JPH0695498B2 - Impurity doping method for semiconductor materials - Google Patents

Impurity doping method for semiconductor materials

Info

Publication number
JPH0695498B2
JPH0695498B2 JP61235631A JP23563186A JPH0695498B2 JP H0695498 B2 JPH0695498 B2 JP H0695498B2 JP 61235631 A JP61235631 A JP 61235631A JP 23563186 A JP23563186 A JP 23563186A JP H0695498 B2 JPH0695498 B2 JP H0695498B2
Authority
JP
Japan
Prior art keywords
zns
impurity
type
semiconductor
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61235631A
Other languages
Japanese (ja)
Other versions
JPS6390143A (en
Inventor
正志 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61235631A priority Critical patent/JPH0695498B2/en
Publication of JPS6390143A publication Critical patent/JPS6390143A/en
Publication of JPH0695498B2 publication Critical patent/JPH0695498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体材料に不純物をドーピングする方法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for doping semiconductor materials with impurities.

〔従来の技術〕[Conventional technology]

半導体中への不純物ドーピングは半導体デバイスを製作
するプロセスのなかでも最も重要であり不純物ドーピン
グなしではデバイス作成は不可能である。しかしなが
ら、禁制帯幅の大きい半導体材料にあっては、現在のと
ころ、自由にn型、p型にドーピングする事ができな
い。例えば、本発明でもちいたZnS(硫化亜鉛)では、
低抵抗のp型が得られるようなドーピング方法はない。
Impurity doping into a semiconductor is the most important in the process of manufacturing a semiconductor device, and it is impossible to make a device without impurity doping. However, at present, a semiconductor material having a large forbidden band cannot be freely doped into n-type or p-type. For example, in ZnS (zinc sulfide) used in the present invention,
There is no doping method that can obtain a low resistance p-type.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

既に述べたように、禁制帯幅の大きい半導体材料におい
ては、n型、p型ドーピングが容易に達成できない。こ
れは、ドーピングによって誘起される母体中の欠陥生成
エネルギーに較べて禁制帯エネルギーが大きくなる為で
あり、この理由は、1)ドーピングに際して、自己補償
作用(self−compensation)により正規位置に置換した
ドーパントと正反対の電荷をもつ欠陥(たとえば母体構
成元素の空孔等)が生じる、2)ドーピングに際して、
自動補償作用(auto−compensation)により正規位置に
置換したドーパントと正反対の電荷をもつ欠陥(たとえ
ば同じドーパントが侵入型位置(interstitial site)
に存在する欠陥)が生じる、為と考えられている。具体
的に本発明で扱ったZnS(硫化亜鉛)にLiをドーピング
した例では、上記2)の理由によりp型結晶ができない
とかんがえられている。p型にドープできないことはp
−n接合により、発光あるいはレーザーダイオード動作
が期待されるこの種の半導体デバイスにおける致命的は
欠点である。
As already mentioned, n-type and p-type doping cannot be easily achieved in a semiconductor material having a large forbidden band. This is because the forbidden band energy is larger than the defect formation energy in the matrix induced by the doping. The reason for this is as follows: 1) In doping, the forbidden band was replaced by a self-compensation action. Defects having a charge opposite to that of the dopant (for example, vacancies of a matrix constituent element) are generated. 2) During doping,
Defects with charges opposite to those of the dopant that is substituted in the normal position by auto-compensation (for example, the same dopant has an interstitial site).
It is believed that this is due to the occurrence of defects). Specifically, in the example of ZnS (zinc sulfide) doped with Li treated in the present invention, it is considered that a p-type crystal cannot be formed due to the reason 2). The fact that you cannot dope p-type is p
The fatal drawback of this type of semiconductor device, which is expected to emit light or operate as a laser diode due to the -n junction, is a drawback.

本発明の目的は上述した従来の問題点を解決し、禁制帯
幅の大きい半導体材料でもn型,p型のドーピングが容易
に達成できる半導体材料への不純物ドーピング法を提供
することにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide an impurity doping method for a semiconductor material which can easily achieve n-type and p-type doping even with a semiconductor material having a large forbidden band.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体材料への不純物ドーピング法は、まず半
導体へ高温での熱拡散により不純物を正規格子位置およ
びそれ以外の位置にドーピングし、熱および電場を併用
した拡散によって、例えば自動補償作用等によって生じ
た侵入型位置のドーパント不純物のみを拡散移動させ
て、正規位置に置換したドーパントのみが存在する層を
得るものである。
The impurity doping method for a semiconductor material of the present invention is performed by first doping a semiconductor with impurities by thermal diffusion at a high temperature at regular lattice positions and other positions, and then by diffusion using a combination of heat and an electric field, for example, by an automatic compensation function or the like. Only the generated dopant impurities at the interstitial position are diffused and moved to obtain a layer in which only the dopant substituted at the regular position exists.

〔作用〕[Action]

ある種の半導体にある種の不純物を拡散させると、母体
の正規位置を置換すると同時に侵入型位置にも不純物が
位置することはよく知られている。これは母体原子に較
べて拡散しようとする不純物原子が小さい場合により起
こり、本発明で述べるZnS中のLi、GaP(燐化ガリウム)
中のLi、SiやGe中のLiなどがよく知られている。一方半
導体中の侵入位置型不純物は、置換位置型不純物に較べ
て拡散のためのエネルギー障壁は小さくまたイオン化し
ていれば電場によって容易に拡散する。従って、適当な
温度において、侵入位置と置換位置型不純物を同時に含
む半導体に電場を印加すれば、拡散エネルギー障壁の小
さい侵入位置型不純物のみが片側の電極へ拡散し、置換
位置型不純物のみを含む層が形成することが出来る。
It is well known that when a certain kind of impurity is diffused into a certain kind of semiconductor, the impurity is located at the interstitial position at the same time as replacing the regular position of the mother body. This occurs when the number of impurity atoms trying to diffuse is smaller than that of the host atoms, and Li and GaP (gallium phosphide) in ZnS described in the present invention are used.
Li in, Li in Si and Ge are well known. On the other hand, the penetration position type impurity in the semiconductor has a smaller energy barrier for diffusion than the substitution position type impurity, and easily diffuses by an electric field if ionized. Therefore, if an electric field is applied to a semiconductor containing an intrusion position and a substitutional position impurity at the same temperature, only the intrusion position type impurity having a small diffusion energy barrier diffuses to one electrode, and only the substitutional position impurity is contained. Layers can be formed.

本発明による不純物の拡散では、用いる母体半導体の種
類と不純物原子の種類は問わず、高温熱拡散によって生
じる反対符号の欠陥準位(例えばドナー性準位とアクセ
プター性準位等、またこれは外因性、内因性欠陥準位を
含む)の拡散エネルギー障壁に差があれば適当可能であ
り、すべての場合をここに網羅することはできない。
In the impurity diffusion according to the present invention, regardless of the type of the host semiconductor and the type of the impurity atom used, defect levels of opposite signs (for example, a donor level and an acceptor level, etc., which are generated by high temperature thermal diffusion, and this are due to external factors). It is possible if there is a difference in the diffusion energy barrier (including intrinsic and intrinsic defect levels), and not all cases can be covered here.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。第1図および第2図は、本発明の一実施例を説明す
るために工程順に示した工程の原理図であり、第1図は
工程1,第2図は工程2の説明用である。本実施例ではZn
S中にLiを拡散してP型結晶を得る方法について説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are principle diagrams of steps shown in order of steps for explaining one embodiment of the present invention. FIG. 1 is for explaining step 1 and FIG. 2 is for explaining step 2. In this embodiment, Zn
A method of diffusing Li into S to obtain a P-type crystal will be described.

