JPS639085B2 - - Google Patents

Info

Publication number
JPS639085B2
JPS639085B2 JP56170508A JP17050881A JPS639085B2 JP S639085 B2 JPS639085 B2 JP S639085B2 JP 56170508 A JP56170508 A JP 56170508A JP 17050881 A JP17050881 A JP 17050881A JP S639085 B2 JPS639085 B2 JP S639085B2
Authority
JP
Japan
Prior art keywords
piston
exhaust hole
valve
hydraulic
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170508A
Other languages
Japanese (ja)
Other versions
JPS5872606A (en
Inventor
Susumu Nagai
Chukei Asada
Akira Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP56170508A priority Critical patent/JPS5872606A/en
Publication of JPS5872606A publication Critical patent/JPS5872606A/en
Publication of JPS639085B2 publication Critical patent/JPS639085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はピストン制御孔型排気制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a piston control hole type exhaust control device.

従来の技術 掃気効率が良いことで知られるユニフロー掃気
式デイーゼル機関において、排気孔の開閉をピス
トンで行なうピストン制御孔型排気装置は、従来
機械的な結合による駆動方式が取られており、こ
の方式では、排気孔開閉ピストンを駆動するため
の側棒や別のクランクと歯車などを用いねばなら
ず、構造が複雑になり、且つ、機関の高さが増す
などの欠点があつた。
Conventional technology In uniflow scavenging diesel engines, which are known for their high scavenging efficiency, the piston control hole type exhaust device, in which the exhaust hole is opened and closed by a piston, has conventionally been driven by a mechanical connection. In this case, it was necessary to use a side rod and a separate crank and gears to drive the exhaust hole opening/closing piston, which resulted in a complicated structure and increased height of the engine.

かかる問題を解消するものとして特開昭53−
57310号公報がある。
To solve this problem, JP-A-53-
There is a publication number 57310.

発明が解決しようとする問題点 上記従来構成によれば、油圧管制弁、給油弁及
び排油弁はクランク軸と機械的に結合されて制御
されているので、これら弁を制御するためのクラ
ンク機構や歯車機構などの駆動機構を用いねばな
らず、構造が複雑になり、かつ機械的騒音が発生
するという欠点があつた。また排気孔の開閉タイ
ミングがクランク軸の回転角度によつてのみ決定
されるので、機関の性能および出力の変化に応じ
て排気孔の開閉タイミングを調整しにくいという
問題がある。
Problems to be Solved by the Invention According to the above-mentioned conventional configuration, the hydraulic control valve, oil supply valve, and oil drain valve are controlled by being mechanically connected to the crankshaft, so the crank mechanism for controlling these valves is required. This method requires the use of a drive mechanism such as a gear mechanism or a gear mechanism, resulting in a complicated structure and the generation of mechanical noise. Furthermore, since the opening/closing timing of the exhaust hole is determined only by the rotation angle of the crankshaft, there is a problem in that it is difficult to adjust the opening/closing timing of the exhaust hole in accordance with changes in engine performance and output.

本発明は上記問題点を解消したピストン制御孔
型排気制御装置を提供することを目的とする。
An object of the present invention is to provide a piston control hole type exhaust control device that solves the above problems.

問題を解決するための手段 上記問題を解決するため、本発明のピストン制
御孔型排気制御装置は、機関燃焼室の上部に排気
孔制御シリンダを配設し、該シリンダの下部に排
気孔を形成し、シリンダ内に互いにロツドで連結
された作動ピストンと排気孔開閉ピストンとを摺
動自在に配設し、上記作動ピストンにより形成さ
れたロツド室内に配設されて作動ピストンを排気
孔の開孔方向に付勢するばねを設け、作動ピスト
ンにより形成された油室に導管の一端を接続する
とともに、この導管の他端を油圧ポンプに連通し
ている蓄圧器に接続し、この導管中に、上記油室
側から順に、ストツプ弁と速度制御弁と電磁式油
圧切換弁とを設け、機関運転時の運転状態検出信
号を受けて油圧切換弁、ストツプ弁および速度制
御弁を適宜に制御する比較演算制御器を設けたも
のである。
Means for Solving the Problem In order to solve the above problem, the piston control hole type exhaust control device of the present invention includes an exhaust hole control cylinder disposed in the upper part of the engine combustion chamber, and an exhaust hole formed in the lower part of the cylinder. An operating piston and an exhaust hole opening/closing piston are slidably arranged in the cylinder and connected to each other by a rod, and the operating piston is arranged in a rod chamber formed by the operating piston to open and close the exhaust hole. a spring biased in the direction is provided, one end of the conduit is connected to the oil chamber formed by the actuating piston, and the other end of the conduit is connected to a pressure accumulator communicating with the hydraulic pump; A comparison in which a stop valve, a speed control valve, and an electromagnetic hydraulic switching valve are installed in order from the oil chamber side, and the hydraulic switching valve, stop valve, and speed control valve are appropriately controlled in response to an operating state detection signal during engine operation. It is equipped with an arithmetic controller.

作用 上記構成において、排気孔の開孔状態におい
て、比較演算制御器からの指令信号により、スト
ツプ弁を開放させるとともに油圧切換弁が給油側
に切換えられると、蓄圧器内の圧油が油室内に流
入し、その圧油によつて油圧作動ピストンがばね
に抗して移動させられ、排気孔開閉ピストンによ
つて排気孔が閉じられる。次に排気孔の閉孔状態
において、比較演算制御器からの指令信号によ
り、ストツプ弁を開放させるとともに油圧切換弁
を排油側に切換えると、油室内の圧油が排油され
るとともに、ばねの付勢力と燃焼室のガス圧力に
よつて排気孔開閉ピストンが移動させられ、排気
孔が開孔されるものである。また比較演算制御器
からの指令信号により速度制御弁を作動させるこ
とによつて、圧油の流量を変化させ、油圧作動ピ
ストンの速度、すなわち排気孔の開閉速度を制御
し得る。
Effect In the above configuration, when the exhaust hole is open, when the stop valve is opened and the hydraulic pressure switching valve is switched to the oil supply side in response to a command signal from the comparison calculation controller, the pressure oil in the pressure accumulator flows into the oil chamber. The hydraulic fluid flows in, and the hydraulic piston is moved against the spring, and the exhaust hole is closed by the exhaust hole opening/closing piston. Next, when the exhaust hole is closed, the stop valve is opened and the hydraulic selector valve is switched to the oil drain side in response to a command signal from the comparison calculation controller, and the pressure oil in the oil chamber is drained and the spring The exhaust hole opening/closing piston is moved by the urging force of the combustion chamber and the gas pressure in the combustion chamber, and the exhaust hole is opened. Furthermore, by operating the speed control valve in response to a command signal from the comparison arithmetic controller, the flow rate of the pressure oil can be changed to control the speed of the hydraulic piston, that is, the opening/closing speed of the exhaust hole.

実施例 以下、本発明の一実施例を図に基づいて説明す
る。1は機関燃焼室2の上部に配設された排気孔
制御シリンダであつて、下部に排気孔4を有す
る。5,7はピストンロツド6で互いに連結され
た排気孔開閉ピストンと油圧作動ピストンであつ
て、上記シリンダ1内に摺動自在に配設されてい
る。また油圧作動ピストン7によつてロツド室8
と油室9とが形成されている。10は油圧ポンプ
11を作動させるモータ、16は一端が油室9に
接続された導管、14はその導管16の他端と蓄
圧器12およびタンク21との間に設けられた4
ポート3位置の電磁式油圧切換弁、13は逆止
弁、17,18は導管16の油圧制御弁14と油
室9との間の適所に介在させられたストツプ弁と
速度制御弁、19はロツド室8内に配設されて油
圧作動ピストン7を上方へ付勢するばね、20は
リリーフ弁、21はタンク、22は燃焼室ピスト
ン、23は機関運転時の運転状態検出信号を受け
て油圧切換弁14、ストツプ弁17および速度制
御18を制御する比較演算制御器であつて、各弁
14,17,18の制御により排気孔4の開閉時
期を任意に設定することが容易であり、前記機関
の性能を最適状態に制御できるようにしたもので
ある。この制御器23に入力する運転状態検出信
号(電気信号)としては、(ア)クランク軸回転角信
号、(イ)機関ピストン変位信号、(ウ)機関出力、機関
回転数、燃焼室内ガス圧力などから演算されるク
ランク軸回転角信号あるいはピストン変位信号、
(エ)燃焼室内ガス圧力、排気圧力なの機関性能因子
信号を使用できる。この比較演算制御器23は、
これら(ア)〜(エ)の電気信号を処理して油圧切換弁1
4ばかりでなく、速度制御弁18、ストツプ弁1
7をも制御するものであり、油圧作動ピストン7
のピストン位置あるいは油室9の油圧力をフイー
ドバツクし、最適な指令電気信号を発信するよう
に構成してある。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the drawings. Reference numeral 1 denotes an exhaust hole control cylinder disposed in the upper part of the engine combustion chamber 2, and has an exhaust hole 4 in the lower part. Reference numerals 5 and 7 denote an exhaust hole opening/closing piston and a hydraulically actuating piston, which are connected to each other by a piston rod 6 and are slidably disposed within the cylinder 1. In addition, the rod chamber 8 is operated by the hydraulically operated piston 7.
and an oil chamber 9 are formed. 10 is a motor that operates the hydraulic pump 11; 16 is a conduit whose one end is connected to the oil chamber 9; and 14 is a conduit 4 provided between the other end of the conduit 16 and the pressure accumulator 12 and tank 21.
13 is a check valve; 17 and 18 are stop valves and speed control valves interposed at appropriate locations between the hydraulic control valve 14 of the conduit 16 and the oil chamber 9; A spring is disposed in the rod chamber 8 and urges the hydraulically operated piston 7 upward; 20 is a relief valve; 21 is a tank; 22 is a combustion chamber piston; It is a comparison calculation controller that controls the switching valve 14, the stop valve 17, and the speed control 18, and it is easy to arbitrarily set the opening/closing timing of the exhaust hole 4 by controlling each valve 14, 17, and 18. This allows the engine's performance to be controlled to its optimum state. The operating state detection signals (electrical signals) input to this controller 23 include (a) crankshaft rotation angle signal, (b) engine piston displacement signal, (c) engine output, engine speed, combustion chamber gas pressure, etc. Crankshaft rotation angle signal or piston displacement signal calculated from
(d) Engine performance factor signals such as combustion chamber gas pressure and exhaust pressure can be used. This comparison calculation controller 23 is
The hydraulic switching valve 1 processes these electrical signals (a) to (d) to
4 as well as speed control valve 18 and stop valve 1
7, the hydraulically actuated piston 7
The piston position or the hydraulic pressure in the oil chamber 9 is fed back and the optimum command electric signal is transmitted.

上記構成の作用を説明する。まず第1図に示す
排気孔4が開孔の状態から閉じられる行程を説明
する。モータ10によつて駆動される油圧ポンプ
11から吐出される圧油は、蓄圧器12に貯えら
れ、逆止弁13を通り油圧切換弁14にいたつて
いる。いま比較演算制御器23からの指令信号に
よりストツプ弁17を開放すると共に油圧切換弁
14を給油側()に切換えると、蓄圧器12と
排気孔制御シリンダ1の油室9が連通し、該油室
9内に流入する圧油によつて油圧作動ピストン7
がばね19に抗して下方へ移動させられ、排気孔
開閉ピストン5も下方へ移動させられて前記排気
孔4が閉じられる。
The operation of the above configuration will be explained. First, a process in which the exhaust hole 4 shown in FIG. 1 is closed from an open state will be described. Pressure oil discharged from a hydraulic pump 11 driven by a motor 10 is stored in a pressure accumulator 12, passes through a check valve 13, and reaches a hydraulic switching valve 14. Now, when the stop valve 17 is opened and the hydraulic pressure switching valve 14 is switched to the oil supply side () by a command signal from the comparison calculation controller 23, the pressure accumulator 12 and the oil chamber 9 of the exhaust port control cylinder 1 communicate with each other, and the oil The hydraulically actuated piston 7 is activated by the pressure oil flowing into the chamber 9.
is moved downward against the spring 19, and the exhaust hole opening/closing piston 5 is also moved downward to close the exhaust hole 4.

次に上記とは逆に排気孔4を開孔する場合を説
明する。比較演算制御器23からの指令信号によ
り、前記ストツプ弁17を開放させるとともに前
記油圧切換弁14を排油側()へ戻すと、前記
油室9の圧油は導管16および油圧制御弁14を
通つてタンク21へ戻り、油室9の油圧は大気圧
となる。したがつて、ばね19の付勢力と燃焼室
2のガス圧力により排気孔開閉ピストン5が上方
へ移動させられ、排気孔4が開孔される。
Next, the case where the exhaust hole 4 is opened in the opposite manner to the above will be explained. When the stop valve 17 is opened and the hydraulic switching valve 14 is returned to the oil drain side ( ) in response to a command signal from the comparison calculation controller 23 , the pressure oil in the oil chamber 9 flows through the conduit 16 and the hydraulic control valve 14 . The oil passes through and returns to the tank 21, and the oil pressure in the oil chamber 9 becomes atmospheric pressure. Therefore, the exhaust hole opening/closing piston 5 is moved upward by the biasing force of the spring 19 and the gas pressure in the combustion chamber 2, and the exhaust hole 4 is opened.

ここで、圧油圧力:Pp、油圧作動ピストン7
の面積:Ap、ばね19のばね定数:Kv、ばね変
位:△x、排気孔開閉ピストン5の面積:Ae、
両ピストン5,7およびロツド6の全重量:
Wp、燃焼室内ガス圧力:Pgとすると Ae・Pg+Kv・△x=Ap・Pp+Wp (1) の関係が成立する。
Here, hydraulic pressure: Pp, hydraulically operated piston 7
area: Ap, spring constant of spring 19: Kv, spring displacement: △x, area of exhaust hole opening/closing piston 5: Ae,
Total weight of both pistons 5, 7 and rod 6:
When Wp is the combustion chamber gas pressure: Pg, the following relationship holds: Ae・Pg+Kv・△x=Ap・Pp+Wp (1).

第2図は燃焼室2内のガス圧力の時間経過の代
表的1例を示したもので、その下図は上図の要部
を拡大したものである。まず排気孔4の開孔時期
(E.O)のガス圧力Pg(E.O)は、機関形式にもよ
るが8Kgf/cm2〜10Kgf/cm2程度であり、前述の
ように排気孔4の開孔時には油室9の圧力Ppを
大気圧に開放していることから、上記(1)式の左辺
が右辺に対して大きくなり、排気孔4を開孔す
る。このAe・Pgの効果により、ばね19の力は
前記両ピストン5,7およびロツド6の全重量
Wpをささえる程度でよく、第3図aに示すよう
な従来の排気弁駆動方式に採用されるばね(排気
弁駆動方式では、閉弁速度を確保するため、かな
りのばね力を必要とする)に比べ、ばね力の小さ
なものを採用できるし、かつ上記ガス圧力Pg(E.
O)の値が十分あれば省略することもできる。
FIG. 2 shows a typical example of the time course of the gas pressure within the combustion chamber 2, and the lower figure is an enlarged view of the main part of the upper figure. First, the gas pressure Pg (EO) when the exhaust hole 4 opens (EO) is about 8Kgf/cm 2 to 10Kgf/cm 2 , depending on the engine type, and as mentioned above, when the exhaust hole 4 opens, Since the pressure Pp in the oil chamber 9 is released to atmospheric pressure, the left side of the above equation (1) becomes larger than the right side, and the exhaust hole 4 is opened. Due to the effects of Ae and Pg, the force of the spring 19 is increased by the total weight of the pistons 5, 7 and the rod 6.
It is sufficient to support Wp, and the spring used in the conventional exhaust valve drive system as shown in Figure 3a (exhaust valve drive system requires a considerable spring force to ensure the valve closing speed) It is possible to use a spring with a smaller spring force compared to the above gas pressure Pg (E.
O) can be omitted if the value is sufficient.

つぎに、排気孔4の閉孔時期(E.C)のガス圧
力Pg(E.C)は、ほぼ掃気圧力近辺の1Kgf/cm2
〜3Kgf/cm2まで低下しているので、油圧力Pp
を供給すると(1)式の右辺が大きくなり、油圧作動
ピストン7が下方に移動させられ、排気孔4は閉
じる。
Next, the gas pressure Pg (EC) at the closing time (EC) of the exhaust port 4 is approximately 1 Kgf/cm 2 near the scavenging pressure.
Since it has decreased to ~3Kgf/ cm2 , the hydraulic pressure Pp
When , the right side of equation (1) increases, the hydraulic piston 7 is moved downward, and the exhaust hole 4 is closed.

以上のように本方式では、排気孔4の開閉時期
の制御を排気弁駆動方式の機関におけるよりも有
利に実現できる。しかし一方、本方式では、第3
図aに示す排気弁駆動方式の弁座に相当するもの
を備えていないことから、第3図bに示すように
排気孔4の閉孔期間に排気孔開閉ピストン5の受
圧面に燃焼ガス圧力Pgを受けることになる。そ
こで本実施例では前記導管16の可能なかぎり、
「排気孔制御シリンダ1」すなわち、「油室9」に
近い位置にストツプ弁17を介在させ、あらかじ
め設定された時期に当該ストツプ弁17を閉じ、
油室9の油圧力Ppを燃焼室内ガス圧力Pgに相当
して昇圧させるようにしている。これによつて(1)
式を満足させることができる。なお、この場合、
油室9からの油の漏洩および油の圧縮性を考慮す
る必要があるが、通常の油圧シリンダ技術の導入
により、これらを解決することが可能であり、機
関性能に及ぼす影響を最小限にとどめることがで
きる。またストツプ弁17と前記切換弁14の間
において導管16に比較演算制御器23により制
御される速度制御弁18を介在させることにより
前記油圧作動ピストン7の速度を制御して排気孔
4の開閉速度を任意に制御することを可能として
いる。
As described above, in this system, the timing of opening and closing of the exhaust hole 4 can be controlled more advantageously than in an engine using an exhaust valve drive system. However, in this method, the third
Since it does not have a valve seat equivalent to the exhaust valve drive system shown in Figure 3a, the combustion gas pressure is applied to the pressure receiving surface of the exhaust hole opening/closing piston 5 during the exhaust hole 4 closing period as shown in Figure 3b. I will receive Pg. Therefore, in this embodiment, as much as possible of the conduit 16,
A stop valve 17 is interposed at a position close to the "exhaust hole control cylinder 1", that is, the "oil chamber 9", and the stop valve 17 is closed at a preset time,
The hydraulic pressure Pp in the oil chamber 9 is increased to correspond to the combustion chamber gas pressure Pg. By this(1)
The formula can be satisfied. In this case,
Although it is necessary to consider oil leakage from the oil chamber 9 and oil compressibility, these can be resolved by introducing normal hydraulic cylinder technology, and the impact on engine performance is kept to a minimum. be able to. In addition, a speed control valve 18 controlled by a comparator controller 23 is interposed in the conduit 16 between the stop valve 17 and the switching valve 14 to control the speed of the hydraulic piston 7 and the opening/closing speed of the exhaust hole 4. can be controlled arbitrarily.

発明の効果 以上の説明のように本発明によるピストン制御
孔型排気制御装置によれば、機関運転時の運転状
態検出信号を受けて作動する比較演算制御器によ
り、油圧切換弁、ストツプ弁および速度制御弁を
制御するようにしたから、従来の機械的結合によ
る制御に比べて、構造を簡単にできるとともに騒
音も低下できる。また機関運転時における機関全
体の性能および出力の変化に応じて排気孔の開閉
タイミングを常時、最適の状態に、かつ簡単に調
整することができるものである。さらに速度制御
弁により油圧作動ピストンの速度を制御できるの
で、排気孔の開閉速度を制御することができる。
Effects of the Invention As described above, according to the piston control hole type exhaust control device according to the present invention, the hydraulic switching valve, the stop valve, and the speed Since the control valve is used for control, the structure can be simplified and noise can be reduced compared to conventional control using mechanical coupling. Further, the opening/closing timing of the exhaust hole can be constantly and easily adjusted to the optimum state in accordance with changes in the performance and output of the entire engine during engine operation. Furthermore, since the speed of the hydraulically actuated piston can be controlled by the speed control valve, the opening and closing speed of the exhaust hole can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図は概略説
明図、第2図は燃焼室内ガス圧力時間経過と燃焼
室内圧力等との関係を示すグラフ、第3図a,b
は従来例と本発明実施例との比較を示す排気孔部
分の断面図と燃焼ガス圧力グラフである。 1……排気孔制御シリンダ、2……機関燃焼
室、4……排気孔、5……排気孔開閉ピストン、
6……ピストンロツド、7……油圧作動ピスト
ン、9……油室、12……蓄圧器、14……油圧
切換弁、16……導管、23……比較演算制御
器。
The figures show one embodiment of the present invention, and Fig. 1 is a schematic explanatory diagram, Fig. 2 is a graph showing the relationship between combustion chamber gas pressure over time and combustion chamber pressure, etc., and Fig. 3 a and b.
1 is a sectional view of an exhaust hole portion and a combustion gas pressure graph showing a comparison between a conventional example and an example of the present invention. 1... Exhaust hole control cylinder, 2... Engine combustion chamber, 4... Exhaust hole, 5... Exhaust hole opening/closing piston,
6... Piston rod, 7... Hydraulic operating piston, 9... Oil chamber, 12... Pressure accumulator, 14... Hydraulic switching valve, 16... Conduit, 23... Comparison calculation controller.

Claims (1)

【特許請求の範囲】[Claims] 1 機関燃焼室の上部に排気孔制御シリンダを配
設し、該シリンダの下部に排気孔を形成し、シリ
ンダ内に互いにロツドで連結された作動ピストン
と排気孔開閉ピストンとを摺動自在に配設し、上
記作動ピストンにより形成されたロツド室内に配
設されて作動ピストンを排気孔の開孔方向に付勢
するばねを設け、作動ピストンにより形成された
油室に導管の一端を接続するとともに、この導管
の他端を油圧ポンプに連通している蓄圧器に接続
し、この導管中に、上記油室側から順に、ストツ
プ弁と速度制御弁と電磁式油圧切換弁とを設け、
機関運転時の運転状態検出信号を受けて油圧切換
弁、ストツプ弁および速度制御弁を制御する比較
演算制御器を設けたことを特徴とするピストン制
御孔型排気制御装置。
1. An exhaust hole control cylinder is arranged in the upper part of the engine combustion chamber, an exhaust hole is formed in the lower part of the cylinder, and an operating piston and an exhaust hole opening/closing piston connected to each other by a rod are slidably arranged in the cylinder. A spring is disposed in the rod chamber formed by the working piston and biases the working piston in the direction of opening the exhaust hole, and one end of the conduit is connected to the oil chamber formed by the working piston. , the other end of this conduit is connected to a pressure accumulator communicating with a hydraulic pump, and a stop valve, a speed control valve, and an electromagnetic hydraulic switching valve are provided in this conduit in order from the oil chamber side,
A piston control hole type exhaust control device characterized by being provided with a comparison calculation controller that controls a hydraulic pressure switching valve, a stop valve, and a speed control valve in response to an operating state detection signal during engine operation.
JP56170508A 1981-10-24 1981-10-24 Exhaust gas controller of piston control hole type Granted JPS5872606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170508A JPS5872606A (en) 1981-10-24 1981-10-24 Exhaust gas controller of piston control hole type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170508A JPS5872606A (en) 1981-10-24 1981-10-24 Exhaust gas controller of piston control hole type

Publications (2)

Publication Number Publication Date
JPS5872606A JPS5872606A (en) 1983-04-30
JPS639085B2 true JPS639085B2 (en) 1988-02-25

Family

ID=15906243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170508A Granted JPS5872606A (en) 1981-10-24 1981-10-24 Exhaust gas controller of piston control hole type

Country Status (1)

Country Link
JP (1) JPS5872606A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI1917419T1 (en) 2005-08-17 2009-10-31 Alstom Technology Ltd Guide vane arrangement of a turbo-machine
EP3406866A1 (en) * 2017-05-22 2018-11-28 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Hydraulic drive for accelerating and braking components to be dynamically moved

Also Published As

Publication number Publication date
JPS5872606A (en) 1983-04-30

Similar Documents

Publication Publication Date Title
SU997614A3 (en) Hydraulic actuator for directional gas valves
JPS5817202A (en) Control unit for hydraulic circuit
KR890002578B1 (en) Exhaust valve for reciprocating combustion engine
JPH02264104A (en) Valve system for internal combustion engine
JP5574950B2 (en) Working machine hydraulic system
JPS639085B2 (en)
KR100852805B1 (en) Method for operating an electrohydraulic valve control system of an internal combustion engine, computer program and control and regulating device for operating an internal combustion engine
JP4290563B2 (en) Device for controlling a gas exchange valve
JP3550428B2 (en) Open / close control device of intake valve for Miller cycle engine
JPH0791969B2 (en) Valve drive for internal combustion engine
US6446598B1 (en) Compression brake actuation system and method
JPH0127244B2 (en)
JPS595763B2 (en) Internal combustion engine exhaust system
JP5130378B2 (en) Valve operation system for large two-cycle diesel engines
JPS60113008A (en) Hydraulically operated tappet valve device of internal- combustion engine
EP1217179B1 (en) Compression brake actuation system and method
JPS6315449B2 (en)
JPS5838605B2 (en) Diesel engine valve timing change device
JPS61127967A (en) Flush valve
JPS6040711A (en) Valve mechanism
JPH04131505A (en) Control circuit of hydraulic actuator
JPS59160019A (en) Hydraulic valve gear
JPS57143180A (en) Control method of variable displacement oil hydraulic pump
KR100276425B1 (en) Regulator of a pile driver
SU648154A1 (en) Hudraulic device for control of mounted agricultural implement