JPH0731873A - Prep aration of self-gradient-type composite particle - Google Patents

Prep aration of self-gradient-type composite particle

Info

Publication number
JPH0731873A
JPH0731873A JP5200988A JP20098893A JPH0731873A JP H0731873 A JPH0731873 A JP H0731873A JP 5200988 A JP5200988 A JP 5200988A JP 20098893 A JP20098893 A JP 20098893A JP H0731873 A JPH0731873 A JP H0731873A
Authority
JP
Japan
Prior art keywords
plasma
self
particles
powder
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5200988A
Other languages
Japanese (ja)
Other versions
JP2751136B2 (en
Inventor
Takamasa Ishigaki
Yusuke Moriyoshi
佑介 守吉
隆正 石垣
Original Assignee
Natl Inst For Res In Inorg Mater
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natl Inst For Res In Inorg Mater, 科学技術庁無機材質研究所長 filed Critical Natl Inst For Res In Inorg Mater
Priority to JP5200988A priority Critical patent/JP2751136B2/en
Publication of JPH0731873A publication Critical patent/JPH0731873A/en
Application granted granted Critical
Publication of JP2751136B2 publication Critical patent/JP2751136B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Abstract

PURPOSE:To prepare a self-gradient-type composite particle which has a continuous or discontinuous gradient distribution of a chemical composition or a crystal phase in a powder particle by injecting a raw material powder into a plasma generated under specific pressure and temperature conditions and allowing the powder to pass through the plasma. CONSTITUTION:A solid particle 7 is injected into a plasma 1 generated under conditions of from 1 torr to the atmospheric pressure and from 1000 deg.C to 1500 deg.C, and then is allowed to pass through the plasma 1. Consequently, a thermal and/or a chemical interaction is induced between the plasma 1 and the solid particle 7, so that the chemical composition or crystal phase of the powder particle is permitted to have a continuous or a discontinuous gradient structure.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、自己傾斜型複合粒子の製造方法に関するものである。 BACKGROUND OF THE INVENTION This invention relates to a manufacturing method of a self-graded composite particles. さらに詳しくは、この発明は、触媒、センサー、構造材料、および、電気磁気材料等の製造に有用な、自己傾斜型複合粒子とその製造方法に関するものである。 More particularly, the present invention is a catalyst, a sensor, structural materials, and useful in the manufacture of electrical and magnetic materials, a process for its preparation and self inclined composite particles.

【0002】 [0002]

【従来の技術とその課題】従来より、粒子を複合化することによって、各種の構成成分の欠点を補完して新たな機能を有する複合粒子を創出する試みがなされてきており、その製造方法にも多くの工夫がなされている。 BACKGROUND OF and THE INVENTION Conventionally, by composite particles, complement the shortcomings of the various components of an attempt to create a composite particle having a new function has been made, in the manufacturing method many of the ideas have also been made. このような複合粒子は、一般的には分散型複合粒子と被覆型複合粒子の2つに大別される。 Such composite particles generally are roughly classified into two and distributed composite particles coated composite particles. このうちの分散型複合粒子は、例えば図1(a)に例示したように、2種以上の粒子(11)(12)を均一あるいは不均一に分散混合した状態からなるものであり、一般的に、混合法により製造されている。 Distributed composite particles of this, for example, as illustrated in FIG. 1 (a), 2 or more groups of particles (11) (12) is made of a homogeneous or heterogeneous distributed mixed state, general to have been produced by mixing method.

【0003】一方、被覆型複合粉末は、例えば図1 On the other hand, coating type composite powder, for example, FIG. 1
(b)に例示したように、粒子表面に異種相をコーティングした粉末であり、内側成分(13)と外側成分(1 As illustrated (b), the a powder coated with heterophasic the particle surface, the inner component (13) and the outer component (1
4)の2相以上からなり、一般的に、ゾル・ゲル法や化学メッキ法等の湿式法により製造されている。 4) consists of two or more phases, are produced generally by the sol-gel method or a chemical plating method and a wet method. しかしながら、混合法により製造される分散型複合粒子は2種以上の粒子の単なる物理的な混合体であり、この2種以上の粒子の異種成分間の相互作用は各粒子表面の接触により起こるだけなので、粉末全体の性能が構成成分の加成的な性能を越えることは難しく、機能性には自ずと限界が生じる。 However, the distributed composite particles produced by the mixing method is merely a physical mixture of two or more particles, only occurs by contact interactions each particle surfaces between different components of the two or more groups of particles so, the overall powder performance exceeds additivity performance of components is difficult, a limit arises in the functionality.

【0004】一方、ゾル・ゲル法や化学メッキ法などの湿式法により製造される被覆型複合粒子は、内側成分と被覆成分との境界構造を有している。 On the other hand, coated type composite particles produced by a wet method such as a sol-gel method or a chemical plating method has the boundary structure between the inner component and the coating components. このため分散型複合粒子とは異なり各異種成分間の接触面積は増加するが、化学結合による相互作用を利用する複合機能等の向上は期待できず、この被覆型複合粒子においても、その機能性には自ずと限界がある。 Therefore the area of ​​contact between the different components Unlike distributed composite particles increases, improvement of the composite function for utilizing interaction by chemical bonding can not be expected, even in the coated composite particles, their functionality there is naturally a limit to.

【0005】そこでこのような従来の複合粒子の欠点を補い、さらに発展させて高機能化させた複合粒子として例えば図1(c)に例示したように、自己傾斜型複合粒子が考えられる。 [0005] Therefore compensate such drawbacks of conventional composite particles, as further exemplified as composite particles obtained by high performance by developing for example in FIG. 1 (c), it can be considered self-inclined composite particles. この自己傾斜型複合粒子では、粒子内部から表面に向かって連続的に化学組成または結晶相が変化しており、この自己傾斜型複合粒子の場合には、その機能性を中心部から表面に向かって連続的または不連続的に変化する自己傾斜機能を有している。 In this self-graded composite particles, and continuously chemical composition or crystal phase toward the surface from the interior of the particles is changed, in the case of the self-graded composite particles towards the surface its functionality from the center and a self-gradient function that varies continuously or discontinuously Te. そこで、内側成分と表面成分の機能性、および、界面での両成分の相互作用を利用して、センサ、触媒などの化学的機能、 Therefore, the functionality of the inner component and the surface component, and, by utilizing the interaction of both components at the interface, the sensor, the chemical features such as catalysts,
電気・磁気的機能、高靱化や高強度化などの機械的機能性の実現が期待される。 Electrical and magnetic features, realization of mechanical functionality such as high 靱化 and high strength can be expected.

【0006】しかしながら、自己傾斜型複合型粒子には以上のような新しい機能性の実現が期待されているものの、現在までその製造方法は確立されていなのが実情である。 However, although the realization of a self-graded composite particles in the above-described new functionality is expected, a manufacturing method up to the present is to not been established circumstances. この発明は、以上の通りの事情に鑑みてなされたものであり、従来の複合粒子の技術的限界を克服し、新しい機能性を実現することのできる自己傾斜型複合粒子の製造方法を提供することを目的としている。 The present invention has been made in view of the circumstances as per above, to overcome the technical limitations of conventional composite particles, to provide a method of manufacturing a self-graded composite particles capable of realizing a new functional It is aimed at.

【0007】 [0007]

【課題を解決するための手段】この発明は上記の課題を解決するものとして、1Torr以上大気圧以下の圧力で、1000℃以上15000℃以下の温度で発生させたガスプラズマ中に粉末を注入し、粉末粒子中の化学組成もしくは結晶相が連続的または不連続的な傾斜分布を有する自己傾斜型複合粒子を製造することを特徴とする自己傾斜型複合粒子の製造方法を提供する。 SUMMARY OF THE INVENTION The present invention as to solve the above problem, at pressures 1Torr above atmospheric pressure, the powder is injected into the gas plasma generated at 15000 ° C. temperatures below 1000 ° C. or higher , to provide a method of manufacturing a self-graded composite particles characterized in that to produce a self-graded composite particle chemical composition or crystal phase in the powder particles have a continuous or discontinuous graded.

【0008】 [0008]

【作用】この発明は、圧力が1〜760Torr、温度が1000℃〜15000℃の条件で発生するガスプラズマ中に原料粉末を注入して、その粉末をプラズマ中に通過させることにより、粉末を形成する粒子の内部から表面に連続相または不連続相を任意に制御し得るとの知見に基づいて完成されたものであって、この制御を可能とする新しい傾斜型複合粒子の製造方法からなることを特徴としている。 SUMMARY OF THE INVENTION This invention pressure 1~760Torr, temperature by injecting a raw material powder in the gas plasma generated under the conditions of 1000 ℃ ~15000 ℃, by passing the powder into the plasma, forming a powder to be at the surface from the interior of the particles has been completed based on the finding that may arbitrarily controlled continuous or discontinuous phase, that consists of a manufacturing method of a new graded composite particles to enable this control It is characterized in.

【0009】つまり、この発明においては、プラズマと粒子との間の物理的および化学的相互作用に着目し、種々の条件で発生したプラズマ内に粒子を通過させ処理することにより、粒子の格子欠陥の生成、粒子構成原子とプラズマ中の化学種との化学反応や、急冷による非平衡状態の瞬時の凍結により粒子の内部から表面に連続的または不連続的に異種相(化学組成や結晶・アモルファス相)を形成させ、コーティング等をすることなしに、1 [0009] That is, in the present invention, physical and focused on chemical interaction, by treating passed through the particles in the plasma generated in various conditions, lattice defects of the particles between the plasma and the particle chemical reaction or continuously or discontinuously heterophasic from the surface to the inside of the snap frozen by the particles of the non-equilibrium state by rapid cooling (chemical composition and crystal-amorphous product, the chemical species in the particles constituting atoms and plasma phase) to form, without the coating, and the like, 1
個1個の粒子そのものを複合化する。 Conjugating the number one particle itself.

【0010】もちろん、この発明においては、プラズマは高周波プラズマや直流プラズマ等の各種のプラズマを用いることができる。 [0010] Of course, in the present invention, the plasma may be any of various plasma such as RF plasma or DC plasma. プラズマの発生と固体粒子との相互作用のためのガスとしては、アルゴン、ヘリウム等の希ガス、水素、窒素、酸素、炭化水素をはじめとする有機物、さらには水蒸気、アンモニア、ジボラン、シラン等の水素化物の1種以上のものを使用することができる。 As the gas for the interaction between the plasma generation and the solid particles, argon, helium or the like rare gases, hydrogen, nitrogen, oxygen, organic matter, including hydrocarbons, more water vapor, ammonia, diborane, silane, etc. it can be used one or more things hydride.

【0011】これらのうちの適宜なものを反応ガスとして使用することもできる。 [0011] It is also possible to use a suitable one of these as a reaction gas. 対象とする粒子の種類に特に制限はないが、酸化物、非酸化物系セラミック粒子、金属、合金、セラミック・金属等の粒子が好適に選ばれる。 There is no particular limitation on the kind of the particles of interest, oxide, non-oxide ceramic particles, metal, alloy, particles such as ceramic metal selected suitably. 圧力が1Torr未満もしくは大気圧を超える場合には、製造に好適なプラズマの発生、その安定化は難しくなり、また、温度が1000℃未満もしくは1500 If the pressure exceeds 1Torr or less than atmospheric pressure, the generation of suitable plasma preparation, the stabilization more difficult, also lower than the temperature 1000 ° C. or 1500
0℃を超える場合にも同様である。 0 is the same even if it exceeds ° C..

【0012】粒子の径や注入量、さらにはガスの供給量は、目的とする粒子に応じて適宜に決定される。 [0012] diameter and the injection amount of the particles, more the supply amount of gas is suitably determined depending on the particles of interest. もちろん、反応装置の形式、構造にも特に限定はない。 Of course, the form of the reactor is not particularly limited to the structure. またさらに、この発明においては、プラズマ下流部に反応ガスを供給するようにしてもよい。 Furthermore, in the present invention, it may be supplied to the reaction gas into the plasma downstream portion.

【0013】以下実施例を示し、さらにこの発明について詳しく説明する。 [0013] indicates the following examples, further detailed explanation about the present invention.

【0014】 [0014]

【実施例】 実施例1図2に示す高周波プラズマ反応装置を用いて、高周波プラズマを発生させ、自己傾斜型複合粉末を製造した。 EXAMPLES using a high frequency plasma reactor shown in Example 1. Figure 2, to generate a high-frequency plasma, to produce a self-graded composite powder. この高周波プラズマ反応装置は、水冷構造プラズマ反応管(3)の周囲に、高周波コイル(2)を巻き付け、上部からシースガス(5)およびプラズマガス(6)を、下部からは反応ガス(8)を供給し、さらに、粉末注入プローブ(4)から、原料粉末とキャリアーガス(7)を注入する構造を有している。 The high-frequency plasma reactor, around the water-cooling structure plasma reaction tube (3), wound around a high-frequency coil (2), a sheath gas (5) and a plasma gas (6) from above, a reaction gas (8) from the bottom supply and further, from a powder injection probe (4) has a structure for injecting the raw material powder and a carrier gas (7). 反応ガス(8)は原料粉体の種類によっては使用する必要はなく、実際、この実施例1においては、反応ガス(8)は使用しなかった。 The reaction gas (8) need not be used depending on the type of raw material powder, in fact, in this embodiment 1, the reaction gas (8) was not used.

【0015】この反応装置を用い、シースガス(5)としてアルゴンと水素をそれぞれ6リットル/分および5 [0015] Using the reaction device, a sheath gas (5) argon and hydrogen respectively as a six liters / min and 5
リットル/分の供給速度で、さらに、プラズマガス(6)としてアルゴンを6リットル/分の供給速度で、 L / min feed rate, further, argon at 6 liters / minute feed rate of plasma gas (6),
それぞれ水冷構造プラズマ反応管(3)中に供給し、高周波コイル(2)に50kWの高周波電力を供給して水冷構造プラズマ反応管(3)内に圧力200Torrの条件でプラズマ(1)を発生させた。 Respectively supplied to the water cooling structure plasma reaction tube (3), to generate a plasma (1) under a pressure of 200Torr by supplying high-frequency power of 50kW water-cooled structure plasma reaction tube (3) in the high-frequency coil (2) It was.

【0016】粉末注入プローブ(4)からキャリアーガスとしてアルゴンを4リットル/分の供給速度で導入し、平均粒径1.3μmの炭化チタン粉末(組成TiC [0016] As the carrier gas from the powder injection probe (4) is introduced argon at 4 liters / min feed rate, titanium carbide powder having an average particle size of 1.3 .mu.m (composition TiC
0.97 )を5g/分の供給速度でプラズマ(1)内に注入した。 0.97) was injected into the plasma (1) in a feed rate of of 5g / min. プラズマ処理後の炭化チタン粒子を走査型電子顕微鏡で観察した結果、例えば図3に例示したように、融解して球状化していることが確認された。 Plasma treatment after the result of the titanium carbide particles were observed by a scanning electron microscope, as illustrated in FIG. 3, for example, it was confirmed that spheroidizing melted. この粒子は平均組成TiC 0.91となり、プラズマ処理により炭化チタンの炭素サイトの空孔が生成していることがわかる。 The particle is seen that the pores of the titanium carbide carbon sites are generated by the average composition TiC 0.91, and the plasma treatment. 熱濃硫酸で溶解させて炭素含有量の熔解時間による変化を調べた結果、炭素サイトの空孔は粒子表面から200〜 Dissolved in hot concentrated sulfuric acid with a result of investigating changes by melting time of the carbon content, pore carbon site 200 from the particle surface
300nmの部分に生成しており、その濃度は内側に向かって連続的に減少していることが確認された。 It is generated in the portion of 300 nm, the concentration that inward has decreased continuously checked. 実施例2実施例1と同条件で生成させたプラズマ中に実施例1で用いた炭化チタン原料粉末を注入し、さらに、プラズマ(1)下流部に反応ガス(8)としてアンモニアガスを5リットル/分の供給速度で半径方向に注入し、自己傾斜型複合粒子を製造した。 Titanium raw carbide powder was injected as used in Example 1 and Example 1 in the plasma which is generated under the same conditions, further, the plasma (1) 5 l ammonia gas as a reaction gas (8) to the downstream portion / min feed rate and injected in a radial direction, to produce a self-graded composite particles.

【0017】プラズマ処理を行なった炭化チタン粒子の組成分析を行なったところ、2重量%の窒素が含有されていた。 [0017] was subjected to a composition analysis of the titanium carbide particles was subjected to plasma treatment, 2% by weight of nitrogen was contained. 熱濃硫酸で溶解させて窒素含有量の時間変化を調べ、プラズマ処理後の炭化チタン粒子の窒素含有量が原料粉末と同程度になったところで粒径を比較したところ、窒素は粒子表面から200〜300nmまでの部分に固溶しており、その濃度は内側に向かって連続的に減少していることが確認された。 Dissolved in hot concentrated sulfuric acid examined the time variation of the nitrogen content, the place where the nitrogen content of the titanium carbide particles after plasma treatment were compared particle size upon reaching the same level as the raw material powder, the nitrogen from the grain surface 200 are dissolved in a portion of up to 300 nm, the concentration that inward has decreased continuously checked. 実施例3実施例1と同様に生成させたプラズマ中に、平均粒径1.5μmのα−アルミナ粉末を5g/分の供給速度で高周波プラズマ反応装置に注入し、自己傾斜型複合粒子を製造した。 During plasma which is generated in the same manner as in Example 3 Example 1, the α- alumina powder having an average particle diameter of 1.5μm was injected into a high frequency plasma reactor at a feed rate of of 5g / min, producing a self-graded composite particles did.

【0018】プラズマ処理後のα−アルミナ粒子を透過型電子顕微鏡で調べた結果、粒子は球状化していることがわかり、さらに、中心部はγ相およびδ相の混合、中間相はθ相、表面近傍はα相から構成されていることが確認された。 [0018] As a result of the α- alumina particles after plasma treatment was examined by a transmission electron microscope, reveals that the particles are spheroidized, further mixing of the center γ phase and δ-phase, the intermediate phase θ phase, near the surface and it was confirmed that consists α phase.

【0019】 [0019]

【発明の効果】以上詳しく説明した通り、この発明により、粒子の中心部から表面へ化学組成もしくは結晶構造が連続的または非連続的に変化する自己傾斜型複合粒子を製造することが可能となり、この自己傾斜型複合粒子を利用することにより、まったく新しい化学的、電気磁気的、機械的機能性の実現が期待される。 As described [Effect Invention above in detail, this invention makes it possible to produce a self-graded composite particles changes the chemical composition or crystal structure is continuous or discontinuous to the surface from the center of the particle, by utilizing this self-graded composite particles, entirely new chemical, electrical magnetic, the realization of the mechanical functionality is expected.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)(b)(c)は、各々、分散型、被覆型、傾斜型の複合粒子の構造の模式図である。 [1] (a) (b) (c), respectively, distributed, coating type is a schematic view of the structure of a tilt-type composite particles.

【図2】この発明の高周波プラズマによる自己傾斜型複合粒子の製造方法とそのための装置を例示した模式図である。 2 is a schematic diagram illustrating a device manufacturing method as for their self-graded composite particles by high-frequency plasma of the present invention.

【図3】実施例としてのプラズマ処理後の炭化チタン粒子の走査型電子顕微鏡写真像図である。 3 is a scanning electron micrograph view of a titanium carbide particles after plasma treatment as Example.

【符号の説明】 DESCRIPTION OF SYMBOLS

11 粒子 12 粒子 13 内側成分 14 外側成分 1 プラズマ 2 高周波コイル 3 水冷構造プラズマ反応管 4 粉末注入プローブ 5 シースガス 6 プラズマガス 7 粉末とキャリアーガス 8 反応ガス 11 particles 12 particles 13 inside component 14 outer component 1 plasma 2 high-frequency coil 3 water-cooling structure plasma reaction tube 4 powder injection probe 5 sheath 6 plasma gas 7 powder and carrier gas 8 reactive gas

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 1Torr以上大気圧以下の圧力で、1 In 1. A pressure below 1Torr above atmospheric pressure, 1
    000℃以上15000℃以下の温度で発生させたガスプラズマ中に粉末を注入し、粉末粒子中の化学組成もしくは結晶相が連続的または不連続的な傾斜分布を有する自己傾斜型複合粒子を製造することを特徴とする自己傾斜型複合粒子の製造方法。 The powder was injected into the gas plasma generated at 000 ° C. or higher 15000 ° C. temperature below producing a self-graded composite particle chemical composition or crystal phase in the powder particles have a continuous or discontinuous graded method for producing a self-graded composite particles, characterized in that.
  2. 【請求項2】 プラズマ下流部に反応ガスを注入することを特徴とする請求項1の自己傾斜型複合粒子の製造方法。 2. A method for producing a self-graded composite particles of claim 1, characterized in that a reaction gas is injected into the plasma downstream portion.
JP5200988A 1993-07-21 1993-07-21 Method for producing a self-graded composite particles Expired - Lifetime JP2751136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200988A JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing a self-graded composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200988A JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing a self-graded composite particles

Publications (2)

Publication Number Publication Date
JPH0731873A true JPH0731873A (en) 1995-02-03
JP2751136B2 JP2751136B2 (en) 1998-05-18

Family

ID=16433643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200988A Expired - Lifetime JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing a self-graded composite particles

Country Status (1)

Country Link
JP (1) JP2751136B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342615A (en) * 2004-06-02 2005-12-15 Central Res Inst Of Electric Power Ind Method and apparatus for producing spherical composite particle
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー Material discovery methods of high-throughput by gas-phase synthesis
US8051724B1 (en) 2007-05-11 2011-11-08 SDCmaterials, Inc. Long cool-down tube with air input joints
WO2014002695A1 (en) * 2012-06-28 2014-01-03 日清エンジニアリング株式会社 Method for production of titanium carbide microparticles
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
RU2692144C1 (en) * 2018-10-05 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Device for production of structurally gradient powder materials (versions)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884107A (en) * 1982-09-24 1983-05-20 Shunpei Yamazaki Plasma nitriding method
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884107A (en) * 1982-09-24 1983-05-20 Shunpei Yamazaki Plasma nitriding method
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー Material discovery methods of high-throughput by gas-phase synthesis
JP4624006B2 (en) * 2004-06-02 2011-02-02 財団法人電力中央研究所 Manufacturing method and apparatus for producing spherical composite particles
JP2005342615A (en) * 2004-06-02 2005-12-15 Central Res Inst Of Electric Power Ind Method and apparatus for producing spherical composite particle
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US8142619B2 (en) 2007-05-11 2012-03-27 Sdc Materials Inc. Shape of cone and air input annulus
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8051724B1 (en) 2007-05-11 2011-11-08 SDCmaterials, Inc. Long cool-down tube with air input joints
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9751769B2 (en) 2012-06-28 2017-09-05 Nisshin Engineering Inc. Method for production of titanium carbide nanoparticles
WO2014002695A1 (en) * 2012-06-28 2014-01-03 日清エンジニアリング株式会社 Method for production of titanium carbide microparticles
JPWO2014002695A1 (en) * 2012-06-28 2016-05-30 日清エンジニアリング株式会社 The method of manufacturing titanium carbide particles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
RU2692144C1 (en) * 2018-10-05 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Device for production of structurally gradient powder materials (versions)

Also Published As

Publication number Publication date
JP2751136B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
CA2142307C (en) Methods and apparati for producing fullerenes
US5126164A (en) Method of forming a thin polymeric film by plasma reaction under atmospheric pressure
EP1082473B1 (en) Plasma catalysis of carbon nanofibers
Paillard et al. Diamondlike carbon films obtained by low energy cluster beam deposition: evidence of a memory effect of the properties of free carbon clusters
JP3481925B2 (en) The method of synthesis carbon nanotubes
Zhang et al. A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture
EP0433507B1 (en) Producing isotropically reinforced net-shape microcomposites
Seraphin et al. Filling the carbon nanocages
JP2939272B2 (en) Method of growing the diamond coating
US8505478B2 (en) Apparatus for high-efficiency synthesis of carbon nanostructure
Frenklach et al. Homogeneous nucleation of diamond powder in the gas phase
CN101160166B (en) Induction plasma synthesis of nanopowders
Sokołowski Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization
US4994107A (en) Aerosol reactor production of uniform submicron powders
US6592938B1 (en) Method for coating particles
JP2737736B2 (en) Manufacturing method of a carbon single-walled nanotubes
US5855953A (en) Aerogel composites and method of manufacture
US6261532B1 (en) Method of producing carbon
Alexandrov et al. Chemical Vapor Deposition Enhanced by Atmospheric Pressure Non‐thermal Non‐equilibrium Plasmas
US4610857A (en) Method for making ultra-fine ceramic particles
EP1987878A1 (en) Catalyst for carbon nanostructure growth, process for producing carbon nanostructure, raw-material gas and carrier gas for producing the same, and apparatus for producing the same
US6761871B2 (en) Magnetic production of carbon nanotubes and filaments
WO2001023303A1 (en) Method for producing a nanotube layer on a substrate
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
JP2006007213A (en) Production method of catalyst for producing carbon nanotube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term