができる。
The carbon fibers ii [i
30 is introduced into the carbon fiber collector 7. As this collection method, various conventionally known methods such as gravity sedimentation method and electric condensation method can be employed.

冷却ガスにH,O(水蒸気)を用いた場合は、凝縮させ
て液相に捕集することもできる。なお、炭素繊維捕集器
7は、生成した炭素繊維を冷却する役割をも果たす。
When H, O (water vapor) is used as the cooling gas, it can also be condensed and collected in the liquid phase. Note that the carbon fiber collector 7 also plays the role of cooling the generated carbon fibers.

第2図は本発明の実施に好適な炭素繊維製造装置の他の
例の構成を示す概略的な断面図、第3図は第2図III
 −III線に沿う断面図である。
FIG. 2 is a schematic cross-sectional view showing the configuration of another example of a carbon fiber manufacturing apparatus suitable for carrying out the present invention, and FIG.
It is a sectional view along line -III.

この製造装置は、反応容器11の一端側、アークプラズ
マジェットの発生帯域Aと炭素繊維の生成帯域Bの構成
が第1図に示すものと異なるが、生成した炭素j51維
の捕集器側は第1図に示す装置と同様であるため図示を
省略する。
This manufacturing apparatus differs from the one shown in FIG. 1 in the configuration of one end side of the reaction vessel 11, the arc plasma jet generation zone A, and the carbon fiber generation zone B, but the structure of the collector side of the generated carbon J51 fibers is different from that shown in FIG. Since it is similar to the device shown in FIG. 1, illustration is omitted.

第2図及び第3図に示す装置は、反応容器11の一端側
にアークプラズマトーチ12が連結されている。このア
ークプラズマトーチ12も直流電源によるものであって
、陰極13は通常の炭素電極、陽極14a、14b、1
4c、14dは遷移金属又は遷移金属化合物より構成さ
れている。
In the apparatus shown in FIGS. 2 and 3, an arc plasma torch 12 is connected to one end of a reaction vessel 11. This arc plasma torch 12 is also powered by a DC power source, and the cathode 13 is a normal carbon electrode, and the anodes 14a, 14b, 1
4c and 14d are composed of a transition metal or a transition metal compound.

アークプラズマトーチ12の一端面には、プラズマガス
の導入口15が設けられており、また、反応容器11の
アークプラズマトーチ12の近傍には炭化水素の導入口
16が設けられている。更に、反応容器11の導入口1
6の下流側には、ヒータ20が設けられている。
A plasma gas inlet 15 is provided on one end surface of the arc plasma torch 12, and a hydrocarbon inlet 16 is provided in the vicinity of the arc plasma torch 12 in the reaction vessel 11. Furthermore, the introduction port 1 of the reaction vessel 11
A heater 20 is provided downstream of the heater 6 .

本実施例の装置においても導入口15からプラズマガス
が導入されると共に、陰極13と陽極14a〜14dと
の間に電流が供給されると、トーチ2内でアークプラズ
マジェットが発生し、陥8i14 a〜14dより、遷
移金属又は遷移金属化合物の超微粒子が発生、噴射され
る(帯域A)。
In the apparatus of this embodiment as well, when plasma gas is introduced from the inlet 15 and a current is supplied between the cathode 13 and the anodes 14a to 14d, an arc plasma jet is generated within the torch 2, causing the holes 8i14 Ultrafine particles of transition metals or transition metal compounds are generated and injected from a to 14d (zone A).

この遷移金属又は遷移金属化合物の超微粒子は導入口1
6から供給される炭化水素を励起し、第1図の装置と同
様に炭素繊維が生長する(帯域B)。この生長帯域Bは
必要に応じてヒータ2゜により反応容器外部から加熱さ
れる。
The ultrafine particles of the transition metal or transition metal compound are introduced into the inlet 1.
Hydrocarbons supplied from 6 are excited, and carbon fibers grow in the same way as in the apparatus shown in FIG. 1 (zone B). This growth zone B is heated from outside the reaction vessel by a heater 2° as required.

なお、この装置においては、陰極13を遷移金属又遷穆
金属化合物の’tiとし、陽極14a〜14dを炭素電
極としても良い。また、陰極13及び陽極14a〜14
d共に遷移金属又は遷移金属化合物電極としても良い。
In this device, the cathode 13 may be a transition metal or a transition metal compound 'ti, and the anodes 14a to 14d may be carbon electrodes. In addition, the cathode 13 and the anodes 14a to 14
Both d and transition metal or transition metal compound electrodes may be used.

本実施例において、陽極は、プラズマジェットの発生効
率を高めるために、4本設けられているが、陽極の数は
これに限定されるものではない。
In this embodiment, four anodes are provided in order to increase the plasma jet generation efficiency, but the number of anodes is not limited to this.

更に、反応容器11にはヒータ20が取り付けられてい
るが、ヒータ20は必ずしも必要とされず、アークプラ
ズマジェットにより反応に十分な高温が得られる場合に
は不要である。
Furthermore, although a heater 20 is attached to the reaction vessel 11, the heater 20 is not necessarily required, and is unnecessary when a high temperature sufficient for the reaction can be obtained by the arc plasma jet.

本発明において、原料となる炭化水素としては、メタン
(天然ガスでも良い、、)、エタン等のアルカン化合物
、エチレン、ブタジェン等のアルケン化合物、アセチレ
ン等のアルキン化合物、ベンゼン、トルエン、スチレン
等のアリール炭化水素化合物、インデン、ナフタリン、
フェナントレン等の縮合環を有する芳香族炭化水素、シ
クロプロパン、シクロヘキサン等のシクロパラフィン化
合物、シクロペンテン、シクロヘキセン等のシクロオレ
フィン化合物、ステロイド等の縮合環を有する脂環式炭
化水素化合物等が挙げられる。
In the present invention, the raw material hydrocarbons include methane (natural gas may also be used), alkane compounds such as ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, and aryl compounds such as benzene, toluene, and styrene. Hydrocarbon compounds, indene, naphthalene,
Examples include aromatic hydrocarbons having condensed rings such as phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane, cycloolefin compounds such as cyclopentene and cyclohexene, and alicyclic hydrocarbon compounds having condensed rings such as steroids.

また、プラズマガスとしては、N2、N2あるいはN2
.N2とH″e%Ar等の希ガスとの混合ガスを用いる
ことができる。混合ガスを用いる場合、N2又はN2ガ
ス濃度は60%以上とするのが好ましい。
In addition, as the plasma gas, N2, N2 or N2
.. A mixed gas of N2 and a rare gas such as H″e%Ar can be used. When using a mixed gas, it is preferable that the N2 or N2 gas concentration is 60% or more.

また、電極に用いる遷移金属としては、スカンジウム、
チタン、バナジウム、クロム、マンガン、鉄、コバルト
、ニッケル、イツトリウム、ジルコニウム、ニオブ、モ
リブデン、ルテニウム、ロジウム、パラジウム、タンタ
ル、タングステン、レニウム、イリジウム、白金を指す
ものであるが、これらの内、特にFe%Ni、Co。
In addition, the transition metals used for the electrode include scandium,
This refers to titanium, vanadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, and platinum. %Ni, Co.

Pt、Ag%Pd%Ti%Cr等が超微粒子化されやす
く、とりわけ、Fe、Ni、Coが好ましい。
Pt, Ag%Pd%Ti%Cr, etc. are easily formed into ultrafine particles, and Fe, Ni, and Co are particularly preferred.

また、遷移金属化合物としては、2つ又はそれ以上の遷
移金属の合金、あるいは、Fe(No)4、FeCjZ
3、Fe (No)3cjZ、Fe (No)2、F 
e (No)2I、FeF3 、Fe (NOs)z、
FeBr3、Fe (HCOO)3 、C27H,2F
eN9012、Fe (SO4)3 、Fe ’(SC
N)s、Fe (No)3NH3、Co (NO2)C
A、N1(No)Cf2、Pd (No)zcJ!2、
N i Cftz等の無機遷移金属化合物が挙げられる
Further, as the transition metal compound, an alloy of two or more transition metals, or Fe(No)4, FeCjZ
3, Fe (No)3cjZ, Fe (No)2, F
e (No)2I, FeF3, Fe (NOs)z,
FeBr3, Fe (HCOO)3, C27H, 2F
eN9012, Fe(SO4)3, Fe'(SC
N)s, Fe (No)3NH3, Co (NO2)C
A, N1 (No) Cf2, Pd (No) zcJ! 2,
Examples include inorganic transition metal compounds such as N i Cftz.

