JPH01104834A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH01104834A
JPH01104834A JP26013987A JP26013987A JPH01104834A JP H01104834 A JPH01104834 A JP H01104834A JP 26013987 A JP26013987 A JP 26013987A JP 26013987 A JP26013987 A JP 26013987A JP H01104834 A JPH01104834 A JP H01104834A
Authority
JP
Japan
Prior art keywords
reaction
carbon
compounds
gas
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26013987A
Other languages
Japanese (ja)
Other versions
JPH0470409B2 (en
Inventor
Hidenobu Ito
伊藤 秀伸
Katsuhide Murata
勝英 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP26013987A priority Critical patent/JPH01104834A/en
Publication of JPH01104834A publication Critical patent/JPH01104834A/en
Publication of JPH0470409B2 publication Critical patent/JPH0470409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1276Aromatics, e.g. toluene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fiber in high efficiency and yield, by mixing a carbon compound gas with catalyst particles and a specific radical generating substance as a reaction initiator and reacting in a hot preheating zone and then in a reaction zone. CONSTITUTION:A raw material gas such as methane, ethane and butadiene is mixed with (A) a reaction initiator consisting of a radical generating substance which is an aromatic compound (derivative) capable of forming benzene radical in the reaction atmosphere (e.g. chlorobenzene) and (B) catalyst particles such as ferrocene. The mixture is introduced into a preheating zone heated at 300-700 deg.C to generate benzene radical from the radical generating substance. The obtained mixture is introduced into a reaction zone heated at 800-1150 deg.C to accelerate the reaction and obtain the objective carbon fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素繊維の製造方法に係り、特に、炭素繊維を
気相成長法により製造するにあたり、その生成率及び生
成速度を大幅に向上させる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing carbon fiber, and in particular, a method for significantly improving the production rate and production speed when producing carbon fiber by a vapor phase growth method. Regarding the method.

[従来の技術] 炭素繊維は、従来からPAN系、ピッチ系のものが商業
生産されている。しかし、PAN系は高価であり、ピッ
チ系はプロセスが複雑で品買の制御がむずかしいなどの
致命的な欠点がある。
[Prior Art] Conventionally, PAN-based and pitch-based carbon fibers have been commercially produced. However, the PAN system is expensive, and the pitch system has fatal drawbacks such as complicated processes and difficulty in controlling purchasing.

一方、近年気相成長法が提案されている。従来、気相成
長炭素繊維は、電気炉内にアルミナなどの磁器、黒鉛な
どの基板を置き、これに炭素成長核、鉄、ニッケルなど
の超微粒子触媒を形成せしめ、この上にベンゼンなどの
炭化水素のガスと水素キャリヤガスの混合ガスを導入し
、950〜1300℃の温度下に炭化水素を分解せしめ
ることにより、基板上に炭素繊維を成長させる方法が知
られている。
On the other hand, a vapor phase growth method has been proposed in recent years. Conventionally, vapor-grown carbon fibers are produced by placing a substrate made of porcelain such as alumina or graphite in an electric furnace, forming carbon growth nuclei, ultrafine particle catalysts such as iron or nickel on this, and then forming carbonization particles such as benzene on this. A method is known in which carbon fibers are grown on a substrate by introducing a mixed gas of hydrogen gas and hydrogen carrier gas and decomposing hydrocarbons at a temperature of 950 to 1300°C.

しかし、このような方法では、■基板表面の微妙な温度
ムラや、周囲の繊維の密生度によって長さの不均一が起
り易いこと、また■炭素の供給源としてのガスが反応に
よって消費されることにより反応管の入口に近い所と出
口に近い所で繊維径が相当異なること、■基板表面での
み生成が行なわれるため、反応管の中心部分は反応に関
与せず収率が悪いこと、■超微粒子の基板への分散、還
元、成長次いで繊維の取出しという独立に実施を必要と
するプロセスがあるため、連続製造が不可能であり、従
って生産性が悪いなどの問題点を有する。
However, with this method, there are two issues: (1) the length is likely to be non-uniform due to subtle temperature irregularities on the substrate surface and the density of the surrounding fibers, and (2) the gas that serves as a carbon source is consumed by the reaction. As a result, the fiber diameter differs considerably between the inlet and the outlet of the reaction tube; (1) Since production occurs only on the substrate surface, the central part of the reaction tube does not participate in the reaction and the yield is poor; (2) Since there are processes that must be carried out independently, such as dispersing ultrafine particles onto a substrate, reducing them, growing them, and then taking out the fibers, continuous production is impossible, and therefore there are problems such as poor productivity.

そこで、炭素化合物のガスと無機もしくは有機遷移金属
化合物のガスとキャリヤガスとの混合ガスを高温反応さ
せる炭素繊維の製造方法が提案された(特開昭60−5
4998.60−54999.60−224816など
)。
Therefore, a method for manufacturing carbon fiber was proposed in which a mixed gas of a carbon compound gas, an inorganic or organic transition metal compound gas, and a carrier gas was reacted at high temperature (Japanese Patent Laid-Open No. 60-5
4998.60-54999.60-224816, etc.).

[発明が解決しようとする問題点] しかしながら、上記特開昭60−54998.60−5
4999.60−224816などの方法では、原料に
対する製品としての炭素繊維への転化率が低い、即ち収
率が低い、生成速度が低い等の問題があった。例えば、
従来法による炭素繊維の生成速度は2〜3g/J!(反
応器体積)・Hr程度であり、このため反応器が相当に
大型化するという問題がある。因みに、従来において、
年間1000t (aooohr/年の連続運転の場合
)を生産する装置の反応器容積は42〜63ゴと相当な
大容積を要する。
[Problems to be solved by the invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 60-54998.60-5
Methods such as No. 4999.60-224816 had problems such as a low conversion rate of raw materials into carbon fiber as a product, that is, a low yield and a low production rate. for example,
The production rate of carbon fiber using the conventional method is 2 to 3 g/J! (Reactor volume)·Hr, and therefore there is a problem that the reactor becomes considerably large. Incidentally, in the past,
The reactor capacity of an apparatus that produces 1000 tons per year (in the case of continuous operation per year) requires a considerably large capacity of 42 to 63 tons.

[問題点を解決するための手段] 本発明は上記の問題を解決し、気相成長法により炭素繊
維を製造する方法において、生成率及び生成速度を大幅
に向上させることができる炭素繊維の製造方法を提供す
るものである。
[Means for Solving the Problems] The present invention solves the above problems and provides a method for producing carbon fibers that can significantly improve the production rate and production speed in a method for producing carbon fibers by vapor phase growth. The present invention provides a method.

本発明の炭素繊維の製造方法は、炭素化合物のガスと、
浮遊状態にある触媒粒子とを加熱下で接触させて炭素を
繊維状に析出させる方法において、反応開始剤として芳
香族化合物又はその誘導体であって、反応雰囲気下でベ
ンゼンラジカルを生成する物質を添加することを特徴と
するものである。
The method for producing carbon fiber of the present invention includes a carbon compound gas,
In a method in which carbon is deposited in the form of fibers by bringing catalyst particles in a suspended state into contact with each other under heating, an aromatic compound or a derivative thereof, which generates benzene radicals in the reaction atmosphere, is added as a reaction initiator. It is characterized by:

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の方法においては、原料となる炭素化合物を反応
させるにあたり、反応開始剤(ないし反応促進剤)とし
て芳香族化合物又はその誘導体であって、反応雰囲気下
、好ましくは水素雰囲気下でベンゼンラジカルを生成す
る物質(以下、「ラジカル生成物質」と称すことがある
。)を添加する。このような物質としては、フェノール
、クレゾール、アニリン、ニトロベンゼン、クロロフェ
ノール、クロロベンゼン等のベンゼン環にハロゲン、水
酸基、ニトロ基、アミノ基等の極性置換基を有するもの
、ナフトール等の縮合多環化合物に上記極性置換基を有
するものなどが挙げられる。
In the method of the present invention, an aromatic compound or a derivative thereof is used as a reaction initiator (or reaction promoter) to react a carbon compound as a raw material, and a benzene radical is reacted in a reaction atmosphere, preferably a hydrogen atmosphere. A substance to be generated (hereinafter sometimes referred to as a "radical generating substance") is added. Such substances include those having polar substituents such as halogen, hydroxyl group, nitro group, or amino group on the benzene ring such as phenol, cresol, aniline, nitrobenzene, chlorophenol, and chlorobenzene, and fused polycyclic compounds such as naphthol. Examples include those having the above polar substituents.

特にこれらのうち、ハロゲン又は水酸基を有するベンゼ
ン誘導体が好ましい。
Among these, benzene derivatives having a halogen or hydroxyl group are particularly preferred.

このようなラジカル生成物質は、原料とする炭素化合物
に対して0.1〜10重量%程度添加するのが好ましい
It is preferable to add such a radical generating substance in an amount of about 0.1 to 10% by weight based on the carbon compound used as a raw material.

本発明の方法を実施するには、原料の炭素化合物、ラジ
カル生成物質及び触媒粒子を300〜700℃程度の温
度に加熱された予熱ゾーンに送り、予熱ゾーンにてラジ
カル生成物質からベンゼンラジカルを生成させ、また、
触媒を活性化する。しかる後、これらの混合物を800
〜1150℃程度の温度に加熱された反応ゾーンに送り
、反応ゾーンにて予熱ゾーンで生成したベンゼンラジカ
ル及び活性化された触媒の作用により反応を進行させる
To carry out the method of the present invention, the raw material carbon compound, radical generating substance, and catalyst particles are sent to a preheating zone heated to a temperature of about 300 to 700°C, and benzene radicals are generated from the radical generating substance in the preheating zone. Let, also,
Activate the catalyst. After that, these mixtures were heated to 800
The mixture is sent to a reaction zone heated to a temperature of about 1,150° C., and the reaction proceeds in the reaction zone by the action of the benzene radicals generated in the preheating zone and the activated catalyst.

なお、原料の炭素化合物とは、ガス化可能な炭素化合物
全般を対象としており、CCl4、CHCJ13、CH
2C112、CH3CJ2、C01C32等の無機化合
物と有機化合物全般を特徴とする特に有用性の高い化合
物は、脂肪族炭化水素、芳香族炭化水素である。また、
これらの他窒素、酸素、硫黄、弗素、沃素、燐、砒素等
の元素を含んだ誘導体も使用可能である。具体的な個々
の化合物の例の一部を挙げると、メタン(天然ガスでも
良い。)、エタン等のアルカン化合物、エチレン、ブタ
ジェン等のアルケン化合物、アセチレン等のアルキレン
化合物、ベンゼン、トルエン、スチレン等のアリール炭
化水素化合物、インデン、ナフタリン、フェナントレン
等の縮合環を有する芳香族炭化水素、シクロプロパン、
シクロヘキサン等のシクロパラフィン化合物、シクロペ
ンテン、シクロヘキセン等のシクロオレフィン化合物、
ステロイド等の縮合環を有する脂環式炭化水素化合物、
メチルチオール、メチルエチルスルフィド、ジメチルチ
オケトン等の含硫黄脂肪族化合物、フェニルチオール、
ジフェニルスルフイド等の含硫黄芳香族化合物、ベンゾ
チオフェン、チオフェン等の含硫黄複素環式化合物、ま
た車体ではないがガソリン等の消防法危険物第四類、第
一石油類、ケロシン、テレピン油、樟脳油、松根油等の
第二石油類、重油等の第三石油類、ギヤー油、シリンダ
油等の第四石油類も有効に使用できる。また、これら混
合物も使用できることは言うに及ばない。
Note that the raw material carbon compound refers to all carbon compounds that can be gasified, including CCl4, CHCJ13, CH
Particularly useful compounds characterized by inorganic compounds such as 2C112, CH3CJ2, and C01C32 and organic compounds in general are aliphatic hydrocarbons and aromatic hydrocarbons. Also,
In addition to these, derivatives containing elements such as nitrogen, oxygen, sulfur, fluorine, iodine, phosphorus, and arsenic can also be used. Some specific examples of individual compounds include methane (natural gas may also be used), alkane compounds such as ethane, alkene compounds such as ethylene and butadiene, alkylene compounds such as acetylene, benzene, toluene, styrene, etc. aryl hydrocarbon compounds, aromatic hydrocarbons with condensed rings such as indene, naphthalene, and phenanthrene, cyclopropane,
Cycloparaffin compounds such as cyclohexane, cycloolefin compounds such as cyclopentene and cyclohexene,
Alicyclic hydrocarbon compounds having fused rings such as steroids,
Sulfur-containing aliphatic compounds such as methylthiol, methylethyl sulfide, dimethylthioketone, phenylthiol,
Sulfur-containing aromatic compounds such as diphenyl sulfide, sulfur-containing heterocyclic compounds such as benzothiophene and thiophene, as well as Class 4 hazardous materials under the Fire Service Act such as gasoline, although not for car bodies, Class 1 petroleum, kerosene, and turpentine. , secondary petroleums such as camphor oil and pine oil, tertiary petroleums such as heavy oil, and quaternary petroleums such as gear oil and cylinder oil can also be effectively used. It goes without saying that mixtures of these can also be used.

本発明において、触媒としては、無機遷移金属化合物、
Siの無機化合物、有機遷移金属化合物、Siの有機化
合物などが挙げられる。この無機遷移金属化合物とは、
単独で気化が可能な遷移金属の無機化合物又は水もしく
は少なくとも一種以上の水もしくは有機溶媒(この有機
溶媒としては炭素原料化合物を用いても良い。、)に可
溶なもしくは微粒子として懸濁可能な遷移金属の無機化
合物が対象となる。遷移金属としては、鉄、ニッケル、
コバルト、モリブデン、バナジウム、パラジウム等が好
ましく、特に鉄が好ましい。
In the present invention, the catalyst includes an inorganic transition metal compound,
Examples include inorganic Si compounds, organic transition metal compounds, and organic Si compounds. What is this inorganic transition metal compound?
An inorganic compound of a transition metal that can be vaporized alone or is soluble in water or at least one kind of water or organic solvent (a carbon raw material compound may be used as the organic solvent) or can be suspended as fine particles. Targets are inorganic compounds of transition metals. Transition metals include iron, nickel,
Cobalt, molybdenum, vanadium, palladium, etc. are preferred, and iron is particularly preferred.

前者の単独で気化が可能な無機遷移金属化合物としては
、Fe (No)4.FeCjZa、Fe  (No)
2  Cf1% Fe  (No)  2  、 Fe
(No)2I、FeFa等が挙げられる。
Examples of the former inorganic transition metal compound that can be vaporized alone include Fe (No) 4. FeCjZa, Fe (No)
2 Cf1% Fe (No) 2, Fe
(No)2I, FeFa, etc. are mentioned.

また後者としては、前者として挙げた化合物の他に、F
e (NO3)2、FeBr3、Fe (HCOO)s
、CzyH42FeNo O12、Fe (SO4)3
.Fe (SCN)2、Fe(No) 3NHz 、C
o  (No)2 Cl3、N1(No)Cj!、Pd
 (No)2cj12.N1CIL2等が代表としてあ
げられる。
In addition to the compounds listed as the former, the latter include F
e (NO3)2, FeBr3, Fe (HCOO)s
,CzyH42FeNoO12,Fe(SO4)3
.. Fe (SCN)2, Fe (No) 3NHz, C
o (No)2 Cl3, N1 (No) Cj! , Pd
(No)2cj12. Representative examples include N1CIL2.

本発明における有機遷移金属化合物とは、アルキル基と
金属が結合したアルキル金属、アリル基と金属が結合し
たアリル錯体、炭素間2重結合や3重結合と金属とが結
合したπ−コンプレックスとキレート型化合物等に代表
される有機遷移金属化合物である。また、ここで遷移金
属としては、スカンジウム、チタン、バナジウム、クロ
ム、マンガン、鉄、コバルト、ニッケル、イツトリウム
、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロ
ジウム、パラジウム、タンタル、タングステン、レニウ
ム、イリジウム、白金を指すものであるが、これらの内
特に周期律表■族に属するもの、その内で特に鉄、ニッ
ケル、コバルトが好適であって、鉄が最も好適である。
In the present invention, organic transition metal compounds include alkyl metals in which an alkyl group and a metal are bonded, allyl complexes in which an allyl group and a metal are bonded, π-complexes and chelates in which a carbon-carbon double bond or triple bond is bonded to a metal. It is an organic transition metal compound typified by type compounds. In addition, transition metals here include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, and platinum. However, among these, those belonging to Group I of the periodic table are particularly preferred, and among these, iron, nickel, and cobalt are particularly preferred, with iron being the most preferred.

また、含硫黄炭素化合物または無機硫黄化合物の存在下
では、シリコンの無機化合物も用いることができる。例
えば、上記の無機金属化合物において金属をStに置換
したものや炭化珪素を用い得る。さらに、各種の有機珪
素化合物をも用い得る。
Furthermore, in the presence of a sulfur-containing carbon compound or an inorganic sulfur compound, an inorganic compound of silicon can also be used. For example, the above-mentioned inorganic metal compounds in which the metal is replaced with St or silicon carbide may be used. Furthermore, various organosilicon compounds may also be used.

有機珪素化合物としては、珪素−炭素結合をもつ有機化
合物の他にシラン、ハロゲンシランを便宜上含むものと
する。炭素−珪素結合を持つ有機化合物としては、テト
ラメチルシラン、メチルトリフェニルシラン等のオリガ
ノシラン、クロルジフルオルメチルシラン、ブロムトリ
プロピルシラン等のオルガノハロゲンシラン;メトキシ
トリメチルシラン、トリメチルフェノキシシラン等のオ
ルガノアルコキシシラン;ジアセトキシジメチルシラン
、アセトキシトリプロピルシラン等のオルガノアセトキ
シシラン;ヘキサエチルジシラン、ヘキサフエニルジシ
ラン、オクタフェニルシクロテトラシラン等のオルガノ
ポリシラン;ジメチルシラン、トリフェニルシラン等の
オルガノヒドロゲノシラン;(SiH2)nで表示され
るシクロシラン;トリフェニルシラザン、ヘキサエチル
ジシラザン、ヘキサフェニルシクロトリシラザン等のオ
ルガノシラザン、(S i N2 HN)nで表示され
るシクロシラザンジエチルシランジオール、トリフェニ
ルシラノール等のオルガノシラノール;トリメチルシリ
ル酢酸、トリメチルシリルピロピオン酸等のオルガノシ
ラノール:トリメチルシリル酢酸、トリメチルシリルプ
ロピオン酸等のオルガノシランカルボン酸;トリメチル
シリコンイソシアナート、ジフェニルシリコンジイソシ
アナート等のシリコンイソシアナート;トリメチルシリ
コンイソチオシアナート、ジフェニルシリコンジイソチ
オシアナート等のオルガノシリコンイソチオシアナート
;シアン化トリエチルシリル等のオルガノシリコンエス
テル;ヘキサメチルジシルチアン、テトラメチルシクロ
ジシルチアン等のシルチアン;(SiH2S)nで表示
されるシクロシルチアン;ヘキサメチルジシルメチレン
、オクタメチルトリシルメチレン等のオルガノシルメチ
レン;へキサメチルジシロキサン、ヘキサプロピルジシ
ロキサン等のオルガノシロキサン等が挙げられるが、そ
の他の炭素−珪素結合を含む化合物であってもよい。ま
た、これらの混合物の使用も可能である。
The organic silicon compound includes, for convenience, silane and halogen silane in addition to organic compounds having a silicon-carbon bond. Examples of organic compounds having a carbon-silicon bond include organosilanes such as tetramethylsilane and methyltriphenylsilane; organohalogensilanes such as chlorodifluoromethylsilane and bromotripropylsilane; Alkoxysilanes; organoacetoxysilanes such as diacetoxydimethylsilane and acetoxytripropylsilane; organopolysilanes such as hexaethyldisilane, hexaphenyldisilane, and octaphenylcyclotetrasilane; organohydrogenosilanes such as dimethylsilane and triphenylsilane; Cyclosilane represented by (SiH2)n; organosilazane such as triphenylsilazane, hexaethyldisilazane, hexaphenylcyclotrisilazane, etc.; cyclosilazane diethylsilanediol, triphenylsilanol, etc. represented by (S i N2 HN)n; organosilanols such as trimethylsilylacetic acid and trimethylsilylpropionic acid; organosilane carboxylic acids such as trimethylsilylacetic acid and trimethylsilylpropionic acid; silicone isocyanates such as trimethylsilicon isocyanate and diphenylsilicon diisocyanate; trimethylsilicon isothiocyanate , organosilicon isothiocyanates such as diphenylsilicon diisothiocyanate; organosilicon esters such as triethylsilyl cyanide; silthians such as hexamethyldisilthian and tetramethylcyclodisilthian; cyclosilicon represented by (SiH2S)n Examples include silthian; organosylmethylene such as hexamethyldisylmethylene and octamethyltrisylmethylene; organosiloxane such as hexamethyldisiloxane and hexapropyldisiloxane, but other compounds containing a carbon-silicon bond There may be. It is also possible to use mixtures of these.

なお、本発明では、予め微粒子として生成された触媒粒
子(例えば乾燥した微粉末)を反応容器内に導入するよ
うにしても良い。
Note that, in the present invention, catalyst particles (for example, dried fine powder) that have been generated in advance as fine particles may be introduced into the reaction vessel.

本発明におけるキャリアガスとは、直接反応に関与しな
いガス全般を対象としている。例示すれば、N2ガス、
N2ガス、NH3ガス、Arガス、Heガス、Krガス
、又はこれらの混合ガスを主体とするガスである。この
うち、N2ガスが通常の場合用いられる。
The carrier gas in the present invention refers to all gases that are not directly involved in the reaction. For example, N2 gas,
The gas is mainly N2 gas, NH3 gas, Ar gas, He gas, Kr gas, or a mixture thereof. Among these, N2 gas is usually used.

前記一端側には、ラジカル生成物質の供給用配管15、
触媒粒子となる物質を含む化合物の供給用配管16と、
キャリアガスの供給用配管18と、炭素化合物のガスを
供給するための配管20とが接続され、これら配管15
.16.18.20の途中にそれぞれ流量制御装置15
a、!8a、18a120aが設けられている。
On the one end side, a radical generating substance supply pipe 15,
A pipe 16 for supplying a compound containing a substance that becomes catalyst particles;
A carrier gas supply pipe 18 and a carbon compound gas supply pipe 20 are connected, and these pipes 15
.. 15 flow control devices in the middle of 16, 18, and 20 respectively.
a,! 8a, 18a120a are provided.

また、反応管10の他端側には炭素繊維捕集器22が接
続され、この炭素繊維捕集器22には排ガスの抜出管2
4が接続されている。
Further, a carbon fiber collector 22 is connected to the other end of the reaction tube 10, and an exhaust gas extraction pipe 22 is connected to the carbon fiber collector 22.
4 is connected.

反応容器内において生成した炭素繊維は、キャリアガス
と共に炭素繊維捕集器22内に導入される。この捕集方
法は従来から知られている重力沈降法、電気集塵法等の
各種方法を採用することができる。なお、炭素繊維捕集
器22は、生成した炭素繊維を冷却する役割をも果たす
。炭素繊維捕集器22から抜き出されたキャリアガスは
、そのまま排気処理手段に導入して放出してもよいので
あるが、精製後回循環させて用いるようにしてもよい。
The carbon fibers produced in the reaction vessel are introduced into the carbon fiber collector 22 together with a carrier gas. As this collection method, various conventionally known methods such as gravity sedimentation method and electrostatic precipitation method can be employed. Note that the carbon fiber collector 22 also plays a role of cooling the generated carbon fibers. The carrier gas extracted from the carbon fiber collector 22 may be directly introduced into the exhaust treatment means and discharged, but it may also be purified and then circulated for use.

本発明によれば通常長さ0.1〜500mm程度であり
、直径が0.1〜300μm程度の炭素繊維をラジカル
生成物質を用いない従来の方法に比し、約100℃程度
低い反応温度域にて、高い生成率及び生成速度で容易に
製造することができる。
According to the present invention, carbon fibers having a length of usually about 0.1 to 500 mm and a diameter of about 0.1 to 300 μm are used in a reaction temperature range about 100°C lower than in the conventional method that does not use a radical generating substance. It can be easily produced with high production rate and production rate.

[作用] 気相生成炭素繊維はベンゼン環の縮合物を骨格構造とす
るものである。従って、反応性に富むベンゼン骨格であ
るベンゼンラジカルが破壊されない状態で反応域に存在
していることが、生成率、生成速度の向上のために有効
に作用する。
[Function] The gas phase generated carbon fiber has a skeleton structure of a condensation product of benzene rings. Therefore, the presence of benzene radicals, which are highly reactive benzene skeletons, in the reaction zone in an undestructed state is effective for improving the production rate and production rate.

本発明では、ベンゼンラジカルを生成する物質を反応開
始剤として添加するので、この物質がベンゼンラジカル
を生成して原料の反応性、炭素繊維の成長速度を高め、
また反応を活性化することにより反応温度を低下させる
ことができる。
In the present invention, a substance that generates benzene radicals is added as a reaction initiator, so this substance generates benzene radicals and increases the reactivity of the raw material and the growth rate of carbon fibers.
Furthermore, the reaction temperature can be lowered by activating the reaction.

因みに、直鎖状炭素化合物では、反応域において鎖が破
壊され、炭素繊維の成長を促進することはできない。
Incidentally, in the case of a linear carbon compound, the chains are broken in the reaction zone, and the growth of carbon fibers cannot be promoted.

[実施例] 以下、実施例及び比較例を挙げて本発明をより具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 原料ガスにラジカル生成物質及び触媒を混合し、まず6
00℃の予熱ゾーンに送った後、900℃の反応ゾーン
に送って、炭素繊維の製造を行なった。
Example 1 A radical generating substance and a catalyst are mixed into a raw material gas, and first 6
After being sent to a preheating zone at 00°C, it was sent to a reaction zone at 900°C to produce carbon fibers.

なお、用いた物質、反応条件は以下に示す通りとした。The substances and reaction conditions used were as shown below.

原  料:ベンゼン 触媒:フェロセン キャリアーガス:N2 原料濃度:N2に対しSvoβ% ラジカル生成物質:フェノール ラジカル生成物質添加率:4%(対原料重量割合) 圧  力;常圧 滞留時間:予熱ゾーン1分(N℃換算)反応ゾーン3分
(N℃換算) 反応器:予熱ゾーン (石英製)   30mm径X200mm長さ反応ゾー
ン 30mm径X400mm長さ 結果を第1表に示す。
Raw material: Benzene catalyst: Ferrocene carrier gas: N2 Raw material concentration: Svoβ% to N2 Radical generating substance: Phenol Radical generating substance addition rate: 4% (weight ratio to raw material) Pressure: Normal pressure Residence time: 1 minute in preheating zone (N°C conversion) Reaction zone 3 minutes (N°C conversion) Reactor: Preheating zone (made of quartz) 30 mm diameter x 200 mm length Reaction zone 30 mm diameter x 400 mm length The results are shown in Table 1.

実施例2 ラジカル生成物質及びその添加率を第1表に示すものと
したこと以外は実施例1と同様にして反応を行なった。
Example 2 A reaction was carried out in the same manner as in Example 1, except that the radical generating substances and their addition rates were as shown in Table 1.

結果を第1表に示す。The results are shown in Table 1.

比較例1 ラジカル生成物質を用いなかったこと以外は実施例1と
同様にして反応を行なった。
Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that no radical generating substance was used.

結果を第1表に示す。The results are shown in Table 1.

第1表 第1表より、本発明の方法によれば短時間に高収率で炭
素繊維を製造することができることが明らかである。
From Table 1, it is clear that according to the method of the present invention, carbon fibers can be produced in a short time and with high yield.

[発明の効果] 以上詳述した通り、本発明の炭素繊維の製造方法によれ
ば、高い生成速度で、しかも高収率で炭素繊維を製造す
ることができる。しかも、反応温度を低下させることも
可能である。
[Effects of the Invention] As detailed above, according to the method for producing carbon fibers of the present invention, carbon fibers can be produced at a high production rate and at a high yield. Moreover, it is also possible to lower the reaction temperature.

このため、本発明によれば、反応器容積の小型化が可能
となり、また収率の向上により原料コストの低廉化が図
れ、効率的な製造が可能とされる。
Therefore, according to the present invention, the reactor volume can be reduced in size, and raw material costs can be reduced due to improved yields, allowing efficient production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に好適な装置の構成説明図である
。 10・・・反応容器、 15・・・ラジカル生成物質供給管、 16・・・触媒供給管、 18・・・キャリアガス供給管、 20・・・炭素化合物供給管、 22・・・炭素繊維捕集器。
FIG. 1 is an explanatory diagram of the configuration of an apparatus suitable for carrying out the present invention. DESCRIPTION OF SYMBOLS 10... Reaction container, 15... Radical generating material supply pipe, 16... Catalyst supply pipe, 18... Carrier gas supply pipe, 20... Carbon compound supply pipe, 22... Carbon fiber trap collector.

Claims (1)

【特許請求の範囲】[Claims] (1)炭素化合物のガスと、浮遊状態にある触媒粒子と
を加熱下で接触させて炭素を繊維状に析出させる方法に
おいて、反応開始剤として芳香族化合物又はその誘導体
であって、反応雰囲気下でベンゼンラジカルを生成する
物質を添加することを特徴とする炭素繊維の製造方法。
(1) In a method in which carbon is precipitated in the form of fibers by bringing a carbon compound gas into contact with suspended catalyst particles under heating, an aromatic compound or its derivative is used as a reaction initiator, and under a reaction atmosphere A method for producing carbon fiber, which comprises adding a substance that generates benzene radicals.
JP26013987A 1987-10-15 1987-10-15 Production of carbon fiber Granted JPH01104834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26013987A JPH01104834A (en) 1987-10-15 1987-10-15 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26013987A JPH01104834A (en) 1987-10-15 1987-10-15 Production of carbon fiber

Publications (2)

Publication Number Publication Date
JPH01104834A true JPH01104834A (en) 1989-04-21
JPH0470409B2 JPH0470409B2 (en) 1992-11-10

Family

ID=17343846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26013987A Granted JPH01104834A (en) 1987-10-15 1987-10-15 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH01104834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431965A (en) * 1990-07-19 1995-07-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Coreless refractory fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431965A (en) * 1990-07-19 1995-07-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Coreless refractory fibers

Also Published As

Publication number Publication date
JPH0470409B2 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
US4876078A (en) Process for preparing carbon fibers in gas phase growth
AU642401B2 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
US6423288B2 (en) Fibrils
US3657111A (en) Slurry process for hydrocarbonaceous black oil conversion
WO2007072584A1 (en) Vapor-grown carbon fiber and production process thereof
JPH0424320B2 (en)
US4492681A (en) Method for the preparation of silicon carbide fibers
KR20050107810A (en) Method of producing vapor-grown carbon fibers
JPH0413446B2 (en)
JPH01104834A (en) Production of carbon fiber
JPH0246691B2 (en)
JPH026617A (en) Production of carbon fiber
JPS6392727A (en) Production of carbon fiber and apparatus therefor
JPH0519341Y2 (en)
KR19990048895A (en) Method for producing microcarbon fiber using basic metal oxide supported iron group transition metal catalyst
JPH0440450B2 (en)
JPS61225328A (en) Production of carbonaceous fiber
JPH062222A (en) Production of carbon fiber by gaseous phase growth
JPH0440451B2 (en)
JPS60120791A (en) Conversion of heavy hydrocarbon to light hydrocarbon
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPH0665764B2 (en) Carbon fiber manufacturing method
US3180822A (en) Hydrorefining of crude oil and catalyst therefor
JPH0192424A (en) Production of carbon fiber with vapor growth