JPH0731873A - Prep aration of self-gradient-type composite particle - Google Patents

Prep aration of self-gradient-type composite particle

Info

Publication number
JPH0731873A
JPH0731873A JP5200988A JP20098893A JPH0731873A JP H0731873 A JPH0731873 A JP H0731873A JP 5200988 A JP5200988 A JP 5200988A JP 20098893 A JP20098893 A JP 20098893A JP H0731873 A JPH0731873 A JP H0731873A
Authority
JP
Japan
Prior art keywords
plasma
particles
self
powder
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5200988A
Other languages
Japanese (ja)
Other versions
JP2751136B2 (en
Inventor
Takamasa Ishigaki
隆正 石垣
Yusuke Moriyoshi
佑介 守吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP5200988A priority Critical patent/JP2751136B2/en
Publication of JPH0731873A publication Critical patent/JPH0731873A/en
Application granted granted Critical
Publication of JP2751136B2 publication Critical patent/JP2751136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare a self-gradient-type composite particle which has a continuous or discontinuous gradient distribution of a chemical composition or a crystal phase in a powder particle by injecting a raw material powder into a plasma generated under specific pressure and temperature conditions and allowing the powder to pass through the plasma. CONSTITUTION:A solid particle 7 is injected into a plasma 1 generated under conditions of from 1 torr to the atmospheric pressure and from 1000 deg.C to 1500 deg.C, and then is allowed to pass through the plasma 1. Consequently, a thermal and/or a chemical interaction is induced between the plasma 1 and the solid particle 7, so that the chemical composition or crystal phase of the powder particle is permitted to have a continuous or a discontinuous gradient structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自己傾斜型複合粒子
の製造方法に関するものである。さらに詳しくは、この
発明は、触媒、センサー、構造材料、および、電気磁気
材料等の製造に有用な、自己傾斜型複合粒子とその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing self-gradient composite particles. More specifically, the present invention relates to self-grading composite particles useful for manufacturing catalysts, sensors, structural materials, electromagnetic materials and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術とその課題】従来より、粒子を複合化する
ことによって、各種の構成成分の欠点を補完して新たな
機能を有する複合粒子を創出する試みがなされてきてお
り、その製造方法にも多くの工夫がなされている。この
ような複合粒子は、一般的には分散型複合粒子と被覆型
複合粒子の2つに大別される。このうちの分散型複合粒
子は、例えば図1(a)に例示したように、2種以上の
粒子(11)(12)を均一あるいは不均一に分散混合
した状態からなるものであり、一般的に、混合法により
製造されている。
2. Description of the Related Art Conventionally, attempts have been made to create composite particles having a new function by compensating for the defects of various constituent components by compounding the particles, and a method for producing the composite particles has been proposed. Much has been devised. Such composite particles are generally classified into two types: dispersion-type composite particles and coating-type composite particles. Among them, the dispersion-type composite particles are, for example, as shown in FIG. 1 (a), in a state where two or more kinds of particles (11) and (12) are uniformly or non-uniformly dispersed and mixed. It is manufactured by the mixing method.

【0003】一方、被覆型複合粉末は、例えば図1
(b)に例示したように、粒子表面に異種相をコーティ
ングした粉末であり、内側成分(13)と外側成分(1
4)の2相以上からなり、一般的に、ゾル・ゲル法や化
学メッキ法等の湿式法により製造されている。しかしな
がら、混合法により製造される分散型複合粒子は2種以
上の粒子の単なる物理的な混合体であり、この2種以上
の粒子の異種成分間の相互作用は各粒子表面の接触によ
り起こるだけなので、粉末全体の性能が構成成分の加成
的な性能を越えることは難しく、機能性には自ずと限界
が生じる。
On the other hand, the coated composite powder is, for example, as shown in FIG.
As illustrated in (b), it is a powder in which the surface of the particle is coated with a heterogeneous phase, and the inner component (13) and the outer component (1
It is composed of two or more phases of 4) and is generally manufactured by a wet method such as a sol-gel method or a chemical plating method. However, the dispersion-type composite particles produced by the mixing method are merely a physical mixture of two or more kinds of particles, and the interaction between the different components of the two or more kinds of particles is caused only by the contact of each particle surface. Therefore, it is difficult for the performance of the entire powder to exceed the additive performance of the constituents, and the functionality naturally has a limit.

【0004】一方、ゾル・ゲル法や化学メッキ法などの
湿式法により製造される被覆型複合粒子は、内側成分と
被覆成分との境界構造を有している。このため分散型複
合粒子とは異なり各異種成分間の接触面積は増加する
が、化学結合による相互作用を利用する複合機能等の向
上は期待できず、この被覆型複合粒子においても、その
機能性には自ずと限界がある。
On the other hand, the coated composite particles produced by a wet method such as a sol-gel method or a chemical plating method have a boundary structure between an inner component and a coating component. Therefore, unlike the dispersion-type composite particles, the contact area between different kinds of components increases, but it is not possible to expect the improvement of the composite function utilizing the interaction due to the chemical bond. There are naturally limits.

【0005】そこでこのような従来の複合粒子の欠点を
補い、さらに発展させて高機能化させた複合粒子として
例えば図1(c)に例示したように、自己傾斜型複合粒
子が考えられる。この自己傾斜型複合粒子では、粒子内
部から表面に向かって連続的に化学組成または結晶相が
変化しており、この自己傾斜型複合粒子の場合には、そ
の機能性を中心部から表面に向かって連続的または不連
続的に変化する自己傾斜機能を有している。そこで、内
側成分と表面成分の機能性、および、界面での両成分の
相互作用を利用して、センサ、触媒などの化学的機能、
電気・磁気的機能、高靱化や高強度化などの機械的機能
性の実現が期待される。
Therefore, as a composite particle which compensates for the drawbacks of the conventional composite particles and is further developed to have a high function, for example, a self-gradient type composite particle is considered as illustrated in FIG. 1 (c). In this self-gradient type composite particle, the chemical composition or crystal phase changes continuously from the inside of the particle toward the surface, and in the case of this self-gradient type composite particle, its functionality goes from the central part to the surface. It has a self-grading function that changes continuously or discontinuously. Therefore, by utilizing the functionality of the inner component and the surface component and the interaction of both components at the interface, the chemical functions of the sensor, catalyst, etc.
It is expected to realize electrical / magnetic functions and mechanical functionality such as toughness and strength.

【0006】しかしながら、自己傾斜型複合型粒子には
以上のような新しい機能性の実現が期待されているもの
の、現在までその製造方法は確立されていなのが実情で
ある。この発明は、以上の通りの事情に鑑みてなされた
ものであり、従来の複合粒子の技術的限界を克服し、新
しい機能性を実現することのできる自己傾斜型複合粒子
の製造方法を提供することを目的としている。
However, although the self-gradient type composite particles are expected to realize the new functionality as described above, the manufacturing method thereof has not been established until now. The present invention has been made in view of the above circumstances, and provides a method for producing self-grading composite particles capable of overcoming the technical limitations of conventional composite particles and realizing new functionality. Is intended.

【0007】[0007]

【課題を解決するための手段】この発明は上記の課題を
解決するものとして、1Torr以上大気圧以下の圧力
で、1000℃以上15000℃以下の温度で発生させ
たガスプラズマ中に粉末を注入し、粉末粒子中の化学組
成もしくは結晶相が連続的または不連続的な傾斜分布を
有する自己傾斜型複合粒子を製造することを特徴とする
自己傾斜型複合粒子の製造方法を提供する。
In order to solve the above-mentioned problems, the present invention injects powder into a gas plasma generated at a temperature of 1000 ° C. or more and 15000 ° C. or less at a pressure of 1 Torr or more and atmospheric pressure or less. Provided is a method for producing a self-grading composite particle, which comprises producing a self-grading composite particle having a chemical composition or a crystal phase in a powder particle having a continuous or discontinuous gradient distribution.

【0008】[0008]

【作用】この発明は、圧力が1〜760Torr、温度
が1000℃〜15000℃の条件で発生するガスプラ
ズマ中に原料粉末を注入して、その粉末をプラズマ中に
通過させることにより、粉末を形成する粒子の内部から
表面に連続相または不連続相を任意に制御し得るとの知
見に基づいて完成されたものであって、この制御を可能
とする新しい傾斜型複合粒子の製造方法からなることを
特徴としている。
The present invention forms a powder by injecting a raw material powder into a gas plasma generated under the conditions of a pressure of 1 to 760 Torr and a temperature of 1000 to 15000 ° C. and passing the powder into the plasma. It has been completed based on the finding that a continuous phase or a discontinuous phase can be arbitrarily controlled from the inside of the particles to the surface, and a new method for producing gradient composite particles that enables this control. Is characterized by.

【0009】つまり、この発明においては、プラズマと
粒子との間の物理的および化学的相互作用に着目し、種
々の条件で発生したプラズマ内に粒子を通過させ処理す
ることにより、粒子の格子欠陥の生成、粒子構成原子と
プラズマ中の化学種との化学反応や、急冷による非平衡
状態の瞬時の凍結により粒子の内部から表面に連続的ま
たは不連続的に異種相(化学組成や結晶・アモルファス
相)を形成させ、コーティング等をすることなしに、1
個1個の粒子そのものを複合化する。
That is, in the present invention, attention is paid to the physical and chemical interaction between plasma and particles, and the particles are passed through the plasma generated under various conditions to be treated, whereby lattice defects of the particles are processed. Formation, the chemical reaction between the constituent atoms of the particles and the chemical species in the plasma, and the instantaneous freezing of the non-equilibrium state due to quenching continuously or discontinuously from the inside to the surface of the particles (chemical composition, crystalline or amorphous phase). Phase) and without coating etc. 1
The particles themselves are compounded.

【0010】もちろん、この発明においては、プラズマ
は高周波プラズマや直流プラズマ等の各種のプラズマを
用いることができる。プラズマの発生と固体粒子との相
互作用のためのガスとしては、アルゴン、ヘリウム等の
希ガス、水素、窒素、酸素、炭化水素をはじめとする有
機物、さらには水蒸気、アンモニア、ジボラン、シラン
等の水素化物の1種以上のものを使用することができ
る。
Of course, in the present invention, various kinds of plasma such as high frequency plasma and direct current plasma can be used as the plasma. Gases for plasma generation and interaction with solid particles include rare gases such as argon and helium, organic substances such as hydrogen, nitrogen, oxygen, and hydrocarbons, and also water vapor, ammonia, diborane, silane, and the like. One or more hydrides can be used.

【0011】これらのうちの適宜なものを反応ガスとし
て使用することもできる。対象とする粒子の種類に特に
制限はないが、酸化物、非酸化物系セラミック粒子、金
属、合金、セラミック・金属等の粒子が好適に選ばれ
る。圧力が1Torr未満もしくは大気圧を超える場合
には、製造に好適なプラズマの発生、その安定化は難し
くなり、また、温度が1000℃未満もしくは1500
0℃を超える場合にも同様である。
Appropriate ones of these can be used as the reaction gas. The type of particles to be targeted is not particularly limited, but particles of oxide, non-oxide ceramic particles, metal, alloy, ceramic / metal, etc. are suitably selected. When the pressure is lower than 1 Torr or higher than atmospheric pressure, it becomes difficult to generate and stabilize plasma suitable for production, and the temperature is lower than 1000 ° C. or 1500.
The same applies when the temperature exceeds 0 ° C.

【0012】粒子の径や注入量、さらにはガスの供給量
は、目的とする粒子に応じて適宜に決定される。もちろ
ん、反応装置の形式、構造にも特に限定はない。またさ
らに、この発明においては、プラズマ下流部に反応ガス
を供給するようにしてもよい。
The particle diameter and injection amount, and further the gas supply amount are appropriately determined according to the intended particles. Of course, the type and structure of the reactor are not particularly limited. Furthermore, in the present invention, the reaction gas may be supplied to the plasma downstream portion.

【0013】以下実施例を示し、さらにこの発明につい
て詳しく説明する。
The present invention will be described in detail below with reference to examples.

【0014】[0014]

【実施例】実施例1 図2に示す高周波プラズマ反応装置を用いて、高周波プ
ラズマを発生させ、自己傾斜型複合粉末を製造した。こ
の高周波プラズマ反応装置は、水冷構造プラズマ反応管
(3)の周囲に、高周波コイル(2)を巻き付け、上部
からシースガス(5)およびプラズマガス(6)を、下
部からは反応ガス(8)を供給し、さらに、粉末注入プ
ローブ(4)から、原料粉末とキャリアーガス(7)を
注入する構造を有している。反応ガス(8)は原料粉体
の種類によっては使用する必要はなく、実際、この実施
例1においては、反応ガス(8)は使用しなかった。
EXAMPLES Example 1 Using the high frequency plasma reactor shown in FIG. 2, high frequency plasma was generated to produce a self-gradient composite powder. In this high-frequency plasma reactor, a high-frequency coil (2) is wound around a water-cooled structure plasma reaction tube (3), a sheath gas (5) and a plasma gas (6) are supplied from the upper part, and a reaction gas (8) is supplied from the lower part. It has a structure of supplying and further injecting the raw material powder and the carrier gas (7) from the powder injection probe (4). The reaction gas (8) does not have to be used depending on the type of raw material powder, and in fact, the reaction gas (8) was not used in this Example 1.

【0015】この反応装置を用い、シースガス(5)と
してアルゴンと水素をそれぞれ6リットル/分および5
リットル/分の供給速度で、さらに、プラズマガス
(6)としてアルゴンを6リットル/分の供給速度で、
それぞれ水冷構造プラズマ反応管(3)中に供給し、高
周波コイル(2)に50kWの高周波電力を供給して水
冷構造プラズマ反応管(3)内に圧力200Torrの
条件でプラズマ(1)を発生させた。
Using this reactor, argon and hydrogen were used as sheath gas (5) at 6 liter / min and 5 respectively.
At a feed rate of liter / min, and further at a feed rate of 6 liter / min of argon as plasma gas (6),
Each of them is supplied to the water-cooled structure plasma reaction tube (3), and high-frequency power of 50 kW is supplied to the high-frequency coil (2) to generate plasma (1) in the water-cooled structure plasma reaction tube (3) at a pressure of 200 Torr. It was

【0016】粉末注入プローブ(4)からキャリアーガ
スとしてアルゴンを4リットル/分の供給速度で導入
し、平均粒径1.3μmの炭化チタン粉末(組成TiC
0.97)を5g/分の供給速度でプラズマ(1)内に注入
した。プラズマ処理後の炭化チタン粒子を走査型電子顕
微鏡で観察した結果、例えば図3に例示したように、融
解して球状化していることが確認された。この粒子は平
均組成TiC0.91となり、プラズマ処理により炭化チタ
ンの炭素サイトの空孔が生成していることがわかる。熱
濃硫酸で溶解させて炭素含有量の熔解時間による変化を
調べた結果、炭素サイトの空孔は粒子表面から200〜
300nmの部分に生成しており、その濃度は内側に向
かって連続的に減少していることが確認された。実施例2 実施例1と同条件で生成させたプラズマ中に実施例1で
用いた炭化チタン原料粉末を注入し、さらに、プラズマ
(1)下流部に反応ガス(8)としてアンモニアガスを
5リットル/分の供給速度で半径方向に注入し、自己傾
斜型複合粒子を製造した。
Argon was introduced as a carrier gas from the powder injection probe (4) at a supply rate of 4 liters / minute, and titanium carbide powder (composition TiC) having an average particle diameter of 1.3 μm was introduced.
0.97 ) was injected into the plasma (1) at a supply rate of 5 g / min. As a result of observing the titanium carbide particles after the plasma treatment with a scanning electron microscope, it was confirmed that the particles were melted and spheroidized, for example, as illustrated in FIG. The particles had an average composition of TiC 0.91 and it was found that the pores of carbon sites of titanium carbide were generated by the plasma treatment. As a result of examining the change of the carbon content with the melting time by dissolving with hot concentrated sulfuric acid, the vacancy of the carbon site is 200 to
It was confirmed that it was generated in the portion of 300 nm, and the concentration thereof continuously decreased toward the inside. Example 2 The titanium carbide raw material powder used in Example 1 was injected into the plasma generated under the same conditions as in Example 1, and further 5 liters of ammonia gas was used as a reaction gas (8) downstream of the plasma (1). Injected radially at a feed rate of 1 / min to produce self-grading composite particles.

【0017】プラズマ処理を行なった炭化チタン粒子の
組成分析を行なったところ、2重量%の窒素が含有され
ていた。熱濃硫酸で溶解させて窒素含有量の時間変化を
調べ、プラズマ処理後の炭化チタン粒子の窒素含有量が
原料粉末と同程度になったところで粒径を比較したとこ
ろ、窒素は粒子表面から200〜300nmまでの部分
に固溶しており、その濃度は内側に向かって連続的に減
少していることが確認された。実施例3 実施例1と同様に生成させたプラズマ中に、平均粒径
1.5μmのα−アルミナ粉末を5g/分の供給速度で
高周波プラズマ反応装置に注入し、自己傾斜型複合粒子
を製造した。
Composition analysis of the titanium carbide particles subjected to the plasma treatment revealed that the titanium carbide particles contained 2% by weight of nitrogen. It was dissolved in hot concentrated sulfuric acid and the time-dependent change in nitrogen content was investigated. When the nitrogen content of the titanium carbide particles after plasma treatment was about the same as that of the raw material powder, the particle diameters were compared. It was confirmed that the solid solution was present in the portion up to 300 nm, and the concentration thereof continuously decreased toward the inside. Example 3 In a plasma generated in the same manner as in Example 1, α-alumina powder having an average particle size of 1.5 μm was injected into a high frequency plasma reactor at a supply rate of 5 g / min to produce self-grading composite particles. did.

【0018】プラズマ処理後のα−アルミナ粒子を透過
型電子顕微鏡で調べた結果、粒子は球状化していること
がわかり、さらに、中心部はγ相およびδ相の混合、中
間相はθ相、表面近傍はα相から構成されていることが
確認された。
As a result of examining the α-alumina particles after the plasma treatment with a transmission electron microscope, it was found that the particles were spheroidized. Furthermore, the central portion was a mixture of γ phase and δ phase, the intermediate phase was the θ phase, It was confirmed that the vicinity of the surface was composed of α phase.

【0019】[0019]

【発明の効果】以上詳しく説明した通り、この発明によ
り、粒子の中心部から表面へ化学組成もしくは結晶構造
が連続的または非連続的に変化する自己傾斜型複合粒子
を製造することが可能となり、この自己傾斜型複合粒子
を利用することにより、まったく新しい化学的、電気磁
気的、機械的機能性の実現が期待される。
As described above in detail, according to the present invention, it becomes possible to produce self-grading composite particles in which the chemical composition or crystal structure changes continuously or discontinuously from the central part of the particles to the surface, By utilizing these self-gradient composite particles, it is expected that completely new chemical, electromagnetic and mechanical functionalities will be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)は、各々、分散型、被覆
型、傾斜型の複合粒子の構造の模式図である。
1 (a), (b) and (c) are schematic views of the structure of dispersion type, coating type and gradient type composite particles, respectively.

【図2】この発明の高周波プラズマによる自己傾斜型複
合粒子の製造方法とそのための装置を例示した模式図で
ある。
FIG. 2 is a schematic view illustrating a method for producing self-gradient composite particles by high-frequency plasma and an apparatus therefor according to the present invention.

【図3】実施例としてのプラズマ処理後の炭化チタン粒
子の走査型電子顕微鏡写真像図である。
FIG. 3 is a scanning electron micrograph image diagram of titanium carbide particles after plasma treatment as an example.

【符号の説明】[Explanation of symbols]

11 粒子 12 粒子 13 内側成分 14 外側成分 1 プラズマ 2 高周波コイル 3 水冷構造プラズマ反応管 4 粉末注入プローブ 5 シースガス 6 プラズマガス 7 粉末とキャリアーガス 8 反応ガス 11 particles 12 particles 13 inner component 14 outer component 1 plasma 2 high frequency coil 3 water cooled structure plasma reaction tube 4 powder injection probe 5 sheath gas 6 plasma gas 7 powder and carrier gas 8 reaction gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1Torr以上大気圧以下の圧力で、1
000℃以上15000℃以下の温度で発生させたガス
プラズマ中に粉末を注入し、粉末粒子中の化学組成もし
くは結晶相が連続的または不連続的な傾斜分布を有する
自己傾斜型複合粒子を製造することを特徴とする自己傾
斜型複合粒子の製造方法。
1. At a pressure of 1 Torr or more and atmospheric pressure or less, 1
Powder is injected into a gas plasma generated at a temperature of 000 ° C. or higher and 15000 ° C. or lower to produce self-grading composite particles having a continuous or discontinuous gradient distribution in chemical composition or crystal phase in the powder particles. A method for producing self-grading composite particles, comprising:
【請求項2】 プラズマ下流部に反応ガスを注入するこ
とを特徴とする請求項1の自己傾斜型複合粒子の製造方
法。
2. The method for producing self-gradient composite particles according to claim 1, wherein a reaction gas is injected into the downstream portion of the plasma.
JP5200988A 1993-07-21 1993-07-21 Method for producing self-grading composite particles Expired - Lifetime JP2751136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200988A JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing self-grading composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200988A JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing self-grading composite particles

Publications (2)

Publication Number Publication Date
JPH0731873A true JPH0731873A (en) 1995-02-03
JP2751136B2 JP2751136B2 (en) 1998-05-18

Family

ID=16433643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200988A Expired - Lifetime JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing self-grading composite particles

Country Status (1)

Country Link
JP (1) JP2751136B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342615A (en) * 2004-06-02 2005-12-15 Central Res Inst Of Electric Power Ind Method and apparatus for producing spherical composite particle
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
US8051724B1 (en) 2007-05-11 2011-11-08 SDCmaterials, Inc. Long cool-down tube with air input joints
WO2014002695A1 (en) * 2012-06-28 2014-01-03 日清エンジニアリング株式会社 Method for production of titanium carbide microparticles
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
RU2692144C1 (en) * 2018-10-05 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Device for production of structurally gradient powder materials (versions)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693989C1 (en) * 2018-08-21 2019-07-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of producing structurally gradient powder materials (versions)
RU2725457C1 (en) * 2019-09-04 2020-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of producing structurally gradient and dispersion-strengthened powder materials (versions)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884107A (en) * 1982-09-24 1983-05-20 Shunpei Yamazaki Plasma nitriding method
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884107A (en) * 1982-09-24 1983-05-20 Shunpei Yamazaki Plasma nitriding method
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
JP4624006B2 (en) * 2004-06-02 2011-02-02 財団法人電力中央研究所 Spherical composite particle manufacturing method and manufacturing apparatus thereof
JP2005342615A (en) * 2004-06-02 2005-12-15 Central Res Inst Of Electric Power Ind Method and apparatus for producing spherical composite particle
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8051724B1 (en) 2007-05-11 2011-11-08 SDCmaterials, Inc. Long cool-down tube with air input joints
US8142619B2 (en) 2007-05-11 2012-03-27 Sdc Materials Inc. Shape of cone and air input annulus
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
JPWO2014002695A1 (en) * 2012-06-28 2016-05-30 日清エンジニアリング株式会社 Method for producing titanium carbide fine particles
WO2014002695A1 (en) * 2012-06-28 2014-01-03 日清エンジニアリング株式会社 Method for production of titanium carbide microparticles
KR20190132568A (en) * 2012-06-28 2019-11-27 닛신 엔지니어링 가부시키가이샤 Method for production of titanium carbide microparticles
US9751769B2 (en) 2012-06-28 2017-09-05 Nisshin Engineering Inc. Method for production of titanium carbide nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
RU2692144C1 (en) * 2018-10-05 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Device for production of structurally gradient powder materials (versions)

Also Published As

Publication number Publication date
JP2751136B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JPH0731873A (en) Prep aration of self-gradient-type composite particle
RU2213050C2 (en) Method for preparing carbon
EP1987878A1 (en) Catalyst for carbon nanostructure growth, process for producing carbon nanostructure, raw-material gas and carrier gas for producing the same, and apparatus for producing the same
US20030138561A1 (en) Thermal cracking chemical vapor deposition method for synthesizing nano-carbon material
JP2002514694A (en) Plasma catalysis for obtaining carbon nanofibers
SK2198A3 (en) Heat treatment of carbon materials
WO2004097084A1 (en) Method of producing vapor-grown carbon fibers
WO2011005807A2 (en) Process to make electrochemically active/ inactive nanocomposite material
WO1994006599A1 (en) Composite fibers having a diamond surface
Yoshida The future of thermal plasma processing
Masuda et al. The liquid pulse injection technique: a new method to obtain long vapor grown carbon fibers at high growth rates
TWI378897B (en) Method for producing carbon nanocoils
Kim et al. Thermal plasma synthesis of ceramic nanomaterials
Gitzhofer Induction plasma synthesis of ultrafine SiC
CN113086974B (en) Nitrogen-doped graphene and preparation method and application thereof
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JPH0248648B2 (en)
JPS58110493A (en) Production of graphite whisker
JP2794173B2 (en) Method of forming composite carbon coating
US20050019567A1 (en) Process for producing silicon carbide fibrils and product
KR100478144B1 (en) Method for Manufacturing Carbon Nanotube
JPH11124740A (en) Carbon micro-coil and its production
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
JPH0448757B2 (en)
JPS59152298A (en) New production process for carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term