本発明において、炭素繊維の生成帯域(帯域B)の設定
条件は、常圧1atmにて、温度950〜1300℃、
好ましくは1000〜1100℃とする。温度条件がこ
の範囲外であると、炭素繊維が良好に生成しない。この
ような温度条件は、アークプラズマジェットにより容易
に得ることができるが、温度が十分に上がらない場合に
は、必要に応じて外部加熱により加熱する。
In the present invention, the setting conditions for the carbon fiber production zone (zone B) are normal pressure of 1 atm, temperature of 950 to 1300°C,
Preferably it is 1000-1100°C. If the temperature conditions are outside this range, carbon fibers will not be produced well. Such temperature conditions can be easily obtained using an arc plasma jet, but if the temperature does not rise sufficiently, external heating may be used as necessary.

アークプラズマジェットを発生させるためのプラズマガ
ス供給量やアーク電流、電圧等の条件は、電極の遷移金
属又は遷移金属化合物の種類、反応に供する原料炭化水
素の種類、その他の条件等に基いて、適宜決定される。
Conditions such as plasma gas supply amount, arc current, voltage, etc. for generating an arc plasma jet are based on the type of transition metal or transition metal compound in the electrode, the type of raw material hydrocarbon to be subjected to the reaction, and other conditions. To be determined accordingly.

通常の場合、次のような範囲で各種条件を設定するのが
好ましい。
In normal cases, it is preferable to set various conditions within the following ranges.

アークプラズマトーチ内圧カニ常圧 プラズマガス供給速度:10cm/s 〜100m/s アーク電流:100mA〜100A アーク電圧=1〜200V 通常の場合、このような設定条件により、粒径50〜5
00人程度の遷移金属又は遷移金属化合物の超微粒子が
発生する。
Arc plasma torch internal pressure Normal pressure plasma gas supply speed: 10 cm/s ~ 100 m/s Arc current: 100 mA ~ 100 A Arc voltage = 1 ~ 200 V Normally, under these setting conditions, the particle size is 50 ~ 5
Ultrafine particles of transition metals or transition metal compounds are generated.

このような本発明の方法によれば、通常長さ10μm〜
100μm程度であり、直径0.1〜1μm程度の炭素
繊維を容易に製造することができる。
According to such a method of the present invention, the length usually ranges from 10 μm to
It is about 100 μm, and carbon fibers with a diameter of about 0.1 to 1 μm can be easily produced.

[作 用] 本発明の方法においては、アークプラズマジェットによ
り、触媒微粒子の発生及び加熱を行ない、炭素繊維の生
成を行なう。
[Function] In the method of the present invention, carbon fibers are produced by generating and heating catalyst fine particles using an arc plasma jet.

即ち、N2、N2等の二原子分子ガスは、高圧力(10
0torr以上)、低電圧(50Vcm””以下)にお
けるアーク放電現象により解離して、原子状、イオン状
の高温プラズマ状ガスとなる。例えば、H2プラズマア
ークの温度は約10000”K程度の高温となり、アー
クにより電極の遷移金属又は遷移金属化合物は溶融され
る。アーク中の解離された原子状、イオン状H2は、反
応性に富み、十分に活性化されているので、分子状H2
より多量に溶融遷移金属又は遷移金属化合物中に溶解す
るが、溶融遷移金属又は遷移金属化合物中のN3が過飽
和状態になると、これを放出し出す。この時、溶融遷移
金属又は遷移金属化合物を同伴することにより、遷移金
属又は遷移金属化合物の超微粒子を形成する。特に、H
2アークは、金属の超微粒子化、とりわけFe%Ni、
CoやPt、Ag、Pd等の貴金属、Ti、Cr等の超
微粒子化に有効である。
That is, diatomic molecular gases such as N2 and N2 are used at high pressures (10
0 torr or more) and at low voltage (50 Vcm or less), it dissociates into a high-temperature plasma-like gas in the form of atoms or ions. For example, the temperature of an H2 plasma arc is as high as about 10,000"K, and the transition metal or transition metal compound of the electrode is melted by the arc. The dissociated atomic and ionic H2 in the arc is highly reactive. , is sufficiently activated, so molecular H2
A larger amount of N3 is dissolved in the molten transition metal or transition metal compound, but when the N3 in the molten transition metal or transition metal compound becomes supersaturated, it is released. At this time, by entraining the molten transition metal or transition metal compound, ultrafine particles of the transition metal or transition metal compound are formed. In particular, H
2 arc is the ultrafine particleization of metals, especially Fe%Ni,
It is effective for making ultrafine particles of noble metals such as Co, Pt, Ag, and Pd, as well as Ti and Cr.

遷移金属又は遷移金属化合物の発生量は、その種類及び
融点、H2濃度等によって異なり、一般には、H2?I
4度が高い程(60〜ioo%)多く、また遷移金属又
は遷移金属化合物の融点が高い程少ない。また、発生す
る微粒子の粒径は、アーク雰囲気圧力、H2濃度、プラ
ズマガス流量、アーク電流、電圧、遷移金属又は遷移金
属化合物の種類等により大きく影響を受ける。従って、
これらのパラメータを適宜コントロールすることにより
、所望の粒径の遷移金属又は遷移金属化合物の超微粒子
の所望量を効率的に発生させることができる。
The amount of transition metals or transition metal compounds generated varies depending on their type, melting point, H2 concentration, etc. Generally, H2? I
The higher the 4 degree (60 to ioo%), the higher the melting point of the transition metal or transition metal compound, the lower the amount. Further, the particle size of the generated fine particles is greatly influenced by arc atmospheric pressure, H2 concentration, plasma gas flow rate, arc current, voltage, type of transition metal or transition metal compound, etc. Therefore,
By appropriately controlling these parameters, it is possible to efficiently generate a desired amount of ultrafine particles of a transition metal or transition metal compound having a desired particle size.

このような本発明の方法によれば、 ■ 遷移金属又は遷移金属化合物よりなる電極を用い、
アーク放電により、電極から直接遷移金属又は遷移金属
化合物の超微粒子を発生させることができる、しかもそ
の粒径や発生量も適宜調整することができることから、
触媒フィードの問題を解決し、触媒供給を行なうことが
できる。
According to the method of the present invention, (1) using an electrode made of a transition metal or a transition metal compound;
Ultrafine particles of transition metals or transition metal compounds can be generated directly from electrodes by arc discharge, and the particle size and amount generated can be adjusted as appropriate.
Catalyst feed problem can be solved and catalyst supply can be carried out.

■ プラズマジェットによれば950〜1300℃の反
応温度を容易に得ることができ、外部加熱の必要がなく
なる、あるいは、外部加熱による割合を軽減することが
できる。このため、エネルギー効率の向上が図れ、加熱
温度の低温化、収率の向上が達成される。
(2) Using a plasma jet, a reaction temperature of 950 to 1300° C. can be easily obtained, eliminating the need for external heating or reducing the proportion of external heating. Therefore, energy efficiency can be improved, heating temperature can be lowered, and yield can be improved.

■ プラズマジェットでは、ラジカルが発生し易く、反
応速度が大きい。
■ In plasma jet, radicals are easily generated and the reaction rate is high.

■ 触媒微粒子密度、ラジカル密度が大きく、反応ゾー
ンを局所集中でき、処理量も大きい。
■ The catalyst fine particle density and radical density are large, the reaction zone can be locally concentrated, and the throughput is large.

■ プラズマガスをキャリアガスとすることができ、触
媒微粒子の還元も同時に行える。
■ Plasma gas can be used as a carrier gas, and catalyst particles can be reduced at the same time.

■ 触媒微粒子が存在するため、アセチレンの生成より
も炭素繊維の生成が勝り、アセチレンの生成が抑えられ
る。
■ Due to the presence of catalyst fine particles, the production of carbon fibers outweighs the production of acetylene, suppressing the production of acetylene.

等の効果が奏され、均一な炭素ia維を極めて効率的に
かつ容易に製造することが可能とされる。
Effects such as these are achieved, and it becomes possible to produce uniform carbon ia fibers extremely efficiently and easily.

[実施例コ 以下、好適な製造実施例について説明する。[Example code] Hereinafter, preferred manufacturing examples will be described.

実力五個1 第1図に示す装置において、下記の条件にて炭素繊維の
製造を行なった。
Capacity 5 pieces 1 Carbon fibers were manufactured using the apparatus shown in Figure 1 under the following conditions.

アークプラズマトーチ(直流) 曜 極:黒鉛 陰 極:炭素鋼棒(円柱状) プラズマガス:水素 プラズマガス供給速度:1m/s 電 流:4A 電 圧:10V 圧 カニ常圧 炭素繊維生成帯域 原料炭化水素:ベンゼン 供給量:1mu/min 温  度: 950〜1100℃ 圧 カニはぼ常圧 冷却条件 冷却ガス二水素(25℃) 冷却ガス供給fi : 10 It / m i nそ
の結果、直径0.1〜1μm、長さ100〜t ooo
μmの炭素ia維を高収率(収率53重二%)で得るこ
とができた。
Arc plasma torch (DC) Pole: Graphite cathode: Carbon steel rod (cylindrical) Plasma gas: Hydrogen Plasma gas supply speed: 1 m/s Current: 4 A Voltage: 10 V Pressure Crab normal pressure carbon fiber production zone raw material carbonization Hydrogen: Benzene supply amount: 1 mu/min Temperature: 950-1100°C Pressure Crab is normal pressure cooling condition Cooling gas dihydrogen (25°C) Cooling gas supply fi: 10 It/min As a result, diameter 0.1 ~1μm, length 100~toooo
It was possible to obtain carbon ia fibers of μm size in a high yield (yield: 53%).

[発明の効果] 以上の通り、本発明の炭素繊維の製造方法は、アーク放
電を利用して、触媒微粒子の発生、加熱等を行なうもの
であるため、 ■ 従来の触媒フィードの問題が解消され、所望粒径の
触媒微粒子を所望量発生、供給することができる。
[Effects of the Invention] As described above, the method for producing carbon fiber of the present invention utilizes arc discharge to generate catalyst fine particles, heat them, etc., so that ■ The problems of conventional catalyst feeding are solved. , it is possible to generate and supply a desired amount of catalyst fine particles having a desired particle size.

■ エネルギー消費が少なく、製造コストが廉価である
■ Low energy consumption and low manufacturing costs.

■ 反応容器の内壁面は低温であり、その材質も廉価な
材質のもので足りる。
■ The inner wall surface of the reaction vessel is at a low temperature, and its material can be made of an inexpensive material.

■ 反応容器内面に副生物が付着しにくく、連続運転及
び大型反応容器の稼動に好適である。
(2) It is difficult for by-products to adhere to the inner surface of the reaction vessel, making it suitable for continuous operation and operation of large reaction vessels.

■ アークプラズマジェット発生条件を調節することに
より得られる炭素1a維の品質を容易に制御することが
できる。
(2) The quality of the carbon 1a fibers obtained can be easily controlled by adjusting the arc plasma jet generation conditions.

■ 大量生産、スケールアップが容易である。■ Mass production and scale-up are easy.

■ 触媒の活性化効率、熱効率が高いため、収率、反応
速度、エネルギー効率が著しく高い。
■ Due to the high activation efficiency and thermal efficiency of the catalyst, the yield, reaction rate, and energy efficiency are extremely high.

等の優れた効果が奏される。Excellent effects such as these can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に好適な装置の一例を示す概略的
な断面図、第2図は本発明の実施に好適な装置の他の例
を示す概略的な断面図、第3図は第2図III −II
I線に沿う断面図である。 。 1.10・・・反応容器、 2.12・・・アークプラズマトーチ、3.13・・・
陰極、 4.14a、14b、14c、14d−−−陽極、7・
・・炭素繊維捕集器。 代理人  弁理士  重 野  剛 第2図 第3図
FIG. 1 is a schematic sectional view showing an example of a device suitable for carrying out the present invention, FIG. 2 is a schematic sectional view showing another example of a device suitable for carrying out the present invention, and FIG. Figure 2 III-II
It is a sectional view along I line. . 1.10... Reaction vessel, 2.12... Arc plasma torch, 3.13...
Cathode, 4.14a, 14b, 14c, 14d---Anode, 7.
...Carbon fiber collector. Agent Patent Attorney Tsuyoshi Shigeno Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)遷移金属又は遷移金属化合物よりなる電極を用い
て、遷移金属を含むプラズマを発生させ、このプラズマ
を反応ゾーンに向けて流すと共に、反応ゾーンに炭化水
素を供給して炭素を繊維状に成長させることを特徴とす
る炭素繊維の製造方法。
(1) Using an electrode made of a transition metal or a transition metal compound, generate plasma containing a transition metal, flow this plasma toward a reaction zone, and supply hydrocarbons to the reaction zone to turn carbon into fibers. A method for producing carbon fiber, which comprises growing carbon fiber.
JP63051330A 1988-03-04 1988-03-04 Production of carbon fiber Pending JPH01229818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051330A JPH01229818A (en) 1988-03-04 1988-03-04 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051330A JPH01229818A (en) 1988-03-04 1988-03-04 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH01229818A true JPH01229818A (en) 1989-09-13

Family

ID=12883910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051330A Pending JPH01229818A (en) 1988-03-04 1988-03-04 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH01229818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290698A (en) * 2005-04-14 2006-10-26 Yamaguchi Univ Method of manufacturing carbon nanofiber
CN105696113A (en) * 2015-12-04 2016-06-22 江西大有科技有限公司 Device for manufacturing carbon fibers through nonequilibrium plasma and method of device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194223A (en) * 1985-02-22 1986-08-28 Showa Denko Kk Production of carbon fiber by gaseous phase method
JPS61266618A (en) * 1985-05-20 1986-11-26 Asahi Chem Ind Co Ltd Production of carbon fiber
JPS62133119A (en) * 1985-12-04 1987-06-16 Showa Denko Kk Production of carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194223A (en) * 1985-02-22 1986-08-28 Showa Denko Kk Production of carbon fiber by gaseous phase method
JPS61266618A (en) * 1985-05-20 1986-11-26 Asahi Chem Ind Co Ltd Production of carbon fiber
JPS62133119A (en) * 1985-12-04 1987-06-16 Showa Denko Kk Production of carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290698A (en) * 2005-04-14 2006-10-26 Yamaguchi Univ Method of manufacturing carbon nanofiber
CN105696113A (en) * 2015-12-04 2016-06-22 江西大有科技有限公司 Device for manufacturing carbon fibers through nonequilibrium plasma and method of device
CN105696113B (en) * 2015-12-04 2018-06-26 江西大有科技有限公司 A kind of devices and methods therefor using nonequilibrium plasma manufacture carbon fiber

Similar Documents

Publication Publication Date Title
US8840724B2 (en) Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
KR101110409B1 (en) Method of manufacturing carbon nanostructure
JP5081453B2 (en) Method
WO2009093370A1 (en) Apparatus for producing carbon nanotube
US20100025225A1 (en) Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
JP2005515146A (en) Plasma synthesis of hollow nanostructures
JPH09188509A (en) Production of monolayer carbon manotube
US8048485B2 (en) Method and apparatus for the production of carbon nanostructures
JPH0731873A (en) Prep aration of self-gradient-type composite particle
EP1407064B1 (en) Method for producing vapor grown carbon fiber
KR100360686B1 (en) Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
US6794599B2 (en) Device and method for manufacture of carbonaceous material
JP4380248B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP4779621B2 (en) Method for producing carbon nanotube
JPH01229818A (en) Production of carbon fiber
JP2003112050A (en) Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS61194223A (en) Production of carbon fiber by gaseous phase method
JP3117523B2 (en) Method for producing vapor grown carbon fiber
JP4156978B2 (en) Carbon fiber manufacturing method
Suda et al. Syntheses and electronic applications of Helical carbon nanofibers
KR100881878B1 (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus therefor
Grigorian et al. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
Gowrisankar et al. Large-Scale Continuous Production of Carbon Nanotubes-A Review
JPH0413448B2 (en)