先ず工程1として、硫酸リチウム約20グラムを100グラ
ムの水に溶かし硫酸リチウム水溶液とする。この水溶液
中に10mm×10mm×1mmに切り出し、クロム混酸液および
水酸化カリウム水溶液(30%,90℃)でエッチングしたZ
nSバルク結晶1を浸し、その後取り出して約110℃で乾
燥させる。このとき、他の不純物が混入しないように十
分注意する。次に十分洗浄した石英アンプル2にこの硫
酸リチウム水溶液を塗布され乾燥させたZnSバルク結晶
1と、この結晶の熱分解を防ぐ為に入れられたZnS粉末
3を第1図の配置の様に入れた後、石英アンプル2を高
真空排気装置につなぐ。ZnS粉末3がまわないように石
英アンプル2を排気し、10-7Torr以下の超高真空になっ
たところでの石英アンプル2を封じ切る。この後石英ア
ンプル2全体を電気炉4内に、加熱ヒーター5および6
によってそれぞれZnSバルク結晶1と、ZnS粉末3が独立
に加熱される様に配置する。上記の操作ののち、加熱ヒ
ーター5および6に電流を流す。このLiの高温熱拡散の
為の温度、時間は種々の条件に依存するが、本実施例の
場合、ZnSバルク結晶1の温度を850℃、ZnS粉末3の温
度が870℃となる様に設定し5時間保持した。上記熱処
理の後、石英アンプル2を割ってZnSバルク結晶1を取
り出し、水酸化カリウム水溶液(30%,90℃)でエッチ
ングした後、結晶の両面にタングステン金属を蒸着す
る。このタングステン金属に1mmファイの白金線を圧着
する。
First, in step 1, about 20 grams of lithium sulfate is dissolved in 100 grams of water to form a lithium sulfate aqueous solution. Z was cut into this solution to a size of 10 mm × 10 mm × 1 mm and etched with a chromium mixed acid solution and an aqueous potassium hydroxide solution (30%, 90 ° C).
The nS bulk crystal 1 is dipped, then taken out and dried at about 110 ° C. At this time, be careful not to mix other impurities. Next, a well-cleaned quartz ampoule 2 was coated with this lithium sulfate aqueous solution and dried, and ZnS bulk crystal 1 and ZnS powder 3 contained to prevent thermal decomposition of this crystal were placed as shown in the arrangement of FIG. After that, the quartz ampoule 2 is connected to a high vacuum exhaust device. The quartz ampoule 2 is evacuated so that the ZnS powder 3 does not rotate, and the quartz ampoule 2 is sealed off when the ultrahigh vacuum of 10 −7 Torr or less is reached. Then, the entire quartz ampoule 2 is placed in an electric furnace 4 and heaters 5 and 6 are used.
The ZnS bulk crystal 1 and the ZnS powder 3 are arranged so as to be independently heated. After the above operation, an electric current is passed through the heaters 5 and 6. The temperature and time for this high-temperature thermal diffusion of Li depend on various conditions, but in the case of this example, the temperature of the ZnS bulk crystal 1 is set to 850 ° C and the temperature of the ZnS powder 3 is set to 870 ° C. And held for 5 hours. After the above heat treatment, the quartz ampoule 2 is broken and the ZnS bulk crystal 1 is taken out and etched with a potassium hydroxide aqueous solution (30%, 90 ° C.), and then tungsten metal is vapor-deposited on both surfaces of the crystal. A 1 mm wire of platinum wire is pressure bonded to the tungsten metal.

次に工程2として、第2図に示すように、十分洗浄した
石英アンプル7に、予め工程1でLiを拡散され、電圧を
印加するため結晶両面にタングステン金属電極8および
9を持つZnSバルク結晶10と、この結晶の熱分解を防ぐ
為に入れられたZnS粉末11を配置し、タングステン金属
電極8および9から引き出された白金線12および13を、
予め石英アンプル7に取りつけられた貫通電極14及び15
につなぎ、更に貫通電極14及び15は石英アンプル7の外
に置かれた電源16に接続され、石英アンプル7全体は電
気炉17内に配置されて独立な加熱ヒーター18および19に
よってそれぞれZnSバルク結晶10と、ZnS粉末11が独立に
加熱される様に配置される。上記の操作ののち、加熱ヒ
ーター18および19に電流を流す。このLiの電場および熱
拡散の為の温度、時間、電源16の電圧、等は種々の条件
に依存するが、本実施例の場合、ZnSバルク結晶10の温
度を320℃、ZnS粉末11の温度が400℃となる様に設定
し、電圧を1000ボルトとして、30時間保持した。
Next, in step 2, as shown in FIG. 2, a ZnS bulk crystal having tungsten metal electrodes 8 and 9 on both surfaces of the crystal, to which a voltage has been applied, was previously diffused with Li in a well-cleaned quartz ampoule 7. 10 and ZnS powder 11 put in to prevent thermal decomposition of this crystal are arranged, and platinum wires 12 and 13 drawn out from the tungsten metal electrodes 8 and 9 are
Through electrodes 14 and 15 that are attached to the quartz ampoule 7 in advance
In addition, the through electrodes 14 and 15 are connected to a power source 16 placed outside the quartz ampoule 7, and the entire quartz ampoule 7 is placed in an electric furnace 17 by independent heaters 18 and 19 for ZnS bulk crystal, respectively. 10 and ZnS powder 11 are arranged so as to be independently heated. After the above operation, electric current is passed through the heaters 18 and 19. The temperature and time for this Li electric field and thermal diffusion, the voltage of the power supply 16, etc. depend on various conditions, but in the case of the present embodiment, the temperature of the ZnS bulk crystal 10 is 320 ° C., the temperature of the ZnS powder 11 is Was set to 400 ° C., the voltage was set to 1000 V, and it was held for 30 hours.

この後石英アンプル7を割ってZnSバルク結晶10を取り
出し、室温でのHall測定によって、上記の操作後のZnS
バルク結晶の正孔濃度評価した結果、ホール係数は正、
すなわちp型を示し、キャリア濃度は1×1017cm-3であ
った。またLiの高温熱拡散(工程1)のみを行なった試
料では、高抵抗の為Hall測定は不可能であった。
After that, the quartz ampoule 7 was broken and the ZnS bulk crystal 10 was taken out, and the ZnS after the above operation was measured by Hall measurement at room temperature.
As a result of evaluating the hole concentration of the bulk crystal, the hole coefficient is positive,
That is, it was p-type and the carrier concentration was 1 × 10 17 cm -3 . In addition, Hall measurement was not possible for the sample subjected to only high temperature thermal diffusion of Li (step 1) because of its high resistance.

本実施例では半導体としてZnS、また不純物としてLiを
選んだが、作用の項で述べたように、用いる母体半導体
の種類と不純物原子の種類は問わず、高温熱拡散によっ
て生じる反対符号の欠陥準位(例えばドナー性準位とア
クセプター性準位等、またこれは外因性、内因性欠陥準
位を含む)の拡散エネルギー障壁に差があれば適用可能
であり、例えば母体となる半導体としはSi、Ge、InP、G
aAs、AlGaN、AlGaP、AlGaInSb、ZnSe、C(ダイヤモン
ド)、などの種類を問わず、更に結晶かアモルファスか
も問わない。また不純物原子としても通常のドナーやア
クセプターとなる元素は勿論のこと、例えば遷移金属元
素等でも可能であり、その種類を限るものではない。
In this example, ZnS was selected as the semiconductor and Li was selected as the impurity.However, as described in the section of the action, regardless of the type of the host semiconductor used and the type of the impurity atom, the defect level of the opposite sign generated by the high temperature thermal diffusion does not matter. (For example, donor level and acceptor level, etc., and this includes extrinsic and intrinsic defect levels) It is applicable if there is a difference in the diffusion energy barrier, for example, as a base semiconductor, Si, Ge, InP, G
It may be of any type such as aAs, AlGaN, AlGaP, AlGaInSb, ZnSe, C (diamond), and may be crystalline or amorphous. Further, as the impurity atom, not only an element that becomes a normal donor or acceptor but also a transition metal element or the like can be used, and the kind thereof is not limited.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明方法により作製したLiドープ
ZnSの電気的特性から、従来の方法では達成できなかっ
たp型ZnSが作製可能である事がわかる。
As described above, Li-doped produced by the method of the present invention
From the electrical characteristics of ZnS, it can be seen that p-type ZnS, which could not be achieved by conventional methods, can be produced.

本発明はこのように半導体中へ電場および熱拡散によっ
て不純物置換位置を制御できるようにしたものであり、
全ての半導体への不順物ドーピングにその活用が期待さ
れるものである。
The present invention is thus capable of controlling the impurity substitution position in the semiconductor by electric field and thermal diffusion,
It is expected to be used for doping irregular semiconductors into all semiconductors.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の一実施例を説明するため
に工程順に示した原理図で、第1図はLiのZnSへの高熱
拡散工程(工程1),第2図はLiのZnSへの電場および
熱拡散工程(工程2)を示す。 1…ZnSバルク結晶、2…石英アンプル、3…ZnS粉末、
4…電気炉、5,6…加熱ヒーター、7…石英アンプル、
8,9…タングステン電極、10…ZnSバルク結晶、11…ZnS
粉末、12,13…白金線、14,15…貫通電極、16…電源、17
…電気炉、18,19…加熱ヒーター。
FIGS. 1 and 2 are principle diagrams shown in order of steps for explaining one embodiment of the present invention. FIG. 1 shows a high thermal diffusion step of Li into ZnS (step 1), and FIG. The electric field to ZnS and a thermal diffusion process (process 2) are shown. 1 ... ZnS bulk crystal, 2 ... Quartz ampoule, 3 ... ZnS powder,
4 ... Electric furnace, 5, 6 ... Heater, 7 ... Quartz ampoule,
8,9 ... Tungsten electrode, 10 ... ZnS bulk crystal, 11 ... ZnS
Powder, 12,13… Platinum wire, 14,15… Through electrode, 16… Power supply, 17
… Electric furnace, 18,19… Heating heater.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不純物を半導体材料に導入する工程1と、
引き続き前記半導体材料に熱および電場を同時に印加し
侵入型の不純物のみを拡散移動させて正規位置の不純物
のみが存在する層を形成する工程2とを有することを特
徴とする半導体材料への不純物ドーピング方法。
1. A step 1 of introducing impurities into a semiconductor material,
Successively applying heat and an electric field to the semiconductor material at the same time to diffuse and move only interstitial impurities to form a layer in which only impurities at regular positions are present. 2. Impurity doping to semiconductor material Method.
JP61235631A 1986-10-02 1986-10-02 Impurity doping method for semiconductor materials Expired - Fee Related JPH0695498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235631A JPH0695498B2 (en) 1986-10-02 1986-10-02 Impurity doping method for semiconductor materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235631A JPH0695498B2 (en) 1986-10-02 1986-10-02 Impurity doping method for semiconductor materials

Publications (2)

Publication Number Publication Date
JPS6390143A JPS6390143A (en) 1988-04-21
JPH0695498B2 true JPH0695498B2 (en) 1994-11-24

Family

ID=16988877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235631A Expired - Fee Related JPH0695498B2 (en) 1986-10-02 1986-10-02 Impurity doping method for semiconductor materials

Country Status (1)

Country Link
JP (1) JPH0695498B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503264A1 (en) * 1985-01-31 1986-08-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen METHOD FOR MODIFYING THE LOCAL, ATOMARIC COMPOSITION OF SOLID BODIES, IN PARTICULAR SEMICONDUCTORS

Also Published As

Publication number Publication date
JPS6390143A (en) 1988-04-21

Similar Documents

Publication Publication Date Title
Anderson et al. PHOSPHOROUS‐ION‐IMPLANTED CdS
Harris et al. Silicon self‐interstitial supersaturation during phosphorus diffusion
US3267317A (en) Device for producing recombination radiation
Vydyanath Mechanisms of incorporation of donor and acceptor dopants in (Hg, Cd) Te alloys
US3549434A (en) Low resisitivity group iib-vib compounds and method of formation
US4904618A (en) Process for doping crystals of wide band gap semiconductors
US3390311A (en) Seleno-telluride p-nu junction device utilizing deep trapping states
JPH0695498B2 (en) Impurity doping method for semiconductor materials
JPH0695497B2 (en) Impurity doping method for semiconductor materials
Sandiford Temperature dependence of carrier lifetime in silicon
US3599059A (en) Ion implanted cadmium sulfide pn junction device
US5412242A (en) Semiconductor device with p-n junction based on dopant profile in equilibrium with internal electric field created by this junction
US3705059A (en) Methods of producing p-typeness and p-n junctions in wide band gap semiconductor materials
US3735212A (en) P-n junction semiconductor devices
US4105479A (en) Preparation of halogen doped mercury cadmium telluride
WO2012021190A2 (en) Ionic junction for radiation detectors
US3373059A (en) Method of making photosensitive elements
Dutt et al. 3 Diffusion in compound semiconductors
Miroshnikov et al. Optimization of the parameters of PbSB-based polycrystalline photoresistors
Plyatsko et al. Photoinduced electric properties of Pb1− xSnxTe single crystals
Stephens Doping of III–V compound semiconductors by ion implantation
Endale et al. Effects of Temperature on Intra-Band Photoluminescence of Zinc Oxide (ZnO) Semiconductor
US3600236A (en) Method of obtaining type conversion in cds
JPH0349217A (en) Plasma doping device for semiconductor substrate
Lyubomirsky et al. Self‐restoration of p‐n junctions in (Hg, Cd) Te

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees