JPS6390143A - Method of doping impurity into semiconductor material - Google Patents
Method of doping impurity into semiconductor materialInfo
- Publication number
- JPS6390143A JPS6390143A JP23563186A JP23563186A JPS6390143A JP S6390143 A JPS6390143 A JP S6390143A JP 23563186 A JP23563186 A JP 23563186A JP 23563186 A JP23563186 A JP 23563186A JP S6390143 A JPS6390143 A JP S6390143A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- zns
- ampule
- impurity
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012535 impurity Substances 0.000 title claims abstract description 30
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 239000000463 material Substances 0.000 title claims description 10
- 238000000034 method Methods 0.000 title abstract description 10
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 25
- 239000003708 ampul Substances 0.000 abstract description 18
- 239000010453 quartz Substances 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- 239000000843 powder Substances 0.000 abstract description 11
- 239000002019 doping agent Substances 0.000 abstract description 7
- 239000007864 aqueous solution Substances 0.000 abstract description 6
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 5
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 abstract 1
- 229910052697 platinum Inorganic materials 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- 238000000197 pyrolysis Methods 0.000 abstract 1
- 239000005083 Zinc sulfide Substances 0.000 description 26
- 229910052984 zinc sulfide Inorganic materials 0.000 description 26
- 238000009792 diffusion process Methods 0.000 description 15
- 230000007547 defect Effects 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 239000000370 acceptor Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は半導体材料に不純物をドーピングする方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method of doping semiconductor materials with impurities.
半導体中への不純物ドーピングは半導体デバイスを製作
するプロセスのなかでも最も重要であり不純物ドーピン
グなしではデバイス作成は不可能である。しかしながら
、禁制帯幅の大きい半導体材料にあっては、現在のとこ
ろ、自由にn型、p型にドーピングする事ができない。Impurity doping into a semiconductor is the most important process for manufacturing semiconductor devices, and device creation is impossible without impurity doping. However, semiconductor materials with a large forbidden band width cannot be freely doped into n-type or p-type at present.
例えば、本発明でもちいたZn5(liFE化亜鉛)で
は、低抵抗のp型が得られるようなドーピング方法はな
い。For example, for Zn5 (zinc liFE) used in the present invention, there is no doping method that allows a low resistance p-type to be obtained.
既に述べたように、禁制帯幅の大きい半導体材料におい
ては、n型、p型ドーピングが容易に達成できない。こ
れは、ドーピングによって誘起される母体中の欠陥生成
エネルギーに較べて禁制帯エネルギーが大きくなる為で
あり、この理由は、1)ドーピングに際して、自己補償
作用(seH−compensation)により正規
位置に置換したドーパントと正反対の電荷をもつ欠陥(
たとえば母体構成元素の空孔等)が生じる、2)ドーピ
ングに際して、自動補償作用(auto −compe
nsation)により正規位置に置換したドーパント
と正反対の電荷をもつ欠陥(たとえば同じドーパントが
侵入型位置(1oterstitial 5ite)に
存在する欠陥)が生じる、為と考えられている。具体的
に本発明で扱ったZnS (硫化亜鉛)にLiをドーピ
ングした例では、上記2)の理由によりp型結晶ができ
ないとかんかえられている。p型にドープできないこと
はp−n接合により、発光あるいはレーザーダイオード
動作が期待されるこの種の半導体デバイスにおける致命
的は欠点である。As already mentioned, n-type and p-type doping cannot be easily achieved in semiconductor materials with large band gaps. This is because the forbidden band energy becomes larger than the defect generation energy in the host body induced by doping, and the reason for this is: 1) During doping, self-compensation (seH-compensation) causes substitution at normal positions. A defect with a charge opposite to that of the dopant (
2) Auto-compensation occurs during doping.
This is thought to be due to the fact that a defect (for example, a defect in which the same dopant is present at an interstitial position) having a charge opposite to that of the dopant substituted at the normal position is generated due to the dopant substitution at the normal position. Specifically, in the case of ZnS (zinc sulfide) doped with Li, which is treated in the present invention, it is considered that p-type crystals cannot be formed due to the reason 2) above. The impossibility of p-type doping is a fatal drawback in this type of semiconductor device, which is expected to emit light or operate as a laser diode through a p-n junction.
本発明の目的は上述した従来の問題点を解決し、禁制帯
幅の大きい半導体材料でもn型、p型のドーピングが容
易に達成できる半導体材料への不純物ドーピング法を提
供することにある。An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for doping impurities into a semiconductor material that can easily achieve n-type and p-type doping even in a semiconductor material with a large forbidden band width.
本発明の半導体材料への不純物ドーピング法は、まず半
導体へ高温での熱拡散により不純物を正規格子位置およ
びそれ以外の位置にドーピングし、熱および電場を併用
した拡散によって、例えば自動補償作用等によって生じ
た侵入型位置のドーパント不純物のみを拡散移動させて
、正規位置に置換したドーパントのみが存在する層を得
るものである。The method of doping impurities into semiconductor materials of the present invention involves first doping impurities into regular lattice positions and other positions in the semiconductor by thermal diffusion at high temperatures, and then doping the impurities into the semiconductor by diffusion using both heat and an electric field, such as by an automatic compensation effect. Only the dopant impurity at the generated interstitial position is diffused and moved to obtain a layer in which only the dopant substituted at the normal position exists.
ある種の半導体にある種の不純物を拡散させると、母体
の正規位置を置換すると同時に侵入型位置にも不純物が
位置することはよく知られている。これは母体原子に較
べて拡散しようとする不純物原子が小さい場合によく起
こり、本発明で述べるZnS中のLi、GaP (燐化
ガリウム)中のLi、StやGe中のLiなどがよく知
られている。一方半導体中の侵入位置型不純物は、置換
位置型不純物に較べて拡散のためのエネルギー障壁は小
さくまたイオン化していれば電場によって容易に拡散す
る。従って、適当な温度において、侵入位置と置換位置
型不純物を同時に含む半導体に電場を印加すれば、拡散
エネルギー障壁の小さい侵入位置型不純物のみが片側の
電極へ拡散し、置換位置型不純物のみを含む層が形成す
ることが出来る。It is well known that when a certain type of impurity is diffused into a certain type of semiconductor, the impurity replaces the normal position of the parent body and at the same time is located at the interstitial position. This often occurs when the impurity atoms attempting to diffuse are smaller than the host atoms, and Li in ZnS, Li in GaP (gallium phosphide), Li in St and Ge, etc. described in this invention are well known. ing. On the other hand, an interstitial impurity in a semiconductor has a smaller energy barrier for diffusion than a substitutional impurity, and if ionized, it can be easily diffused by an electric field. Therefore, if an electric field is applied to a semiconductor containing both interstitial and substitutional impurities at an appropriate temperature, only the interstitial impurities, which have a small diffusion energy barrier, will diffuse to one side of the electrode, and the semiconductor will contain only substitutional impurities. layers can be formed.
本発明による不純物の拡散では、用いる母体半導体の種
類と不純物原子の種類は問わず、高温熱拡散によって、
生じる反対符号の欠陥準位(例えばドナー性準位とアク
セプター性準位等、またこれは外因性、内因性欠陥準位
を含む)の拡散エネルギー障壁に差があれば適用可能で
あり、すべての場合をここに網羅することはできない。In the impurity diffusion according to the present invention, regardless of the type of base semiconductor used or the type of impurity atoms, high-temperature thermal diffusion
It is applicable if there is a difference in the diffusion energy barrier of generated defect levels of opposite sign (e.g., donor level and acceptor level, and this includes extrinsic and intrinsic defect levels). It is not possible to cover all cases here.
次に、本発明の実施例について図面を参照して説明する
。第1図および第2図は、本発明の一実施例を説明する
ために工程順に示した工程の原理図であり、第1図は工
程1.第2図は工程2の説明用である0本実施例ではZ
nS中にLiを拡散してP型結晶を得る方法について説
明する。Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are principle diagrams of steps shown in the order of steps to explain an embodiment of the present invention, and FIG. 1 shows step 1. FIG. 2 is for explaining process 2. In this example, Z
A method for obtaining a P-type crystal by diffusing Li into nS will be explained.
先ず工程1として、硫酸リチウム約20グラムを100
グラムの水に溶かし硫酸リチウム水溶液とする。この水
溶液中に10關X10+uXl■mに切り出し、クロム
混酸液および水酸化カリウム水溶液(30%、90℃)
でエツチングしたZnSバルク結晶1を浸し、その後取
り出して約110℃で乾燥させる。このとき、他の不純
物が混入しないように十分注意する。次に十分洗浄した
石英アンプル2にこの硫酸リチウム水溶液を塗布され乾
燥させたZnSバルク結晶1と、この結晶の熱分解を防
ぐ為に入れられたZnS粉末3を第1図の配置の様に入
れた後、石英アンプル2を高真空排気装置につなぐ。Z
nS粉末3がまわないように石英アンプル2を排気し、
10−’Torr以下の超高真空になったところでこの
石英アンプル2を封じ切る。この後石英アンプル2全体
を電気炉4内に、加熱ヒーター5および6によってそれ
ぞれZnSバルク結晶1と、ZnS粉末3が独立に加熱
される様に配置する。上記の操作ののち、加熱ヒーター
5および6に電流を流す。このLiの高温熱拡散の為の
温度、時間は種々の条件に依存するが、本実施例の場合
、ZnSバルク結晶1の温度を850℃、ZnS粉末3
の温度が870℃となる様に設定し5時間保持した。上
記熱処理の後、石英アンプル2を割ってZnSバルク結
晶1を取り出し、水酸化カリウム水溶液(30%、90
℃)でエツチングした後、結晶の両面にタングステン金
属を蒸着する。このタングステン金属に11IIlフア
イの白金線を圧着する。First, in step 1, about 20 grams of lithium sulfate is
Dissolve it in gram of water to make a lithium sulfate aqueous solution. In this aqueous solution, cut into 10 x 10 + uXl m pieces, add a chromium mixed acid solution and a potassium hydroxide aqueous solution (30%, 90°C).
The etched ZnS bulk crystal 1 is immersed in the solution, then taken out and dried at about 110°C. At this time, be very careful not to mix other impurities. Next, the ZnS bulk crystal 1, which has been coated with this lithium sulfate aqueous solution and dried, and the ZnS powder 3, which has been added to prevent thermal decomposition of this crystal, are placed in a thoroughly cleaned quartz ampule 2 as shown in Figure 1. After that, connect the quartz ampoule 2 to a high vacuum exhaust system. Z
Evacuate the quartz ampoule 2 so that the nS powder 3 does not spread,
When an ultra-high vacuum of 10-' Torr or less is reached, the quartz ampoule 2 is sealed. Thereafter, the entire quartz ampoule 2 is placed in an electric furnace 4 so that the ZnS bulk crystal 1 and the ZnS powder 3 are heated independently by heaters 5 and 6, respectively. After the above operation, current is applied to the heaters 5 and 6. The temperature and time for this high-temperature thermal diffusion of Li depend on various conditions, but in the case of this example, the temperature of the ZnS bulk crystal 1 was 850°C, and the ZnS powder 3
The temperature was set to 870°C and maintained for 5 hours. After the above heat treatment, the quartz ampoule 2 is broken, the ZnS bulk crystal 1 is taken out, and a potassium hydroxide aqueous solution (30%, 90%
After etching at 30°F (°C), tungsten metal is deposited on both sides of the crystal. A platinum wire of 11III fiber is crimped onto this tungsten metal.
次に工程2として、第2図に示すように、十分洗浄した
石英アンプル7に、予め工程1でLiを拡散され、電圧
を印加するため結晶両面にタングステン金属電極8およ
び9を持つZnSバルク結晶10と、この結晶の熱分解
を防ぐ為に入れられたZnS粉末11を配置し、タング
ステン金属電極8および9から引き出された白金線12
および13を、予め石英アンプル7に取りつけられた貫
通電極14及び15につなぎ、更に貫通電極14及び1
5は石英アンプル7の外に置かれた電源16に接続され
、石英アンプル7全体は電気炉17内に配置されて独立
な加熱ヒーター18および19によってそれぞれZnS
バルク結晶10と、ZnS粉末11が独立に加熱される
様に配置される。上記の操作ののち、加熱ヒーター18
および19に電流を流す、このLiの電場および熱拡散
の為の温度、時間、電源16の電圧、等は種々の条件に
依存するが、本実施例の場合、ZnSバルク結晶10の
温度を320℃、Zn、S粉末11の温度が400℃と
なる様に設定し、電圧を1000ボルトとして、30時
間保持した。Next, in step 2, as shown in FIG. 2, a ZnS bulk crystal, which has been previously diffused with Li in step 1 and has tungsten metal electrodes 8 and 9 on both sides of the crystal for applying a voltage, is placed in a thoroughly cleaned quartz ampoule 7. 10 and ZnS powder 11 added to prevent thermal decomposition of the crystal, and a platinum wire 12 drawn out from tungsten metal electrodes 8 and 9.
and 13 are connected to the through electrodes 14 and 15 attached to the quartz ampoule 7 in advance, and the through electrodes 14 and 1
5 is connected to a power supply 16 placed outside the quartz ampoule 7, and the entire quartz ampoule 7 is placed in an electric furnace 17 and heated by independent heaters 18 and 19, respectively.
The bulk crystal 10 and the ZnS powder 11 are arranged so as to be heated independently. After the above operation, the heating heater 18
The temperature, time, voltage of the power supply 16, etc. for this Li electric field and thermal diffusion, which cause current to flow through the Li and 19, depend on various conditions, but in the case of this example, the temperature of the ZnS bulk crystal 10 is set at 320°C. The temperature of the Zn, S powder 11 was set to 400°C, the voltage was set to 1000 volts, and the temperature was maintained for 30 hours.
この後石英アンプル7を割ってZnSバルク結晶10を
取り出し、室温でのHall!定によって、上記の操作
後のZnSバルク結晶の正孔濃度評価した結果、ホール
係数は正、すなわちp型を示し、キャリア濃度はI X
1017cs−’であった。After this, the quartz ampoule 7 is broken, the ZnS bulk crystal 10 is taken out, and the Hall! As a result of evaluating the hole concentration of the ZnS bulk crystal after the above operation, the hole coefficient was positive, that is, p-type, and the carrier concentration was I
It was 1017cs-'.
またLiの高温熱拡散(工程l)のみを行なった試料で
は、高抵抗の為Hall測定は不可能であった。In addition, Hall measurement was impossible for the sample subjected to only high-temperature thermal diffusion of Li (step 1) due to high resistance.
本実施例では半導体としてZnS、また不純物としてL
iを選んだが、作用の項で述べたように、用いる母体半
導体の種類と不純物原子の種類は問わず、高温熱拡散に
よって生じる反対符号の欠陥準位(例えばドナー性準位
とアクセプター性準位等、またこれは外因性、内因性欠
陥準位を含む)の拡散エネルギー障壁に差があれば適用
可能であり、例えば母体となる半導体としてはSi、G
e、InP、GaAs、AIGaN、AlGaP、AI
GaI nSb、Zn5e、C(ダイヤモンド)、など
の種類を問わず、更に結晶かアモルファスかも問わない
。また不純物原子としても通常のドナーやアクセプター
となる元素−は勿論のこと、例えば遷移金属元素等でも
可能であり、その種類を限るものではない。In this example, ZnS is used as the semiconductor, and L is used as the impurity.
However, as mentioned in the section on effects, regardless of the type of host semiconductor and the type of impurity atoms used, defect levels of opposite sign (for example, donor level and acceptor level) generated by high-temperature thermal diffusion This can also be applied if there is a difference in the diffusion energy barrier of (including extrinsic and intrinsic defect levels); for example, the base semiconductor may be Si, G
e, InP, GaAs, AIGaN, AlGaP, AI
It does not matter whether it is made of GaI nSb, Zn5e, C (diamond), etc., and whether it is crystal or amorphous. Further, the impurity atoms can be not only ordinary elements that serve as donors and acceptors, but also transition metal elements, for example, and are not limited to the types thereof.
以上説明したように本発明方法により作製したLiドー
プZnSの電気的特性から、従来の方法では達成できな
かったp型ZnSが作製可能である事がわかる。As explained above, the electrical characteristics of Li-doped ZnS produced by the method of the present invention show that p-type ZnS, which could not be achieved by conventional methods, can be produced.
本発明はこのように半導体中へ電場および熱拡散によっ
て不純物置換位置を制御できるようにしたものであり、
全ての半導体への不順物ドーピングにその活用が期待さ
れるものである。In this way, the present invention makes it possible to control the impurity substitution position in a semiconductor by using an electric field and thermal diffusion.
It is expected that it will be used for impurity doping in all semiconductors.
第1図および第2図は本発明の一実施例を説明するため
に工程順に示した原理図で、第1図はLiのZnSへの
高熱拡散工程(工程1)、第2図はLiのZnSへの電
場および熱拡散工程(工程2)を示す。
1・・・ZnSバルク結晶、2・・・石英アンプル、3
・・・ZnS粉末、4・・・電気炉、5,6・・・加熱
ヒーター、7・・・石英アンプル、8.9・・・タング
ステン電極、10・・・ZnSバルク結晶、11・・・
ZnS粉末、12..13・・・白金線、14.15・
・・貫通電極、16・・・電源、17・・・電気炉、1
8.19・−・加熱ヒーター。1 and 2 are principle diagrams shown in the order of steps to explain an embodiment of the present invention. FIG. 1 shows the high-temperature diffusion process of Li into ZnS (process 1), and FIG. The electric field and thermal diffusion process (step 2) to ZnS is shown. 1...ZnS bulk crystal, 2...quartz ampoule, 3
... ZnS powder, 4... Electric furnace, 5, 6... Heater, 7... Quartz ampoule, 8.9... Tungsten electrode, 10... ZnS bulk crystal, 11...
ZnS powder, 12. .. 13...Platinum wire, 14.15.
...Through electrode, 16...Power source, 17...Electric furnace, 1
8.19 --- Heating heater.
Claims (1)
記半導体材料に熱および電場を同時に印加し所望の格子
位置のみに前記導入不純物を置換させる工程2とを含む
ことを特徴とする半導体材料への不純物ドーピング法。Impurities into a semiconductor material characterized by comprising a step 1 of introducing an impurity into a semiconductor material, and a step 2 of simultaneously applying heat and an electric field to the semiconductor material to replace the introduced impurity only in desired lattice positions. doping law.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235631A JPH0695498B2 (en) | 1986-10-02 | 1986-10-02 | Impurity doping method for semiconductor materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235631A JPH0695498B2 (en) | 1986-10-02 | 1986-10-02 | Impurity doping method for semiconductor materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6390143A true JPS6390143A (en) | 1988-04-21 |
JPH0695498B2 JPH0695498B2 (en) | 1994-11-24 |
Family
ID=16988877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61235631A Expired - Fee Related JPH0695498B2 (en) | 1986-10-02 | 1986-10-02 | Impurity doping method for semiconductor materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0695498B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178500A (en) * | 1985-01-31 | 1986-08-11 | マツクス‐プランク‐ゲゼルシヤフト・ツール・フエルデルング・デル・ヴイツセンシヤフテン・エー・フアウ | Conversion of local atomic composition of solid body, manufacture of semiconductor having locally different electroconductivities, polarization of semiconductor p-n junction, semiconductor-constitutional element, condensationfor matter and gas accumulator |
-
1986
- 1986-10-02 JP JP61235631A patent/JPH0695498B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178500A (en) * | 1985-01-31 | 1986-08-11 | マツクス‐プランク‐ゲゼルシヤフト・ツール・フエルデルング・デル・ヴイツセンシヤフテン・エー・フアウ | Conversion of local atomic composition of solid body, manufacture of semiconductor having locally different electroconductivities, polarization of semiconductor p-n junction, semiconductor-constitutional element, condensationfor matter and gas accumulator |
Also Published As
Publication number | Publication date |
---|---|
JPH0695498B2 (en) | 1994-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4206003A (en) | Method of forming a mercury cadmium telluride photodiode | |
KR20050035175A (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
Harris et al. | Silicon self‐interstitial supersaturation during phosphorus diffusion | |
US4904618A (en) | Process for doping crystals of wide band gap semiconductors | |
US4385938A (en) | Dual species ion implantation into GaAs | |
JPS6390143A (en) | Method of doping impurity into semiconductor material | |
US3705059A (en) | Methods of producing p-typeness and p-n junctions in wide band gap semiconductor materials | |
JPS6390142A (en) | Method of doping impurity into semiconductor material | |
You et al. | A study of Si outdiffusion from predoped GaAs | |
US5412242A (en) | Semiconductor device with p-n junction based on dopant profile in equilibrium with internal electric field created by this junction | |
Henini et al. | Deep states in GaAs LEC crystals | |
Nojima et al. | Annealing characteristics of Be ion implanted GaAs | |
US3735212A (en) | P-n junction semiconductor devices | |
Pearton et al. | Hydrogen in Semiconductors: Crystal growth and device processing | |
US4105479A (en) | Preparation of halogen doped mercury cadmium telluride | |
Dutt et al. | 3 Diffusion in compound semiconductors | |
Nishimura et al. | Effect of heat treatment on p‐type CdTe crystals and CdS/CdTe heterojunctions formed by chemical vapor deposition | |
Stephens | Doping of III–V compound semiconductors by ion implantation | |
JPH04199887A (en) | Pn junction device and manufacture thereof, and blue light emitting diode device | |
Plyatsko et al. | Photoinduced electric properties of Pb1− xSnxTe single crystals | |
Toyama et al. | Kinetics of Zn-O Complex Formation in GaP Crystal | |
US4675087A (en) | Semiconductor purification by solid state electromigration | |
Usami et al. | Rapid thermal diffusion of Zn into n‐type GaAs0. 6P0. 4 from Zn‐doped oxide films | |
JPH06208966A (en) | Manufacture of semiconductor device | |
Vasil'eva et al. | Effect of low-temperature diffusion annealing on the properties of PbSnTe epilayers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |